odp.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230
  1. /*
  2. * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <rdma/ib_umem.h>
  33. #include <rdma/ib_umem_odp.h>
  34. #include <linux/kernel.h>
  35. #include "mlx5_ib.h"
  36. #include "cmd.h"
  37. #define MAX_PREFETCH_LEN (4*1024*1024U)
  38. /* Timeout in ms to wait for an active mmu notifier to complete when handling
  39. * a pagefault. */
  40. #define MMU_NOTIFIER_TIMEOUT 1000
  41. #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
  42. #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
  43. #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
  44. #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
  45. #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
  46. #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
  47. static u64 mlx5_imr_ksm_entries;
  48. static int check_parent(struct ib_umem_odp *odp,
  49. struct mlx5_ib_mr *parent)
  50. {
  51. struct mlx5_ib_mr *mr = odp->private;
  52. return mr && mr->parent == parent && !odp->dying;
  53. }
  54. static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
  55. {
  56. struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
  57. struct ib_ucontext *ctx = odp->umem->context;
  58. struct rb_node *rb;
  59. down_read(&ctx->umem_rwsem);
  60. while (1) {
  61. rb = rb_next(&odp->interval_tree.rb);
  62. if (!rb)
  63. goto not_found;
  64. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  65. if (check_parent(odp, parent))
  66. goto end;
  67. }
  68. not_found:
  69. odp = NULL;
  70. end:
  71. up_read(&ctx->umem_rwsem);
  72. return odp;
  73. }
  74. static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
  75. u64 start, u64 length,
  76. struct mlx5_ib_mr *parent)
  77. {
  78. struct ib_umem_odp *odp;
  79. struct rb_node *rb;
  80. down_read(&ctx->umem_rwsem);
  81. odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
  82. if (!odp)
  83. goto end;
  84. while (1) {
  85. if (check_parent(odp, parent))
  86. goto end;
  87. rb = rb_next(&odp->interval_tree.rb);
  88. if (!rb)
  89. goto not_found;
  90. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  91. if (ib_umem_start(odp->umem) > start + length)
  92. goto not_found;
  93. }
  94. not_found:
  95. odp = NULL;
  96. end:
  97. up_read(&ctx->umem_rwsem);
  98. return odp;
  99. }
  100. void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
  101. size_t nentries, struct mlx5_ib_mr *mr, int flags)
  102. {
  103. struct ib_pd *pd = mr->ibmr.pd;
  104. struct ib_ucontext *ctx = pd->uobject->context;
  105. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  106. struct ib_umem_odp *odp;
  107. unsigned long va;
  108. int i;
  109. if (flags & MLX5_IB_UPD_XLT_ZAP) {
  110. for (i = 0; i < nentries; i++, pklm++) {
  111. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  112. pklm->key = cpu_to_be32(dev->null_mkey);
  113. pklm->va = 0;
  114. }
  115. return;
  116. }
  117. odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
  118. nentries * MLX5_IMR_MTT_SIZE, mr);
  119. for (i = 0; i < nentries; i++, pklm++) {
  120. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  121. va = (offset + i) * MLX5_IMR_MTT_SIZE;
  122. if (odp && odp->umem->address == va) {
  123. struct mlx5_ib_mr *mtt = odp->private;
  124. pklm->key = cpu_to_be32(mtt->ibmr.lkey);
  125. odp = odp_next(odp);
  126. } else {
  127. pklm->key = cpu_to_be32(dev->null_mkey);
  128. }
  129. mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
  130. i, va, be32_to_cpu(pklm->key));
  131. }
  132. }
  133. static void mr_leaf_free_action(struct work_struct *work)
  134. {
  135. struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
  136. int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
  137. struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
  138. mr->parent = NULL;
  139. synchronize_srcu(&mr->dev->mr_srcu);
  140. ib_umem_release(odp->umem);
  141. if (imr->live)
  142. mlx5_ib_update_xlt(imr, idx, 1, 0,
  143. MLX5_IB_UPD_XLT_INDIRECT |
  144. MLX5_IB_UPD_XLT_ATOMIC);
  145. mlx5_mr_cache_free(mr->dev, mr);
  146. if (atomic_dec_and_test(&imr->num_leaf_free))
  147. wake_up(&imr->q_leaf_free);
  148. }
  149. void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
  150. unsigned long end)
  151. {
  152. struct mlx5_ib_mr *mr;
  153. const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
  154. sizeof(struct mlx5_mtt)) - 1;
  155. u64 idx = 0, blk_start_idx = 0;
  156. int in_block = 0;
  157. u64 addr;
  158. if (!umem || !umem->odp_data) {
  159. pr_err("invalidation called on NULL umem or non-ODP umem\n");
  160. return;
  161. }
  162. mr = umem->odp_data->private;
  163. if (!mr || !mr->ibmr.pd)
  164. return;
  165. start = max_t(u64, ib_umem_start(umem), start);
  166. end = min_t(u64, ib_umem_end(umem), end);
  167. /*
  168. * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
  169. * while we are doing the invalidation, no page fault will attempt to
  170. * overwrite the same MTTs. Concurent invalidations might race us,
  171. * but they will write 0s as well, so no difference in the end result.
  172. */
  173. for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
  174. idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
  175. /*
  176. * Strive to write the MTTs in chunks, but avoid overwriting
  177. * non-existing MTTs. The huristic here can be improved to
  178. * estimate the cost of another UMR vs. the cost of bigger
  179. * UMR.
  180. */
  181. if (umem->odp_data->dma_list[idx] &
  182. (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
  183. if (!in_block) {
  184. blk_start_idx = idx;
  185. in_block = 1;
  186. }
  187. } else {
  188. u64 umr_offset = idx & umr_block_mask;
  189. if (in_block && umr_offset == 0) {
  190. mlx5_ib_update_xlt(mr, blk_start_idx,
  191. idx - blk_start_idx, 0,
  192. MLX5_IB_UPD_XLT_ZAP |
  193. MLX5_IB_UPD_XLT_ATOMIC);
  194. in_block = 0;
  195. }
  196. }
  197. }
  198. if (in_block)
  199. mlx5_ib_update_xlt(mr, blk_start_idx,
  200. idx - blk_start_idx + 1, 0,
  201. MLX5_IB_UPD_XLT_ZAP |
  202. MLX5_IB_UPD_XLT_ATOMIC);
  203. /*
  204. * We are now sure that the device will not access the
  205. * memory. We can safely unmap it, and mark it as dirty if
  206. * needed.
  207. */
  208. ib_umem_odp_unmap_dma_pages(umem, start, end);
  209. if (unlikely(!umem->npages && mr->parent &&
  210. !umem->odp_data->dying)) {
  211. WRITE_ONCE(umem->odp_data->dying, 1);
  212. atomic_inc(&mr->parent->num_leaf_free);
  213. schedule_work(&umem->odp_data->work);
  214. }
  215. }
  216. void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
  217. {
  218. struct ib_odp_caps *caps = &dev->odp_caps;
  219. memset(caps, 0, sizeof(*caps));
  220. if (!MLX5_CAP_GEN(dev->mdev, pg))
  221. return;
  222. caps->general_caps = IB_ODP_SUPPORT;
  223. if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  224. dev->odp_max_size = U64_MAX;
  225. else
  226. dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
  227. if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
  228. caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
  229. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
  230. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
  231. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
  232. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
  233. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
  234. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
  235. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
  236. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
  237. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
  238. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
  239. if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
  240. MLX5_CAP_GEN(dev->mdev, null_mkey) &&
  241. MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  242. caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
  243. return;
  244. }
  245. static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
  246. struct mlx5_pagefault *pfault,
  247. int error)
  248. {
  249. int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
  250. pfault->wqe.wq_num : pfault->token;
  251. int ret = mlx5_core_page_fault_resume(dev->mdev,
  252. pfault->token,
  253. wq_num,
  254. pfault->type,
  255. error);
  256. if (ret)
  257. mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
  258. wq_num);
  259. }
  260. static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
  261. struct ib_umem *umem,
  262. bool ksm, int access_flags)
  263. {
  264. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  265. struct mlx5_ib_mr *mr;
  266. int err;
  267. mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
  268. MLX5_IMR_MTT_CACHE_ENTRY);
  269. if (IS_ERR(mr))
  270. return mr;
  271. mr->ibmr.pd = pd;
  272. mr->dev = dev;
  273. mr->access_flags = access_flags;
  274. mr->mmkey.iova = 0;
  275. mr->umem = umem;
  276. if (ksm) {
  277. err = mlx5_ib_update_xlt(mr, 0,
  278. mlx5_imr_ksm_entries,
  279. MLX5_KSM_PAGE_SHIFT,
  280. MLX5_IB_UPD_XLT_INDIRECT |
  281. MLX5_IB_UPD_XLT_ZAP |
  282. MLX5_IB_UPD_XLT_ENABLE);
  283. } else {
  284. err = mlx5_ib_update_xlt(mr, 0,
  285. MLX5_IMR_MTT_ENTRIES,
  286. PAGE_SHIFT,
  287. MLX5_IB_UPD_XLT_ZAP |
  288. MLX5_IB_UPD_XLT_ENABLE |
  289. MLX5_IB_UPD_XLT_ATOMIC);
  290. }
  291. if (err)
  292. goto fail;
  293. mr->ibmr.lkey = mr->mmkey.key;
  294. mr->ibmr.rkey = mr->mmkey.key;
  295. mr->live = 1;
  296. mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
  297. mr->mmkey.key, dev->mdev, mr);
  298. return mr;
  299. fail:
  300. mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
  301. mlx5_mr_cache_free(dev, mr);
  302. return ERR_PTR(err);
  303. }
  304. static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
  305. u64 io_virt, size_t bcnt)
  306. {
  307. struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
  308. struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
  309. struct ib_umem_odp *odp, *result = NULL;
  310. u64 addr = io_virt & MLX5_IMR_MTT_MASK;
  311. int nentries = 0, start_idx = 0, ret;
  312. struct mlx5_ib_mr *mtt;
  313. struct ib_umem *umem;
  314. mutex_lock(&mr->umem->odp_data->umem_mutex);
  315. odp = odp_lookup(ctx, addr, 1, mr);
  316. mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
  317. io_virt, bcnt, addr, odp);
  318. next_mr:
  319. if (likely(odp)) {
  320. if (nentries)
  321. nentries++;
  322. } else {
  323. umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
  324. if (IS_ERR(umem)) {
  325. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  326. return ERR_CAST(umem);
  327. }
  328. mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
  329. if (IS_ERR(mtt)) {
  330. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  331. ib_umem_release(umem);
  332. return ERR_CAST(mtt);
  333. }
  334. odp = umem->odp_data;
  335. odp->private = mtt;
  336. mtt->umem = umem;
  337. mtt->mmkey.iova = addr;
  338. mtt->parent = mr;
  339. INIT_WORK(&odp->work, mr_leaf_free_action);
  340. if (!nentries)
  341. start_idx = addr >> MLX5_IMR_MTT_SHIFT;
  342. nentries++;
  343. }
  344. /* Return first odp if region not covered by single one */
  345. if (likely(!result))
  346. result = odp;
  347. addr += MLX5_IMR_MTT_SIZE;
  348. if (unlikely(addr < io_virt + bcnt)) {
  349. odp = odp_next(odp);
  350. if (odp && odp->umem->address != addr)
  351. odp = NULL;
  352. goto next_mr;
  353. }
  354. if (unlikely(nentries)) {
  355. ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
  356. MLX5_IB_UPD_XLT_INDIRECT |
  357. MLX5_IB_UPD_XLT_ATOMIC);
  358. if (ret) {
  359. mlx5_ib_err(dev, "Failed to update PAS\n");
  360. result = ERR_PTR(ret);
  361. }
  362. }
  363. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  364. return result;
  365. }
  366. struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
  367. int access_flags)
  368. {
  369. struct ib_ucontext *ctx = pd->ibpd.uobject->context;
  370. struct mlx5_ib_mr *imr;
  371. struct ib_umem *umem;
  372. umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
  373. if (IS_ERR(umem))
  374. return ERR_CAST(umem);
  375. imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
  376. if (IS_ERR(imr)) {
  377. ib_umem_release(umem);
  378. return ERR_CAST(imr);
  379. }
  380. imr->umem = umem;
  381. init_waitqueue_head(&imr->q_leaf_free);
  382. atomic_set(&imr->num_leaf_free, 0);
  383. return imr;
  384. }
  385. static int mr_leaf_free(struct ib_umem *umem, u64 start,
  386. u64 end, void *cookie)
  387. {
  388. struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
  389. if (mr->parent != imr)
  390. return 0;
  391. ib_umem_odp_unmap_dma_pages(umem,
  392. ib_umem_start(umem),
  393. ib_umem_end(umem));
  394. if (umem->odp_data->dying)
  395. return 0;
  396. WRITE_ONCE(umem->odp_data->dying, 1);
  397. atomic_inc(&imr->num_leaf_free);
  398. schedule_work(&umem->odp_data->work);
  399. return 0;
  400. }
  401. void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
  402. {
  403. struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
  404. down_read(&ctx->umem_rwsem);
  405. rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
  406. mr_leaf_free, true, imr);
  407. up_read(&ctx->umem_rwsem);
  408. wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
  409. }
  410. static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
  411. u64 io_virt, size_t bcnt, u32 *bytes_mapped)
  412. {
  413. u64 access_mask;
  414. int npages = 0, page_shift, np;
  415. u64 start_idx, page_mask;
  416. struct ib_umem_odp *odp;
  417. int current_seq;
  418. size_t size;
  419. int ret;
  420. if (!mr->umem->odp_data->page_list) {
  421. odp = implicit_mr_get_data(mr, io_virt, bcnt);
  422. if (IS_ERR(odp))
  423. return PTR_ERR(odp);
  424. mr = odp->private;
  425. } else {
  426. odp = mr->umem->odp_data;
  427. }
  428. next_mr:
  429. size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
  430. page_shift = mr->umem->page_shift;
  431. page_mask = ~(BIT(page_shift) - 1);
  432. start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
  433. access_mask = ODP_READ_ALLOWED_BIT;
  434. if (mr->umem->writable)
  435. access_mask |= ODP_WRITE_ALLOWED_BIT;
  436. current_seq = READ_ONCE(odp->notifiers_seq);
  437. /*
  438. * Ensure the sequence number is valid for some time before we call
  439. * gup.
  440. */
  441. smp_rmb();
  442. ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
  443. access_mask, current_seq);
  444. if (ret < 0)
  445. goto out;
  446. np = ret;
  447. mutex_lock(&odp->umem_mutex);
  448. if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
  449. /*
  450. * No need to check whether the MTTs really belong to
  451. * this MR, since ib_umem_odp_map_dma_pages already
  452. * checks this.
  453. */
  454. ret = mlx5_ib_update_xlt(mr, start_idx, np,
  455. page_shift, MLX5_IB_UPD_XLT_ATOMIC);
  456. } else {
  457. ret = -EAGAIN;
  458. }
  459. mutex_unlock(&odp->umem_mutex);
  460. if (ret < 0) {
  461. if (ret != -EAGAIN)
  462. mlx5_ib_err(dev, "Failed to update mkey page tables\n");
  463. goto out;
  464. }
  465. if (bytes_mapped) {
  466. u32 new_mappings = (np << page_shift) -
  467. (io_virt - round_down(io_virt, 1 << page_shift));
  468. *bytes_mapped += min_t(u32, new_mappings, size);
  469. }
  470. npages += np << (page_shift - PAGE_SHIFT);
  471. bcnt -= size;
  472. if (unlikely(bcnt)) {
  473. struct ib_umem_odp *next;
  474. io_virt += size;
  475. next = odp_next(odp);
  476. if (unlikely(!next || next->umem->address != io_virt)) {
  477. mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
  478. io_virt, next);
  479. return -EAGAIN;
  480. }
  481. odp = next;
  482. mr = odp->private;
  483. goto next_mr;
  484. }
  485. return npages;
  486. out:
  487. if (ret == -EAGAIN) {
  488. if (mr->parent || !odp->dying) {
  489. unsigned long timeout =
  490. msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
  491. if (!wait_for_completion_timeout(
  492. &odp->notifier_completion,
  493. timeout)) {
  494. mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
  495. current_seq, odp->notifiers_seq);
  496. }
  497. } else {
  498. /* The MR is being killed, kill the QP as well. */
  499. ret = -EFAULT;
  500. }
  501. }
  502. return ret;
  503. }
  504. struct pf_frame {
  505. struct pf_frame *next;
  506. u32 key;
  507. u64 io_virt;
  508. size_t bcnt;
  509. int depth;
  510. };
  511. /*
  512. * Handle a single data segment in a page-fault WQE or RDMA region.
  513. *
  514. * Returns number of OS pages retrieved on success. The caller may continue to
  515. * the next data segment.
  516. * Can return the following error codes:
  517. * -EAGAIN to designate a temporary error. The caller will abort handling the
  518. * page fault and resolve it.
  519. * -EFAULT when there's an error mapping the requested pages. The caller will
  520. * abort the page fault handling.
  521. */
  522. static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
  523. u32 key, u64 io_virt, size_t bcnt,
  524. u32 *bytes_committed,
  525. u32 *bytes_mapped)
  526. {
  527. int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
  528. struct pf_frame *head = NULL, *frame;
  529. struct mlx5_core_mkey *mmkey;
  530. struct mlx5_ib_mw *mw;
  531. struct mlx5_ib_mr *mr;
  532. struct mlx5_klm *pklm;
  533. u32 *out = NULL;
  534. size_t offset;
  535. srcu_key = srcu_read_lock(&dev->mr_srcu);
  536. io_virt += *bytes_committed;
  537. bcnt -= *bytes_committed;
  538. next_mr:
  539. mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
  540. if (!mmkey || mmkey->key != key) {
  541. mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
  542. ret = -EFAULT;
  543. goto srcu_unlock;
  544. }
  545. switch (mmkey->type) {
  546. case MLX5_MKEY_MR:
  547. mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
  548. if (!mr->live || !mr->ibmr.pd) {
  549. mlx5_ib_dbg(dev, "got dead MR\n");
  550. ret = -EFAULT;
  551. goto srcu_unlock;
  552. }
  553. ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
  554. if (ret < 0)
  555. goto srcu_unlock;
  556. npages += ret;
  557. ret = 0;
  558. break;
  559. case MLX5_MKEY_MW:
  560. mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
  561. if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
  562. mlx5_ib_dbg(dev, "indirection level exceeded\n");
  563. ret = -EFAULT;
  564. goto srcu_unlock;
  565. }
  566. outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
  567. sizeof(*pklm) * (mw->ndescs - 2);
  568. if (outlen > cur_outlen) {
  569. kfree(out);
  570. out = kzalloc(outlen, GFP_KERNEL);
  571. if (!out) {
  572. ret = -ENOMEM;
  573. goto srcu_unlock;
  574. }
  575. cur_outlen = outlen;
  576. }
  577. pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
  578. bsf0_klm0_pas_mtt0_1);
  579. ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
  580. if (ret)
  581. goto srcu_unlock;
  582. offset = io_virt - MLX5_GET64(query_mkey_out, out,
  583. memory_key_mkey_entry.start_addr);
  584. for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
  585. if (offset >= be32_to_cpu(pklm->bcount)) {
  586. offset -= be32_to_cpu(pklm->bcount);
  587. continue;
  588. }
  589. frame = kzalloc(sizeof(*frame), GFP_KERNEL);
  590. if (!frame) {
  591. ret = -ENOMEM;
  592. goto srcu_unlock;
  593. }
  594. frame->key = be32_to_cpu(pklm->key);
  595. frame->io_virt = be64_to_cpu(pklm->va) + offset;
  596. frame->bcnt = min_t(size_t, bcnt,
  597. be32_to_cpu(pklm->bcount) - offset);
  598. frame->depth = depth + 1;
  599. frame->next = head;
  600. head = frame;
  601. bcnt -= frame->bcnt;
  602. offset = 0;
  603. }
  604. break;
  605. default:
  606. mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
  607. ret = -EFAULT;
  608. goto srcu_unlock;
  609. }
  610. if (head) {
  611. frame = head;
  612. head = frame->next;
  613. key = frame->key;
  614. io_virt = frame->io_virt;
  615. bcnt = frame->bcnt;
  616. depth = frame->depth;
  617. kfree(frame);
  618. goto next_mr;
  619. }
  620. srcu_unlock:
  621. while (head) {
  622. frame = head;
  623. head = frame->next;
  624. kfree(frame);
  625. }
  626. kfree(out);
  627. srcu_read_unlock(&dev->mr_srcu, srcu_key);
  628. *bytes_committed = 0;
  629. return ret ? ret : npages;
  630. }
  631. /**
  632. * Parse a series of data segments for page fault handling.
  633. *
  634. * @qp the QP on which the fault occurred.
  635. * @pfault contains page fault information.
  636. * @wqe points at the first data segment in the WQE.
  637. * @wqe_end points after the end of the WQE.
  638. * @bytes_mapped receives the number of bytes that the function was able to
  639. * map. This allows the caller to decide intelligently whether
  640. * enough memory was mapped to resolve the page fault
  641. * successfully (e.g. enough for the next MTU, or the entire
  642. * WQE).
  643. * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
  644. * the committed bytes).
  645. *
  646. * Returns the number of pages loaded if positive, zero for an empty WQE, or a
  647. * negative error code.
  648. */
  649. static int pagefault_data_segments(struct mlx5_ib_dev *dev,
  650. struct mlx5_pagefault *pfault,
  651. struct mlx5_ib_qp *qp, void *wqe,
  652. void *wqe_end, u32 *bytes_mapped,
  653. u32 *total_wqe_bytes, int receive_queue)
  654. {
  655. int ret = 0, npages = 0;
  656. u64 io_virt;
  657. u32 key;
  658. u32 byte_count;
  659. size_t bcnt;
  660. int inline_segment;
  661. /* Skip SRQ next-WQE segment. */
  662. if (receive_queue && qp->ibqp.srq)
  663. wqe += sizeof(struct mlx5_wqe_srq_next_seg);
  664. if (bytes_mapped)
  665. *bytes_mapped = 0;
  666. if (total_wqe_bytes)
  667. *total_wqe_bytes = 0;
  668. while (wqe < wqe_end) {
  669. struct mlx5_wqe_data_seg *dseg = wqe;
  670. io_virt = be64_to_cpu(dseg->addr);
  671. key = be32_to_cpu(dseg->lkey);
  672. byte_count = be32_to_cpu(dseg->byte_count);
  673. inline_segment = !!(byte_count & MLX5_INLINE_SEG);
  674. bcnt = byte_count & ~MLX5_INLINE_SEG;
  675. if (inline_segment) {
  676. bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
  677. wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
  678. 16);
  679. } else {
  680. wqe += sizeof(*dseg);
  681. }
  682. /* receive WQE end of sg list. */
  683. if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
  684. io_virt == 0)
  685. break;
  686. if (!inline_segment && total_wqe_bytes) {
  687. *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
  688. pfault->bytes_committed);
  689. }
  690. /* A zero length data segment designates a length of 2GB. */
  691. if (bcnt == 0)
  692. bcnt = 1U << 31;
  693. if (inline_segment || bcnt <= pfault->bytes_committed) {
  694. pfault->bytes_committed -=
  695. min_t(size_t, bcnt,
  696. pfault->bytes_committed);
  697. continue;
  698. }
  699. ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
  700. &pfault->bytes_committed,
  701. bytes_mapped);
  702. if (ret < 0)
  703. break;
  704. npages += ret;
  705. }
  706. return ret < 0 ? ret : npages;
  707. }
  708. static const u32 mlx5_ib_odp_opcode_cap[] = {
  709. [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
  710. [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
  711. [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
  712. [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
  713. [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
  714. [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
  715. [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
  716. [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
  717. };
  718. /*
  719. * Parse initiator WQE. Advances the wqe pointer to point at the
  720. * scatter-gather list, and set wqe_end to the end of the WQE.
  721. */
  722. static int mlx5_ib_mr_initiator_pfault_handler(
  723. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  724. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  725. {
  726. struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
  727. u16 wqe_index = pfault->wqe.wqe_index;
  728. u32 transport_caps;
  729. struct mlx5_base_av *av;
  730. unsigned ds, opcode;
  731. #if defined(DEBUG)
  732. u32 ctrl_wqe_index, ctrl_qpn;
  733. #endif
  734. u32 qpn = qp->trans_qp.base.mqp.qpn;
  735. ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
  736. if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
  737. mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
  738. ds, wqe_length);
  739. return -EFAULT;
  740. }
  741. if (ds == 0) {
  742. mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
  743. wqe_index, qpn);
  744. return -EFAULT;
  745. }
  746. #if defined(DEBUG)
  747. ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
  748. MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
  749. MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
  750. if (wqe_index != ctrl_wqe_index) {
  751. mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
  752. wqe_index, qpn,
  753. ctrl_wqe_index);
  754. return -EFAULT;
  755. }
  756. ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
  757. MLX5_WQE_CTRL_QPN_SHIFT;
  758. if (qpn != ctrl_qpn) {
  759. mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
  760. wqe_index, qpn,
  761. ctrl_qpn);
  762. return -EFAULT;
  763. }
  764. #endif /* DEBUG */
  765. *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
  766. *wqe += sizeof(*ctrl);
  767. opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
  768. MLX5_WQE_CTRL_OPCODE_MASK;
  769. switch (qp->ibqp.qp_type) {
  770. case IB_QPT_RC:
  771. transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
  772. break;
  773. case IB_QPT_UD:
  774. transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
  775. break;
  776. default:
  777. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
  778. qp->ibqp.qp_type);
  779. return -EFAULT;
  780. }
  781. if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
  782. !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
  783. mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
  784. opcode);
  785. return -EFAULT;
  786. }
  787. if (qp->ibqp.qp_type != IB_QPT_RC) {
  788. av = *wqe;
  789. if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
  790. *wqe += sizeof(struct mlx5_av);
  791. else
  792. *wqe += sizeof(struct mlx5_base_av);
  793. }
  794. switch (opcode) {
  795. case MLX5_OPCODE_RDMA_WRITE:
  796. case MLX5_OPCODE_RDMA_WRITE_IMM:
  797. case MLX5_OPCODE_RDMA_READ:
  798. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  799. break;
  800. case MLX5_OPCODE_ATOMIC_CS:
  801. case MLX5_OPCODE_ATOMIC_FA:
  802. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  803. *wqe += sizeof(struct mlx5_wqe_atomic_seg);
  804. break;
  805. }
  806. return 0;
  807. }
  808. /*
  809. * Parse responder WQE. Advances the wqe pointer to point at the
  810. * scatter-gather list, and set wqe_end to the end of the WQE.
  811. */
  812. static int mlx5_ib_mr_responder_pfault_handler(
  813. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  814. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  815. {
  816. struct mlx5_ib_wq *wq = &qp->rq;
  817. int wqe_size = 1 << wq->wqe_shift;
  818. if (qp->ibqp.srq) {
  819. mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
  820. return -EFAULT;
  821. }
  822. if (qp->wq_sig) {
  823. mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
  824. return -EFAULT;
  825. }
  826. if (wqe_size > wqe_length) {
  827. mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
  828. return -EFAULT;
  829. }
  830. switch (qp->ibqp.qp_type) {
  831. case IB_QPT_RC:
  832. if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
  833. IB_ODP_SUPPORT_RECV))
  834. goto invalid_transport_or_opcode;
  835. break;
  836. default:
  837. invalid_transport_or_opcode:
  838. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
  839. qp->ibqp.qp_type);
  840. return -EFAULT;
  841. }
  842. *wqe_end = *wqe + wqe_size;
  843. return 0;
  844. }
  845. static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
  846. u32 wq_num)
  847. {
  848. struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
  849. if (!mqp) {
  850. mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
  851. return NULL;
  852. }
  853. return to_mibqp(mqp);
  854. }
  855. static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
  856. struct mlx5_pagefault *pfault)
  857. {
  858. int ret;
  859. void *wqe, *wqe_end;
  860. u32 bytes_mapped, total_wqe_bytes;
  861. char *buffer = NULL;
  862. int resume_with_error = 1;
  863. u16 wqe_index = pfault->wqe.wqe_index;
  864. int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
  865. struct mlx5_ib_qp *qp;
  866. buffer = (char *)__get_free_page(GFP_KERNEL);
  867. if (!buffer) {
  868. mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
  869. goto resolve_page_fault;
  870. }
  871. qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
  872. if (!qp)
  873. goto resolve_page_fault;
  874. ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
  875. PAGE_SIZE, &qp->trans_qp.base);
  876. if (ret < 0) {
  877. mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
  878. ret, wqe_index, pfault->token);
  879. goto resolve_page_fault;
  880. }
  881. wqe = buffer;
  882. if (requestor)
  883. ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
  884. &wqe_end, ret);
  885. else
  886. ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
  887. &wqe_end, ret);
  888. if (ret < 0)
  889. goto resolve_page_fault;
  890. if (wqe >= wqe_end) {
  891. mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
  892. goto resolve_page_fault;
  893. }
  894. ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
  895. &bytes_mapped, &total_wqe_bytes,
  896. !requestor);
  897. if (ret == -EAGAIN) {
  898. resume_with_error = 0;
  899. goto resolve_page_fault;
  900. } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
  901. goto resolve_page_fault;
  902. }
  903. resume_with_error = 0;
  904. resolve_page_fault:
  905. mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
  906. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
  907. pfault->wqe.wq_num, resume_with_error,
  908. pfault->type);
  909. free_page((unsigned long)buffer);
  910. }
  911. static int pages_in_range(u64 address, u32 length)
  912. {
  913. return (ALIGN(address + length, PAGE_SIZE) -
  914. (address & PAGE_MASK)) >> PAGE_SHIFT;
  915. }
  916. static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
  917. struct mlx5_pagefault *pfault)
  918. {
  919. u64 address;
  920. u32 length;
  921. u32 prefetch_len = pfault->bytes_committed;
  922. int prefetch_activated = 0;
  923. u32 rkey = pfault->rdma.r_key;
  924. int ret;
  925. /* The RDMA responder handler handles the page fault in two parts.
  926. * First it brings the necessary pages for the current packet
  927. * (and uses the pfault context), and then (after resuming the QP)
  928. * prefetches more pages. The second operation cannot use the pfault
  929. * context and therefore uses the dummy_pfault context allocated on
  930. * the stack */
  931. pfault->rdma.rdma_va += pfault->bytes_committed;
  932. pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
  933. pfault->rdma.rdma_op_len);
  934. pfault->bytes_committed = 0;
  935. address = pfault->rdma.rdma_va;
  936. length = pfault->rdma.rdma_op_len;
  937. /* For some operations, the hardware cannot tell the exact message
  938. * length, and in those cases it reports zero. Use prefetch
  939. * logic. */
  940. if (length == 0) {
  941. prefetch_activated = 1;
  942. length = pfault->rdma.packet_size;
  943. prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
  944. }
  945. ret = pagefault_single_data_segment(dev, rkey, address, length,
  946. &pfault->bytes_committed, NULL);
  947. if (ret == -EAGAIN) {
  948. /* We're racing with an invalidation, don't prefetch */
  949. prefetch_activated = 0;
  950. } else if (ret < 0 || pages_in_range(address, length) > ret) {
  951. mlx5_ib_page_fault_resume(dev, pfault, 1);
  952. if (ret != -ENOENT)
  953. mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
  954. ret, pfault->token, pfault->type);
  955. return;
  956. }
  957. mlx5_ib_page_fault_resume(dev, pfault, 0);
  958. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
  959. pfault->token, pfault->type,
  960. prefetch_activated);
  961. /* At this point, there might be a new pagefault already arriving in
  962. * the eq, switch to the dummy pagefault for the rest of the
  963. * processing. We're still OK with the objects being alive as the
  964. * work-queue is being fenced. */
  965. if (prefetch_activated) {
  966. u32 bytes_committed = 0;
  967. ret = pagefault_single_data_segment(dev, rkey, address,
  968. prefetch_len,
  969. &bytes_committed, NULL);
  970. if (ret < 0 && ret != -EAGAIN) {
  971. mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
  972. ret, pfault->token, address, prefetch_len);
  973. }
  974. }
  975. }
  976. void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
  977. struct mlx5_pagefault *pfault)
  978. {
  979. struct mlx5_ib_dev *dev = context;
  980. u8 event_subtype = pfault->event_subtype;
  981. switch (event_subtype) {
  982. case MLX5_PFAULT_SUBTYPE_WQE:
  983. mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
  984. break;
  985. case MLX5_PFAULT_SUBTYPE_RDMA:
  986. mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
  987. break;
  988. default:
  989. mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
  990. event_subtype);
  991. mlx5_ib_page_fault_resume(dev, pfault, 1);
  992. }
  993. }
  994. void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
  995. {
  996. if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
  997. return;
  998. switch (ent->order - 2) {
  999. case MLX5_IMR_MTT_CACHE_ENTRY:
  1000. ent->page = PAGE_SHIFT;
  1001. ent->xlt = MLX5_IMR_MTT_ENTRIES *
  1002. sizeof(struct mlx5_mtt) /
  1003. MLX5_IB_UMR_OCTOWORD;
  1004. ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
  1005. ent->limit = 0;
  1006. break;
  1007. case MLX5_IMR_KSM_CACHE_ENTRY:
  1008. ent->page = MLX5_KSM_PAGE_SHIFT;
  1009. ent->xlt = mlx5_imr_ksm_entries *
  1010. sizeof(struct mlx5_klm) /
  1011. MLX5_IB_UMR_OCTOWORD;
  1012. ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
  1013. ent->limit = 0;
  1014. break;
  1015. }
  1016. }
  1017. int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
  1018. {
  1019. int ret;
  1020. if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
  1021. ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
  1022. if (ret) {
  1023. mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
  1024. return ret;
  1025. }
  1026. }
  1027. return 0;
  1028. }
  1029. int mlx5_ib_odp_init(void)
  1030. {
  1031. mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
  1032. MLX5_IMR_MTT_BITS);
  1033. return 0;
  1034. }