btree.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  4. *
  5. * Uses a block device as cache for other block devices; optimized for SSDs.
  6. * All allocation is done in buckets, which should match the erase block size
  7. * of the device.
  8. *
  9. * Buckets containing cached data are kept on a heap sorted by priority;
  10. * bucket priority is increased on cache hit, and periodically all the buckets
  11. * on the heap have their priority scaled down. This currently is just used as
  12. * an LRU but in the future should allow for more intelligent heuristics.
  13. *
  14. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15. * counter. Garbage collection is used to remove stale pointers.
  16. *
  17. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18. * as keys are inserted we only sort the pages that have not yet been written.
  19. * When garbage collection is run, we resort the entire node.
  20. *
  21. * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
  22. */
  23. #include "bcache.h"
  24. #include "btree.h"
  25. #include "debug.h"
  26. #include "extents.h"
  27. #include <linux/slab.h>
  28. #include <linux/bitops.h>
  29. #include <linux/hash.h>
  30. #include <linux/kthread.h>
  31. #include <linux/prefetch.h>
  32. #include <linux/random.h>
  33. #include <linux/rcupdate.h>
  34. #include <linux/sched/clock.h>
  35. #include <linux/rculist.h>
  36. #include <linux/delay.h>
  37. #include <trace/events/bcache.h>
  38. /*
  39. * Todo:
  40. * register_bcache: Return errors out to userspace correctly
  41. *
  42. * Writeback: don't undirty key until after a cache flush
  43. *
  44. * Create an iterator for key pointers
  45. *
  46. * On btree write error, mark bucket such that it won't be freed from the cache
  47. *
  48. * Journalling:
  49. * Check for bad keys in replay
  50. * Propagate barriers
  51. * Refcount journal entries in journal_replay
  52. *
  53. * Garbage collection:
  54. * Finish incremental gc
  55. * Gc should free old UUIDs, data for invalid UUIDs
  56. *
  57. * Provide a way to list backing device UUIDs we have data cached for, and
  58. * probably how long it's been since we've seen them, and a way to invalidate
  59. * dirty data for devices that will never be attached again
  60. *
  61. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  62. * that based on that and how much dirty data we have we can keep writeback
  63. * from being starved
  64. *
  65. * Add a tracepoint or somesuch to watch for writeback starvation
  66. *
  67. * When btree depth > 1 and splitting an interior node, we have to make sure
  68. * alloc_bucket() cannot fail. This should be true but is not completely
  69. * obvious.
  70. *
  71. * Plugging?
  72. *
  73. * If data write is less than hard sector size of ssd, round up offset in open
  74. * bucket to the next whole sector
  75. *
  76. * Superblock needs to be fleshed out for multiple cache devices
  77. *
  78. * Add a sysfs tunable for the number of writeback IOs in flight
  79. *
  80. * Add a sysfs tunable for the number of open data buckets
  81. *
  82. * IO tracking: Can we track when one process is doing io on behalf of another?
  83. * IO tracking: Don't use just an average, weigh more recent stuff higher
  84. *
  85. * Test module load/unload
  86. */
  87. #define MAX_NEED_GC 64
  88. #define MAX_SAVE_PRIO 72
  89. #define MAX_GC_TIMES 100
  90. #define MIN_GC_NODES 100
  91. #define GC_SLEEP_MS 100
  92. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  93. #define PTR_HASH(c, k) \
  94. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  95. #define insert_lock(s, b) ((b)->level <= (s)->lock)
  96. /*
  97. * These macros are for recursing down the btree - they handle the details of
  98. * locking and looking up nodes in the cache for you. They're best treated as
  99. * mere syntax when reading code that uses them.
  100. *
  101. * op->lock determines whether we take a read or a write lock at a given depth.
  102. * If you've got a read lock and find that you need a write lock (i.e. you're
  103. * going to have to split), set op->lock and return -EINTR; btree_root() will
  104. * call you again and you'll have the correct lock.
  105. */
  106. /**
  107. * btree - recurse down the btree on a specified key
  108. * @fn: function to call, which will be passed the child node
  109. * @key: key to recurse on
  110. * @b: parent btree node
  111. * @op: pointer to struct btree_op
  112. */
  113. #define btree(fn, key, b, op, ...) \
  114. ({ \
  115. int _r, l = (b)->level - 1; \
  116. bool _w = l <= (op)->lock; \
  117. struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
  118. _w, b); \
  119. if (!IS_ERR(_child)) { \
  120. _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
  121. rw_unlock(_w, _child); \
  122. } else \
  123. _r = PTR_ERR(_child); \
  124. _r; \
  125. })
  126. /**
  127. * btree_root - call a function on the root of the btree
  128. * @fn: function to call, which will be passed the child node
  129. * @c: cache set
  130. * @op: pointer to struct btree_op
  131. */
  132. #define btree_root(fn, c, op, ...) \
  133. ({ \
  134. int _r = -EINTR; \
  135. do { \
  136. struct btree *_b = (c)->root; \
  137. bool _w = insert_lock(op, _b); \
  138. rw_lock(_w, _b, _b->level); \
  139. if (_b == (c)->root && \
  140. _w == insert_lock(op, _b)) { \
  141. _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
  142. } \
  143. rw_unlock(_w, _b); \
  144. bch_cannibalize_unlock(c); \
  145. if (_r == -EINTR) \
  146. schedule(); \
  147. } while (_r == -EINTR); \
  148. \
  149. finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
  150. _r; \
  151. })
  152. static inline struct bset *write_block(struct btree *b)
  153. {
  154. return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
  155. }
  156. static void bch_btree_init_next(struct btree *b)
  157. {
  158. /* If not a leaf node, always sort */
  159. if (b->level && b->keys.nsets)
  160. bch_btree_sort(&b->keys, &b->c->sort);
  161. else
  162. bch_btree_sort_lazy(&b->keys, &b->c->sort);
  163. if (b->written < btree_blocks(b))
  164. bch_bset_init_next(&b->keys, write_block(b),
  165. bset_magic(&b->c->sb));
  166. }
  167. /* Btree key manipulation */
  168. void bkey_put(struct cache_set *c, struct bkey *k)
  169. {
  170. unsigned int i;
  171. for (i = 0; i < KEY_PTRS(k); i++)
  172. if (ptr_available(c, k, i))
  173. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  174. }
  175. /* Btree IO */
  176. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  177. {
  178. uint64_t crc = b->key.ptr[0];
  179. void *data = (void *) i + 8, *end = bset_bkey_last(i);
  180. crc = bch_crc64_update(crc, data, end - data);
  181. return crc ^ 0xffffffffffffffffULL;
  182. }
  183. void bch_btree_node_read_done(struct btree *b)
  184. {
  185. const char *err = "bad btree header";
  186. struct bset *i = btree_bset_first(b);
  187. struct btree_iter *iter;
  188. iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
  189. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  190. iter->used = 0;
  191. #ifdef CONFIG_BCACHE_DEBUG
  192. iter->b = &b->keys;
  193. #endif
  194. if (!i->seq)
  195. goto err;
  196. for (;
  197. b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
  198. i = write_block(b)) {
  199. err = "unsupported bset version";
  200. if (i->version > BCACHE_BSET_VERSION)
  201. goto err;
  202. err = "bad btree header";
  203. if (b->written + set_blocks(i, block_bytes(b->c)) >
  204. btree_blocks(b))
  205. goto err;
  206. err = "bad magic";
  207. if (i->magic != bset_magic(&b->c->sb))
  208. goto err;
  209. err = "bad checksum";
  210. switch (i->version) {
  211. case 0:
  212. if (i->csum != csum_set(i))
  213. goto err;
  214. break;
  215. case BCACHE_BSET_VERSION:
  216. if (i->csum != btree_csum_set(b, i))
  217. goto err;
  218. break;
  219. }
  220. err = "empty set";
  221. if (i != b->keys.set[0].data && !i->keys)
  222. goto err;
  223. bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
  224. b->written += set_blocks(i, block_bytes(b->c));
  225. }
  226. err = "corrupted btree";
  227. for (i = write_block(b);
  228. bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
  229. i = ((void *) i) + block_bytes(b->c))
  230. if (i->seq == b->keys.set[0].data->seq)
  231. goto err;
  232. bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
  233. i = b->keys.set[0].data;
  234. err = "short btree key";
  235. if (b->keys.set[0].size &&
  236. bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
  237. goto err;
  238. if (b->written < btree_blocks(b))
  239. bch_bset_init_next(&b->keys, write_block(b),
  240. bset_magic(&b->c->sb));
  241. out:
  242. mempool_free(iter, &b->c->fill_iter);
  243. return;
  244. err:
  245. set_btree_node_io_error(b);
  246. bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
  247. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  248. bset_block_offset(b, i), i->keys);
  249. goto out;
  250. }
  251. static void btree_node_read_endio(struct bio *bio)
  252. {
  253. struct closure *cl = bio->bi_private;
  254. closure_put(cl);
  255. }
  256. static void bch_btree_node_read(struct btree *b)
  257. {
  258. uint64_t start_time = local_clock();
  259. struct closure cl;
  260. struct bio *bio;
  261. trace_bcache_btree_read(b);
  262. closure_init_stack(&cl);
  263. bio = bch_bbio_alloc(b->c);
  264. bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
  265. bio->bi_end_io = btree_node_read_endio;
  266. bio->bi_private = &cl;
  267. bio->bi_opf = REQ_OP_READ | REQ_META;
  268. bch_bio_map(bio, b->keys.set[0].data);
  269. bch_submit_bbio(bio, b->c, &b->key, 0);
  270. closure_sync(&cl);
  271. if (bio->bi_status)
  272. set_btree_node_io_error(b);
  273. bch_bbio_free(bio, b->c);
  274. if (btree_node_io_error(b))
  275. goto err;
  276. bch_btree_node_read_done(b);
  277. bch_time_stats_update(&b->c->btree_read_time, start_time);
  278. return;
  279. err:
  280. bch_cache_set_error(b->c, "io error reading bucket %zu",
  281. PTR_BUCKET_NR(b->c, &b->key, 0));
  282. }
  283. static void btree_complete_write(struct btree *b, struct btree_write *w)
  284. {
  285. if (w->prio_blocked &&
  286. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  287. wake_up_allocators(b->c);
  288. if (w->journal) {
  289. atomic_dec_bug(w->journal);
  290. __closure_wake_up(&b->c->journal.wait);
  291. }
  292. w->prio_blocked = 0;
  293. w->journal = NULL;
  294. }
  295. static void btree_node_write_unlock(struct closure *cl)
  296. {
  297. struct btree *b = container_of(cl, struct btree, io);
  298. up(&b->io_mutex);
  299. }
  300. static void __btree_node_write_done(struct closure *cl)
  301. {
  302. struct btree *b = container_of(cl, struct btree, io);
  303. struct btree_write *w = btree_prev_write(b);
  304. bch_bbio_free(b->bio, b->c);
  305. b->bio = NULL;
  306. btree_complete_write(b, w);
  307. if (btree_node_dirty(b))
  308. schedule_delayed_work(&b->work, 30 * HZ);
  309. closure_return_with_destructor(cl, btree_node_write_unlock);
  310. }
  311. static void btree_node_write_done(struct closure *cl)
  312. {
  313. struct btree *b = container_of(cl, struct btree, io);
  314. bio_free_pages(b->bio);
  315. __btree_node_write_done(cl);
  316. }
  317. static void btree_node_write_endio(struct bio *bio)
  318. {
  319. struct closure *cl = bio->bi_private;
  320. struct btree *b = container_of(cl, struct btree, io);
  321. if (bio->bi_status)
  322. set_btree_node_io_error(b);
  323. bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
  324. closure_put(cl);
  325. }
  326. static void do_btree_node_write(struct btree *b)
  327. {
  328. struct closure *cl = &b->io;
  329. struct bset *i = btree_bset_last(b);
  330. BKEY_PADDED(key) k;
  331. i->version = BCACHE_BSET_VERSION;
  332. i->csum = btree_csum_set(b, i);
  333. BUG_ON(b->bio);
  334. b->bio = bch_bbio_alloc(b->c);
  335. b->bio->bi_end_io = btree_node_write_endio;
  336. b->bio->bi_private = cl;
  337. b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
  338. b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
  339. bch_bio_map(b->bio, i);
  340. /*
  341. * If we're appending to a leaf node, we don't technically need FUA -
  342. * this write just needs to be persisted before the next journal write,
  343. * which will be marked FLUSH|FUA.
  344. *
  345. * Similarly if we're writing a new btree root - the pointer is going to
  346. * be in the next journal entry.
  347. *
  348. * But if we're writing a new btree node (that isn't a root) or
  349. * appending to a non leaf btree node, we need either FUA or a flush
  350. * when we write the parent with the new pointer. FUA is cheaper than a
  351. * flush, and writes appending to leaf nodes aren't blocking anything so
  352. * just make all btree node writes FUA to keep things sane.
  353. */
  354. bkey_copy(&k.key, &b->key);
  355. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
  356. bset_sector_offset(&b->keys, i));
  357. if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
  358. int j;
  359. struct bio_vec *bv;
  360. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  361. bio_for_each_segment_all(bv, b->bio, j)
  362. memcpy(page_address(bv->bv_page),
  363. base + j * PAGE_SIZE, PAGE_SIZE);
  364. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  365. continue_at(cl, btree_node_write_done, NULL);
  366. } else {
  367. /*
  368. * No problem for multipage bvec since the bio is
  369. * just allocated
  370. */
  371. b->bio->bi_vcnt = 0;
  372. bch_bio_map(b->bio, i);
  373. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  374. closure_sync(cl);
  375. continue_at_nobarrier(cl, __btree_node_write_done, NULL);
  376. }
  377. }
  378. void __bch_btree_node_write(struct btree *b, struct closure *parent)
  379. {
  380. struct bset *i = btree_bset_last(b);
  381. lockdep_assert_held(&b->write_lock);
  382. trace_bcache_btree_write(b);
  383. BUG_ON(current->bio_list);
  384. BUG_ON(b->written >= btree_blocks(b));
  385. BUG_ON(b->written && !i->keys);
  386. BUG_ON(btree_bset_first(b)->seq != i->seq);
  387. bch_check_keys(&b->keys, "writing");
  388. cancel_delayed_work(&b->work);
  389. /* If caller isn't waiting for write, parent refcount is cache set */
  390. down(&b->io_mutex);
  391. closure_init(&b->io, parent ?: &b->c->cl);
  392. clear_bit(BTREE_NODE_dirty, &b->flags);
  393. change_bit(BTREE_NODE_write_idx, &b->flags);
  394. do_btree_node_write(b);
  395. atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
  396. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  397. b->written += set_blocks(i, block_bytes(b->c));
  398. }
  399. void bch_btree_node_write(struct btree *b, struct closure *parent)
  400. {
  401. unsigned int nsets = b->keys.nsets;
  402. lockdep_assert_held(&b->lock);
  403. __bch_btree_node_write(b, parent);
  404. /*
  405. * do verify if there was more than one set initially (i.e. we did a
  406. * sort) and we sorted down to a single set:
  407. */
  408. if (nsets && !b->keys.nsets)
  409. bch_btree_verify(b);
  410. bch_btree_init_next(b);
  411. }
  412. static void bch_btree_node_write_sync(struct btree *b)
  413. {
  414. struct closure cl;
  415. closure_init_stack(&cl);
  416. mutex_lock(&b->write_lock);
  417. bch_btree_node_write(b, &cl);
  418. mutex_unlock(&b->write_lock);
  419. closure_sync(&cl);
  420. }
  421. static void btree_node_write_work(struct work_struct *w)
  422. {
  423. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  424. mutex_lock(&b->write_lock);
  425. if (btree_node_dirty(b))
  426. __bch_btree_node_write(b, NULL);
  427. mutex_unlock(&b->write_lock);
  428. }
  429. static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
  430. {
  431. struct bset *i = btree_bset_last(b);
  432. struct btree_write *w = btree_current_write(b);
  433. lockdep_assert_held(&b->write_lock);
  434. BUG_ON(!b->written);
  435. BUG_ON(!i->keys);
  436. if (!btree_node_dirty(b))
  437. schedule_delayed_work(&b->work, 30 * HZ);
  438. set_btree_node_dirty(b);
  439. if (journal_ref) {
  440. if (w->journal &&
  441. journal_pin_cmp(b->c, w->journal, journal_ref)) {
  442. atomic_dec_bug(w->journal);
  443. w->journal = NULL;
  444. }
  445. if (!w->journal) {
  446. w->journal = journal_ref;
  447. atomic_inc(w->journal);
  448. }
  449. }
  450. /* Force write if set is too big */
  451. if (set_bytes(i) > PAGE_SIZE - 48 &&
  452. !current->bio_list)
  453. bch_btree_node_write(b, NULL);
  454. }
  455. /*
  456. * Btree in memory cache - allocation/freeing
  457. * mca -> memory cache
  458. */
  459. #define mca_reserve(c) (((c->root && c->root->level) \
  460. ? c->root->level : 1) * 8 + 16)
  461. #define mca_can_free(c) \
  462. max_t(int, 0, c->btree_cache_used - mca_reserve(c))
  463. static void mca_data_free(struct btree *b)
  464. {
  465. BUG_ON(b->io_mutex.count != 1);
  466. bch_btree_keys_free(&b->keys);
  467. b->c->btree_cache_used--;
  468. list_move(&b->list, &b->c->btree_cache_freed);
  469. }
  470. static void mca_bucket_free(struct btree *b)
  471. {
  472. BUG_ON(btree_node_dirty(b));
  473. b->key.ptr[0] = 0;
  474. hlist_del_init_rcu(&b->hash);
  475. list_move(&b->list, &b->c->btree_cache_freeable);
  476. }
  477. static unsigned int btree_order(struct bkey *k)
  478. {
  479. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  480. }
  481. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  482. {
  483. if (!bch_btree_keys_alloc(&b->keys,
  484. max_t(unsigned int,
  485. ilog2(b->c->btree_pages),
  486. btree_order(k)),
  487. gfp)) {
  488. b->c->btree_cache_used++;
  489. list_move(&b->list, &b->c->btree_cache);
  490. } else {
  491. list_move(&b->list, &b->c->btree_cache_freed);
  492. }
  493. }
  494. static struct btree *mca_bucket_alloc(struct cache_set *c,
  495. struct bkey *k, gfp_t gfp)
  496. {
  497. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  498. if (!b)
  499. return NULL;
  500. init_rwsem(&b->lock);
  501. lockdep_set_novalidate_class(&b->lock);
  502. mutex_init(&b->write_lock);
  503. lockdep_set_novalidate_class(&b->write_lock);
  504. INIT_LIST_HEAD(&b->list);
  505. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  506. b->c = c;
  507. sema_init(&b->io_mutex, 1);
  508. mca_data_alloc(b, k, gfp);
  509. return b;
  510. }
  511. static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
  512. {
  513. struct closure cl;
  514. closure_init_stack(&cl);
  515. lockdep_assert_held(&b->c->bucket_lock);
  516. if (!down_write_trylock(&b->lock))
  517. return -ENOMEM;
  518. BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
  519. if (b->keys.page_order < min_order)
  520. goto out_unlock;
  521. if (!flush) {
  522. if (btree_node_dirty(b))
  523. goto out_unlock;
  524. if (down_trylock(&b->io_mutex))
  525. goto out_unlock;
  526. up(&b->io_mutex);
  527. }
  528. retry:
  529. /*
  530. * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
  531. * __bch_btree_node_write(). To avoid an extra flush, acquire
  532. * b->write_lock before checking BTREE_NODE_dirty bit.
  533. */
  534. mutex_lock(&b->write_lock);
  535. /*
  536. * If this btree node is selected in btree_flush_write() by journal
  537. * code, delay and retry until the node is flushed by journal code
  538. * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
  539. */
  540. if (btree_node_journal_flush(b)) {
  541. pr_debug("bnode %p is flushing by journal, retry", b);
  542. mutex_unlock(&b->write_lock);
  543. udelay(1);
  544. goto retry;
  545. }
  546. if (btree_node_dirty(b))
  547. __bch_btree_node_write(b, &cl);
  548. mutex_unlock(&b->write_lock);
  549. closure_sync(&cl);
  550. /* wait for any in flight btree write */
  551. down(&b->io_mutex);
  552. up(&b->io_mutex);
  553. return 0;
  554. out_unlock:
  555. rw_unlock(true, b);
  556. return -ENOMEM;
  557. }
  558. static unsigned long bch_mca_scan(struct shrinker *shrink,
  559. struct shrink_control *sc)
  560. {
  561. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  562. struct btree *b, *t;
  563. unsigned long i, nr = sc->nr_to_scan;
  564. unsigned long freed = 0;
  565. unsigned int btree_cache_used;
  566. if (c->shrinker_disabled)
  567. return SHRINK_STOP;
  568. if (c->btree_cache_alloc_lock)
  569. return SHRINK_STOP;
  570. /* Return -1 if we can't do anything right now */
  571. if (sc->gfp_mask & __GFP_IO)
  572. mutex_lock(&c->bucket_lock);
  573. else if (!mutex_trylock(&c->bucket_lock))
  574. return -1;
  575. /*
  576. * It's _really_ critical that we don't free too many btree nodes - we
  577. * have to always leave ourselves a reserve. The reserve is how we
  578. * guarantee that allocating memory for a new btree node can always
  579. * succeed, so that inserting keys into the btree can always succeed and
  580. * IO can always make forward progress:
  581. */
  582. nr /= c->btree_pages;
  583. if (nr == 0)
  584. nr = 1;
  585. nr = min_t(unsigned long, nr, mca_can_free(c));
  586. i = 0;
  587. btree_cache_used = c->btree_cache_used;
  588. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  589. if (nr <= 0)
  590. goto out;
  591. if (++i > 3 &&
  592. !mca_reap(b, 0, false)) {
  593. mca_data_free(b);
  594. rw_unlock(true, b);
  595. freed++;
  596. }
  597. nr--;
  598. }
  599. for (; (nr--) && i < btree_cache_used; i++) {
  600. if (list_empty(&c->btree_cache))
  601. goto out;
  602. b = list_first_entry(&c->btree_cache, struct btree, list);
  603. list_rotate_left(&c->btree_cache);
  604. if (!b->accessed &&
  605. !mca_reap(b, 0, false)) {
  606. mca_bucket_free(b);
  607. mca_data_free(b);
  608. rw_unlock(true, b);
  609. freed++;
  610. } else
  611. b->accessed = 0;
  612. }
  613. out:
  614. mutex_unlock(&c->bucket_lock);
  615. return freed * c->btree_pages;
  616. }
  617. static unsigned long bch_mca_count(struct shrinker *shrink,
  618. struct shrink_control *sc)
  619. {
  620. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  621. if (c->shrinker_disabled)
  622. return 0;
  623. if (c->btree_cache_alloc_lock)
  624. return 0;
  625. return mca_can_free(c) * c->btree_pages;
  626. }
  627. void bch_btree_cache_free(struct cache_set *c)
  628. {
  629. struct btree *b;
  630. struct closure cl;
  631. closure_init_stack(&cl);
  632. if (c->shrink.list.next)
  633. unregister_shrinker(&c->shrink);
  634. mutex_lock(&c->bucket_lock);
  635. #ifdef CONFIG_BCACHE_DEBUG
  636. if (c->verify_data)
  637. list_move(&c->verify_data->list, &c->btree_cache);
  638. free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
  639. #endif
  640. list_splice(&c->btree_cache_freeable,
  641. &c->btree_cache);
  642. while (!list_empty(&c->btree_cache)) {
  643. b = list_first_entry(&c->btree_cache, struct btree, list);
  644. /*
  645. * This function is called by cache_set_free(), no I/O
  646. * request on cache now, it is unnecessary to acquire
  647. * b->write_lock before clearing BTREE_NODE_dirty anymore.
  648. */
  649. if (btree_node_dirty(b)) {
  650. btree_complete_write(b, btree_current_write(b));
  651. clear_bit(BTREE_NODE_dirty, &b->flags);
  652. }
  653. mca_data_free(b);
  654. }
  655. while (!list_empty(&c->btree_cache_freed)) {
  656. b = list_first_entry(&c->btree_cache_freed,
  657. struct btree, list);
  658. list_del(&b->list);
  659. cancel_delayed_work_sync(&b->work);
  660. kfree(b);
  661. }
  662. mutex_unlock(&c->bucket_lock);
  663. }
  664. int bch_btree_cache_alloc(struct cache_set *c)
  665. {
  666. unsigned int i;
  667. for (i = 0; i < mca_reserve(c); i++)
  668. if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
  669. return -ENOMEM;
  670. list_splice_init(&c->btree_cache,
  671. &c->btree_cache_freeable);
  672. #ifdef CONFIG_BCACHE_DEBUG
  673. mutex_init(&c->verify_lock);
  674. c->verify_ondisk = (void *)
  675. __get_free_pages(GFP_KERNEL|__GFP_COMP, ilog2(bucket_pages(c)));
  676. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  677. if (c->verify_data &&
  678. c->verify_data->keys.set->data)
  679. list_del_init(&c->verify_data->list);
  680. else
  681. c->verify_data = NULL;
  682. #endif
  683. c->shrink.count_objects = bch_mca_count;
  684. c->shrink.scan_objects = bch_mca_scan;
  685. c->shrink.seeks = 4;
  686. c->shrink.batch = c->btree_pages * 2;
  687. if (register_shrinker(&c->shrink))
  688. pr_warn("bcache: %s: could not register shrinker",
  689. __func__);
  690. return 0;
  691. }
  692. /* Btree in memory cache - hash table */
  693. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  694. {
  695. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  696. }
  697. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  698. {
  699. struct btree *b;
  700. rcu_read_lock();
  701. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  702. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  703. goto out;
  704. b = NULL;
  705. out:
  706. rcu_read_unlock();
  707. return b;
  708. }
  709. static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
  710. {
  711. spin_lock(&c->btree_cannibalize_lock);
  712. if (likely(c->btree_cache_alloc_lock == NULL)) {
  713. c->btree_cache_alloc_lock = current;
  714. } else if (c->btree_cache_alloc_lock != current) {
  715. if (op)
  716. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  717. TASK_UNINTERRUPTIBLE);
  718. spin_unlock(&c->btree_cannibalize_lock);
  719. return -EINTR;
  720. }
  721. spin_unlock(&c->btree_cannibalize_lock);
  722. return 0;
  723. }
  724. static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
  725. struct bkey *k)
  726. {
  727. struct btree *b;
  728. trace_bcache_btree_cache_cannibalize(c);
  729. if (mca_cannibalize_lock(c, op))
  730. return ERR_PTR(-EINTR);
  731. list_for_each_entry_reverse(b, &c->btree_cache, list)
  732. if (!mca_reap(b, btree_order(k), false))
  733. return b;
  734. list_for_each_entry_reverse(b, &c->btree_cache, list)
  735. if (!mca_reap(b, btree_order(k), true))
  736. return b;
  737. WARN(1, "btree cache cannibalize failed\n");
  738. return ERR_PTR(-ENOMEM);
  739. }
  740. /*
  741. * We can only have one thread cannibalizing other cached btree nodes at a time,
  742. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  743. * cannibalize_bucket() will take. This means every time we unlock the root of
  744. * the btree, we need to release this lock if we have it held.
  745. */
  746. static void bch_cannibalize_unlock(struct cache_set *c)
  747. {
  748. spin_lock(&c->btree_cannibalize_lock);
  749. if (c->btree_cache_alloc_lock == current) {
  750. c->btree_cache_alloc_lock = NULL;
  751. wake_up(&c->btree_cache_wait);
  752. }
  753. spin_unlock(&c->btree_cannibalize_lock);
  754. }
  755. static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
  756. struct bkey *k, int level)
  757. {
  758. struct btree *b;
  759. BUG_ON(current->bio_list);
  760. lockdep_assert_held(&c->bucket_lock);
  761. if (mca_find(c, k))
  762. return NULL;
  763. /* btree_free() doesn't free memory; it sticks the node on the end of
  764. * the list. Check if there's any freed nodes there:
  765. */
  766. list_for_each_entry(b, &c->btree_cache_freeable, list)
  767. if (!mca_reap(b, btree_order(k), false))
  768. goto out;
  769. /* We never free struct btree itself, just the memory that holds the on
  770. * disk node. Check the freed list before allocating a new one:
  771. */
  772. list_for_each_entry(b, &c->btree_cache_freed, list)
  773. if (!mca_reap(b, 0, false)) {
  774. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  775. if (!b->keys.set[0].data)
  776. goto err;
  777. else
  778. goto out;
  779. }
  780. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  781. if (!b)
  782. goto err;
  783. BUG_ON(!down_write_trylock(&b->lock));
  784. if (!b->keys.set->data)
  785. goto err;
  786. out:
  787. BUG_ON(b->io_mutex.count != 1);
  788. bkey_copy(&b->key, k);
  789. list_move(&b->list, &c->btree_cache);
  790. hlist_del_init_rcu(&b->hash);
  791. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  792. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  793. b->parent = (void *) ~0UL;
  794. b->flags = 0;
  795. b->written = 0;
  796. b->level = level;
  797. if (!b->level)
  798. bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
  799. &b->c->expensive_debug_checks);
  800. else
  801. bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
  802. &b->c->expensive_debug_checks);
  803. return b;
  804. err:
  805. if (b)
  806. rw_unlock(true, b);
  807. b = mca_cannibalize(c, op, k);
  808. if (!IS_ERR(b))
  809. goto out;
  810. return b;
  811. }
  812. /*
  813. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  814. * in from disk if necessary.
  815. *
  816. * If IO is necessary and running under generic_make_request, returns -EAGAIN.
  817. *
  818. * The btree node will have either a read or a write lock held, depending on
  819. * level and op->lock.
  820. */
  821. struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
  822. struct bkey *k, int level, bool write,
  823. struct btree *parent)
  824. {
  825. int i = 0;
  826. struct btree *b;
  827. BUG_ON(level < 0);
  828. retry:
  829. b = mca_find(c, k);
  830. if (!b) {
  831. if (current->bio_list)
  832. return ERR_PTR(-EAGAIN);
  833. mutex_lock(&c->bucket_lock);
  834. b = mca_alloc(c, op, k, level);
  835. mutex_unlock(&c->bucket_lock);
  836. if (!b)
  837. goto retry;
  838. if (IS_ERR(b))
  839. return b;
  840. bch_btree_node_read(b);
  841. if (!write)
  842. downgrade_write(&b->lock);
  843. } else {
  844. rw_lock(write, b, level);
  845. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  846. rw_unlock(write, b);
  847. goto retry;
  848. }
  849. BUG_ON(b->level != level);
  850. }
  851. if (btree_node_io_error(b)) {
  852. rw_unlock(write, b);
  853. return ERR_PTR(-EIO);
  854. }
  855. BUG_ON(!b->written);
  856. b->parent = parent;
  857. b->accessed = 1;
  858. for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
  859. prefetch(b->keys.set[i].tree);
  860. prefetch(b->keys.set[i].data);
  861. }
  862. for (; i <= b->keys.nsets; i++)
  863. prefetch(b->keys.set[i].data);
  864. return b;
  865. }
  866. static void btree_node_prefetch(struct btree *parent, struct bkey *k)
  867. {
  868. struct btree *b;
  869. mutex_lock(&parent->c->bucket_lock);
  870. b = mca_alloc(parent->c, NULL, k, parent->level - 1);
  871. mutex_unlock(&parent->c->bucket_lock);
  872. if (!IS_ERR_OR_NULL(b)) {
  873. b->parent = parent;
  874. bch_btree_node_read(b);
  875. rw_unlock(true, b);
  876. }
  877. }
  878. /* Btree alloc */
  879. static void btree_node_free(struct btree *b)
  880. {
  881. trace_bcache_btree_node_free(b);
  882. BUG_ON(b == b->c->root);
  883. retry:
  884. mutex_lock(&b->write_lock);
  885. /*
  886. * If the btree node is selected and flushing in btree_flush_write(),
  887. * delay and retry until the BTREE_NODE_journal_flush bit cleared,
  888. * then it is safe to free the btree node here. Otherwise this btree
  889. * node will be in race condition.
  890. */
  891. if (btree_node_journal_flush(b)) {
  892. mutex_unlock(&b->write_lock);
  893. pr_debug("bnode %p journal_flush set, retry", b);
  894. udelay(1);
  895. goto retry;
  896. }
  897. if (btree_node_dirty(b)) {
  898. btree_complete_write(b, btree_current_write(b));
  899. clear_bit(BTREE_NODE_dirty, &b->flags);
  900. }
  901. mutex_unlock(&b->write_lock);
  902. cancel_delayed_work(&b->work);
  903. mutex_lock(&b->c->bucket_lock);
  904. bch_bucket_free(b->c, &b->key);
  905. mca_bucket_free(b);
  906. mutex_unlock(&b->c->bucket_lock);
  907. }
  908. struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
  909. int level, bool wait,
  910. struct btree *parent)
  911. {
  912. BKEY_PADDED(key) k;
  913. struct btree *b = ERR_PTR(-EAGAIN);
  914. mutex_lock(&c->bucket_lock);
  915. retry:
  916. if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
  917. goto err;
  918. bkey_put(c, &k.key);
  919. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  920. b = mca_alloc(c, op, &k.key, level);
  921. if (IS_ERR(b))
  922. goto err_free;
  923. if (!b) {
  924. cache_bug(c,
  925. "Tried to allocate bucket that was in btree cache");
  926. goto retry;
  927. }
  928. b->accessed = 1;
  929. b->parent = parent;
  930. bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
  931. mutex_unlock(&c->bucket_lock);
  932. trace_bcache_btree_node_alloc(b);
  933. return b;
  934. err_free:
  935. bch_bucket_free(c, &k.key);
  936. err:
  937. mutex_unlock(&c->bucket_lock);
  938. trace_bcache_btree_node_alloc_fail(c);
  939. return b;
  940. }
  941. static struct btree *bch_btree_node_alloc(struct cache_set *c,
  942. struct btree_op *op, int level,
  943. struct btree *parent)
  944. {
  945. return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
  946. }
  947. static struct btree *btree_node_alloc_replacement(struct btree *b,
  948. struct btree_op *op)
  949. {
  950. struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
  951. if (!IS_ERR_OR_NULL(n)) {
  952. mutex_lock(&n->write_lock);
  953. bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
  954. bkey_copy_key(&n->key, &b->key);
  955. mutex_unlock(&n->write_lock);
  956. }
  957. return n;
  958. }
  959. static void make_btree_freeing_key(struct btree *b, struct bkey *k)
  960. {
  961. unsigned int i;
  962. mutex_lock(&b->c->bucket_lock);
  963. atomic_inc(&b->c->prio_blocked);
  964. bkey_copy(k, &b->key);
  965. bkey_copy_key(k, &ZERO_KEY);
  966. for (i = 0; i < KEY_PTRS(k); i++)
  967. SET_PTR_GEN(k, i,
  968. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  969. PTR_BUCKET(b->c, &b->key, i)));
  970. mutex_unlock(&b->c->bucket_lock);
  971. }
  972. static int btree_check_reserve(struct btree *b, struct btree_op *op)
  973. {
  974. struct cache_set *c = b->c;
  975. struct cache *ca;
  976. unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
  977. mutex_lock(&c->bucket_lock);
  978. for_each_cache(ca, c, i)
  979. if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
  980. if (op)
  981. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  982. TASK_UNINTERRUPTIBLE);
  983. mutex_unlock(&c->bucket_lock);
  984. return -EINTR;
  985. }
  986. mutex_unlock(&c->bucket_lock);
  987. return mca_cannibalize_lock(b->c, op);
  988. }
  989. /* Garbage collection */
  990. static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
  991. struct bkey *k)
  992. {
  993. uint8_t stale = 0;
  994. unsigned int i;
  995. struct bucket *g;
  996. /*
  997. * ptr_invalid() can't return true for the keys that mark btree nodes as
  998. * freed, but since ptr_bad() returns true we'll never actually use them
  999. * for anything and thus we don't want mark their pointers here
  1000. */
  1001. if (!bkey_cmp(k, &ZERO_KEY))
  1002. return stale;
  1003. for (i = 0; i < KEY_PTRS(k); i++) {
  1004. if (!ptr_available(c, k, i))
  1005. continue;
  1006. g = PTR_BUCKET(c, k, i);
  1007. if (gen_after(g->last_gc, PTR_GEN(k, i)))
  1008. g->last_gc = PTR_GEN(k, i);
  1009. if (ptr_stale(c, k, i)) {
  1010. stale = max(stale, ptr_stale(c, k, i));
  1011. continue;
  1012. }
  1013. cache_bug_on(GC_MARK(g) &&
  1014. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  1015. c, "inconsistent ptrs: mark = %llu, level = %i",
  1016. GC_MARK(g), level);
  1017. if (level)
  1018. SET_GC_MARK(g, GC_MARK_METADATA);
  1019. else if (KEY_DIRTY(k))
  1020. SET_GC_MARK(g, GC_MARK_DIRTY);
  1021. else if (!GC_MARK(g))
  1022. SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
  1023. /* guard against overflow */
  1024. SET_GC_SECTORS_USED(g, min_t(unsigned int,
  1025. GC_SECTORS_USED(g) + KEY_SIZE(k),
  1026. MAX_GC_SECTORS_USED));
  1027. BUG_ON(!GC_SECTORS_USED(g));
  1028. }
  1029. return stale;
  1030. }
  1031. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  1032. void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
  1033. {
  1034. unsigned int i;
  1035. for (i = 0; i < KEY_PTRS(k); i++)
  1036. if (ptr_available(c, k, i) &&
  1037. !ptr_stale(c, k, i)) {
  1038. struct bucket *b = PTR_BUCKET(c, k, i);
  1039. b->gen = PTR_GEN(k, i);
  1040. if (level && bkey_cmp(k, &ZERO_KEY))
  1041. b->prio = BTREE_PRIO;
  1042. else if (!level && b->prio == BTREE_PRIO)
  1043. b->prio = INITIAL_PRIO;
  1044. }
  1045. __bch_btree_mark_key(c, level, k);
  1046. }
  1047. void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
  1048. {
  1049. stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
  1050. }
  1051. static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
  1052. {
  1053. uint8_t stale = 0;
  1054. unsigned int keys = 0, good_keys = 0;
  1055. struct bkey *k;
  1056. struct btree_iter iter;
  1057. struct bset_tree *t;
  1058. gc->nodes++;
  1059. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
  1060. stale = max(stale, btree_mark_key(b, k));
  1061. keys++;
  1062. if (bch_ptr_bad(&b->keys, k))
  1063. continue;
  1064. gc->key_bytes += bkey_u64s(k);
  1065. gc->nkeys++;
  1066. good_keys++;
  1067. gc->data += KEY_SIZE(k);
  1068. }
  1069. for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
  1070. btree_bug_on(t->size &&
  1071. bset_written(&b->keys, t) &&
  1072. bkey_cmp(&b->key, &t->end) < 0,
  1073. b, "found short btree key in gc");
  1074. if (b->c->gc_always_rewrite)
  1075. return true;
  1076. if (stale > 10)
  1077. return true;
  1078. if ((keys - good_keys) * 2 > keys)
  1079. return true;
  1080. return false;
  1081. }
  1082. #define GC_MERGE_NODES 4U
  1083. struct gc_merge_info {
  1084. struct btree *b;
  1085. unsigned int keys;
  1086. };
  1087. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1088. struct keylist *insert_keys,
  1089. atomic_t *journal_ref,
  1090. struct bkey *replace_key);
  1091. static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
  1092. struct gc_stat *gc, struct gc_merge_info *r)
  1093. {
  1094. unsigned int i, nodes = 0, keys = 0, blocks;
  1095. struct btree *new_nodes[GC_MERGE_NODES];
  1096. struct keylist keylist;
  1097. struct closure cl;
  1098. struct bkey *k;
  1099. bch_keylist_init(&keylist);
  1100. if (btree_check_reserve(b, NULL))
  1101. return 0;
  1102. memset(new_nodes, 0, sizeof(new_nodes));
  1103. closure_init_stack(&cl);
  1104. while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
  1105. keys += r[nodes++].keys;
  1106. blocks = btree_default_blocks(b->c) * 2 / 3;
  1107. if (nodes < 2 ||
  1108. __set_blocks(b->keys.set[0].data, keys,
  1109. block_bytes(b->c)) > blocks * (nodes - 1))
  1110. return 0;
  1111. for (i = 0; i < nodes; i++) {
  1112. new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
  1113. if (IS_ERR_OR_NULL(new_nodes[i]))
  1114. goto out_nocoalesce;
  1115. }
  1116. /*
  1117. * We have to check the reserve here, after we've allocated our new
  1118. * nodes, to make sure the insert below will succeed - we also check
  1119. * before as an optimization to potentially avoid a bunch of expensive
  1120. * allocs/sorts
  1121. */
  1122. if (btree_check_reserve(b, NULL))
  1123. goto out_nocoalesce;
  1124. for (i = 0; i < nodes; i++)
  1125. mutex_lock(&new_nodes[i]->write_lock);
  1126. for (i = nodes - 1; i > 0; --i) {
  1127. struct bset *n1 = btree_bset_first(new_nodes[i]);
  1128. struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
  1129. struct bkey *k, *last = NULL;
  1130. keys = 0;
  1131. if (i > 1) {
  1132. for (k = n2->start;
  1133. k < bset_bkey_last(n2);
  1134. k = bkey_next(k)) {
  1135. if (__set_blocks(n1, n1->keys + keys +
  1136. bkey_u64s(k),
  1137. block_bytes(b->c)) > blocks)
  1138. break;
  1139. last = k;
  1140. keys += bkey_u64s(k);
  1141. }
  1142. } else {
  1143. /*
  1144. * Last node we're not getting rid of - we're getting
  1145. * rid of the node at r[0]. Have to try and fit all of
  1146. * the remaining keys into this node; we can't ensure
  1147. * they will always fit due to rounding and variable
  1148. * length keys (shouldn't be possible in practice,
  1149. * though)
  1150. */
  1151. if (__set_blocks(n1, n1->keys + n2->keys,
  1152. block_bytes(b->c)) >
  1153. btree_blocks(new_nodes[i]))
  1154. goto out_unlock_nocoalesce;
  1155. keys = n2->keys;
  1156. /* Take the key of the node we're getting rid of */
  1157. last = &r->b->key;
  1158. }
  1159. BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
  1160. btree_blocks(new_nodes[i]));
  1161. if (last)
  1162. bkey_copy_key(&new_nodes[i]->key, last);
  1163. memcpy(bset_bkey_last(n1),
  1164. n2->start,
  1165. (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
  1166. n1->keys += keys;
  1167. r[i].keys = n1->keys;
  1168. memmove(n2->start,
  1169. bset_bkey_idx(n2, keys),
  1170. (void *) bset_bkey_last(n2) -
  1171. (void *) bset_bkey_idx(n2, keys));
  1172. n2->keys -= keys;
  1173. if (__bch_keylist_realloc(&keylist,
  1174. bkey_u64s(&new_nodes[i]->key)))
  1175. goto out_unlock_nocoalesce;
  1176. bch_btree_node_write(new_nodes[i], &cl);
  1177. bch_keylist_add(&keylist, &new_nodes[i]->key);
  1178. }
  1179. for (i = 0; i < nodes; i++)
  1180. mutex_unlock(&new_nodes[i]->write_lock);
  1181. closure_sync(&cl);
  1182. /* We emptied out this node */
  1183. BUG_ON(btree_bset_first(new_nodes[0])->keys);
  1184. btree_node_free(new_nodes[0]);
  1185. rw_unlock(true, new_nodes[0]);
  1186. new_nodes[0] = NULL;
  1187. for (i = 0; i < nodes; i++) {
  1188. if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
  1189. goto out_nocoalesce;
  1190. make_btree_freeing_key(r[i].b, keylist.top);
  1191. bch_keylist_push(&keylist);
  1192. }
  1193. bch_btree_insert_node(b, op, &keylist, NULL, NULL);
  1194. BUG_ON(!bch_keylist_empty(&keylist));
  1195. for (i = 0; i < nodes; i++) {
  1196. btree_node_free(r[i].b);
  1197. rw_unlock(true, r[i].b);
  1198. r[i].b = new_nodes[i];
  1199. }
  1200. memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
  1201. r[nodes - 1].b = ERR_PTR(-EINTR);
  1202. trace_bcache_btree_gc_coalesce(nodes);
  1203. gc->nodes--;
  1204. bch_keylist_free(&keylist);
  1205. /* Invalidated our iterator */
  1206. return -EINTR;
  1207. out_unlock_nocoalesce:
  1208. for (i = 0; i < nodes; i++)
  1209. mutex_unlock(&new_nodes[i]->write_lock);
  1210. out_nocoalesce:
  1211. closure_sync(&cl);
  1212. bch_keylist_free(&keylist);
  1213. while ((k = bch_keylist_pop(&keylist)))
  1214. if (!bkey_cmp(k, &ZERO_KEY))
  1215. atomic_dec(&b->c->prio_blocked);
  1216. for (i = 0; i < nodes; i++)
  1217. if (!IS_ERR_OR_NULL(new_nodes[i])) {
  1218. btree_node_free(new_nodes[i]);
  1219. rw_unlock(true, new_nodes[i]);
  1220. }
  1221. return 0;
  1222. }
  1223. static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
  1224. struct btree *replace)
  1225. {
  1226. struct keylist keys;
  1227. struct btree *n;
  1228. if (btree_check_reserve(b, NULL))
  1229. return 0;
  1230. n = btree_node_alloc_replacement(replace, NULL);
  1231. /* recheck reserve after allocating replacement node */
  1232. if (btree_check_reserve(b, NULL)) {
  1233. btree_node_free(n);
  1234. rw_unlock(true, n);
  1235. return 0;
  1236. }
  1237. bch_btree_node_write_sync(n);
  1238. bch_keylist_init(&keys);
  1239. bch_keylist_add(&keys, &n->key);
  1240. make_btree_freeing_key(replace, keys.top);
  1241. bch_keylist_push(&keys);
  1242. bch_btree_insert_node(b, op, &keys, NULL, NULL);
  1243. BUG_ON(!bch_keylist_empty(&keys));
  1244. btree_node_free(replace);
  1245. rw_unlock(true, n);
  1246. /* Invalidated our iterator */
  1247. return -EINTR;
  1248. }
  1249. static unsigned int btree_gc_count_keys(struct btree *b)
  1250. {
  1251. struct bkey *k;
  1252. struct btree_iter iter;
  1253. unsigned int ret = 0;
  1254. for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
  1255. ret += bkey_u64s(k);
  1256. return ret;
  1257. }
  1258. static size_t btree_gc_min_nodes(struct cache_set *c)
  1259. {
  1260. size_t min_nodes;
  1261. /*
  1262. * Since incremental GC would stop 100ms when front
  1263. * side I/O comes, so when there are many btree nodes,
  1264. * if GC only processes constant (100) nodes each time,
  1265. * GC would last a long time, and the front side I/Os
  1266. * would run out of the buckets (since no new bucket
  1267. * can be allocated during GC), and be blocked again.
  1268. * So GC should not process constant nodes, but varied
  1269. * nodes according to the number of btree nodes, which
  1270. * realized by dividing GC into constant(100) times,
  1271. * so when there are many btree nodes, GC can process
  1272. * more nodes each time, otherwise, GC will process less
  1273. * nodes each time (but no less than MIN_GC_NODES)
  1274. */
  1275. min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
  1276. if (min_nodes < MIN_GC_NODES)
  1277. min_nodes = MIN_GC_NODES;
  1278. return min_nodes;
  1279. }
  1280. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1281. struct closure *writes, struct gc_stat *gc)
  1282. {
  1283. int ret = 0;
  1284. bool should_rewrite;
  1285. struct bkey *k;
  1286. struct btree_iter iter;
  1287. struct gc_merge_info r[GC_MERGE_NODES];
  1288. struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
  1289. bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
  1290. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1291. i->b = ERR_PTR(-EINTR);
  1292. while (1) {
  1293. k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
  1294. if (k) {
  1295. r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
  1296. true, b);
  1297. if (IS_ERR(r->b)) {
  1298. ret = PTR_ERR(r->b);
  1299. break;
  1300. }
  1301. r->keys = btree_gc_count_keys(r->b);
  1302. ret = btree_gc_coalesce(b, op, gc, r);
  1303. if (ret)
  1304. break;
  1305. }
  1306. if (!last->b)
  1307. break;
  1308. if (!IS_ERR(last->b)) {
  1309. should_rewrite = btree_gc_mark_node(last->b, gc);
  1310. if (should_rewrite) {
  1311. ret = btree_gc_rewrite_node(b, op, last->b);
  1312. if (ret)
  1313. break;
  1314. }
  1315. if (last->b->level) {
  1316. ret = btree_gc_recurse(last->b, op, writes, gc);
  1317. if (ret)
  1318. break;
  1319. }
  1320. bkey_copy_key(&b->c->gc_done, &last->b->key);
  1321. /*
  1322. * Must flush leaf nodes before gc ends, since replace
  1323. * operations aren't journalled
  1324. */
  1325. mutex_lock(&last->b->write_lock);
  1326. if (btree_node_dirty(last->b))
  1327. bch_btree_node_write(last->b, writes);
  1328. mutex_unlock(&last->b->write_lock);
  1329. rw_unlock(true, last->b);
  1330. }
  1331. memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
  1332. r->b = NULL;
  1333. if (atomic_read(&b->c->search_inflight) &&
  1334. gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
  1335. gc->nodes_pre = gc->nodes;
  1336. ret = -EAGAIN;
  1337. break;
  1338. }
  1339. if (need_resched()) {
  1340. ret = -EAGAIN;
  1341. break;
  1342. }
  1343. }
  1344. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1345. if (!IS_ERR_OR_NULL(i->b)) {
  1346. mutex_lock(&i->b->write_lock);
  1347. if (btree_node_dirty(i->b))
  1348. bch_btree_node_write(i->b, writes);
  1349. mutex_unlock(&i->b->write_lock);
  1350. rw_unlock(true, i->b);
  1351. }
  1352. return ret;
  1353. }
  1354. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1355. struct closure *writes, struct gc_stat *gc)
  1356. {
  1357. struct btree *n = NULL;
  1358. int ret = 0;
  1359. bool should_rewrite;
  1360. should_rewrite = btree_gc_mark_node(b, gc);
  1361. if (should_rewrite) {
  1362. n = btree_node_alloc_replacement(b, NULL);
  1363. if (!IS_ERR_OR_NULL(n)) {
  1364. bch_btree_node_write_sync(n);
  1365. bch_btree_set_root(n);
  1366. btree_node_free(b);
  1367. rw_unlock(true, n);
  1368. return -EINTR;
  1369. }
  1370. }
  1371. __bch_btree_mark_key(b->c, b->level + 1, &b->key);
  1372. if (b->level) {
  1373. ret = btree_gc_recurse(b, op, writes, gc);
  1374. if (ret)
  1375. return ret;
  1376. }
  1377. bkey_copy_key(&b->c->gc_done, &b->key);
  1378. return ret;
  1379. }
  1380. static void btree_gc_start(struct cache_set *c)
  1381. {
  1382. struct cache *ca;
  1383. struct bucket *b;
  1384. unsigned int i;
  1385. if (!c->gc_mark_valid)
  1386. return;
  1387. mutex_lock(&c->bucket_lock);
  1388. c->gc_mark_valid = 0;
  1389. c->gc_done = ZERO_KEY;
  1390. for_each_cache(ca, c, i)
  1391. for_each_bucket(b, ca) {
  1392. b->last_gc = b->gen;
  1393. if (!atomic_read(&b->pin)) {
  1394. SET_GC_MARK(b, 0);
  1395. SET_GC_SECTORS_USED(b, 0);
  1396. }
  1397. }
  1398. mutex_unlock(&c->bucket_lock);
  1399. }
  1400. static void bch_btree_gc_finish(struct cache_set *c)
  1401. {
  1402. struct bucket *b;
  1403. struct cache *ca;
  1404. unsigned int i;
  1405. mutex_lock(&c->bucket_lock);
  1406. set_gc_sectors(c);
  1407. c->gc_mark_valid = 1;
  1408. c->need_gc = 0;
  1409. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1410. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1411. GC_MARK_METADATA);
  1412. /* don't reclaim buckets to which writeback keys point */
  1413. rcu_read_lock();
  1414. for (i = 0; i < c->devices_max_used; i++) {
  1415. struct bcache_device *d = c->devices[i];
  1416. struct cached_dev *dc;
  1417. struct keybuf_key *w, *n;
  1418. unsigned int j;
  1419. if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
  1420. continue;
  1421. dc = container_of(d, struct cached_dev, disk);
  1422. spin_lock(&dc->writeback_keys.lock);
  1423. rbtree_postorder_for_each_entry_safe(w, n,
  1424. &dc->writeback_keys.keys, node)
  1425. for (j = 0; j < KEY_PTRS(&w->key); j++)
  1426. SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
  1427. GC_MARK_DIRTY);
  1428. spin_unlock(&dc->writeback_keys.lock);
  1429. }
  1430. rcu_read_unlock();
  1431. c->avail_nbuckets = 0;
  1432. for_each_cache(ca, c, i) {
  1433. uint64_t *i;
  1434. ca->invalidate_needs_gc = 0;
  1435. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1436. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1437. for (i = ca->prio_buckets;
  1438. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1439. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1440. for_each_bucket(b, ca) {
  1441. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1442. if (atomic_read(&b->pin))
  1443. continue;
  1444. BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
  1445. if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
  1446. c->avail_nbuckets++;
  1447. }
  1448. }
  1449. mutex_unlock(&c->bucket_lock);
  1450. }
  1451. static void bch_btree_gc(struct cache_set *c)
  1452. {
  1453. int ret;
  1454. struct gc_stat stats;
  1455. struct closure writes;
  1456. struct btree_op op;
  1457. uint64_t start_time = local_clock();
  1458. trace_bcache_gc_start(c);
  1459. memset(&stats, 0, sizeof(struct gc_stat));
  1460. closure_init_stack(&writes);
  1461. bch_btree_op_init(&op, SHRT_MAX);
  1462. btree_gc_start(c);
  1463. /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
  1464. do {
  1465. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1466. closure_sync(&writes);
  1467. cond_resched();
  1468. if (ret == -EAGAIN)
  1469. schedule_timeout_interruptible(msecs_to_jiffies
  1470. (GC_SLEEP_MS));
  1471. else if (ret)
  1472. pr_warn("gc failed!");
  1473. } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
  1474. bch_btree_gc_finish(c);
  1475. wake_up_allocators(c);
  1476. bch_time_stats_update(&c->btree_gc_time, start_time);
  1477. stats.key_bytes *= sizeof(uint64_t);
  1478. stats.data <<= 9;
  1479. bch_update_bucket_in_use(c, &stats);
  1480. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1481. trace_bcache_gc_end(c);
  1482. bch_moving_gc(c);
  1483. }
  1484. static bool gc_should_run(struct cache_set *c)
  1485. {
  1486. struct cache *ca;
  1487. unsigned int i;
  1488. for_each_cache(ca, c, i)
  1489. if (ca->invalidate_needs_gc)
  1490. return true;
  1491. if (atomic_read(&c->sectors_to_gc) < 0)
  1492. return true;
  1493. return false;
  1494. }
  1495. static int bch_gc_thread(void *arg)
  1496. {
  1497. struct cache_set *c = arg;
  1498. while (1) {
  1499. wait_event_interruptible(c->gc_wait,
  1500. kthread_should_stop() ||
  1501. test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
  1502. gc_should_run(c));
  1503. if (kthread_should_stop() ||
  1504. test_bit(CACHE_SET_IO_DISABLE, &c->flags))
  1505. break;
  1506. set_gc_sectors(c);
  1507. bch_btree_gc(c);
  1508. }
  1509. wait_for_kthread_stop();
  1510. return 0;
  1511. }
  1512. int bch_gc_thread_start(struct cache_set *c)
  1513. {
  1514. c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
  1515. return PTR_ERR_OR_ZERO(c->gc_thread);
  1516. }
  1517. /* Initial partial gc */
  1518. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
  1519. {
  1520. int ret = 0;
  1521. struct bkey *k, *p = NULL;
  1522. struct btree_iter iter;
  1523. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
  1524. bch_initial_mark_key(b->c, b->level, k);
  1525. bch_initial_mark_key(b->c, b->level + 1, &b->key);
  1526. if (b->level) {
  1527. bch_btree_iter_init(&b->keys, &iter, NULL);
  1528. do {
  1529. k = bch_btree_iter_next_filter(&iter, &b->keys,
  1530. bch_ptr_bad);
  1531. if (k) {
  1532. btree_node_prefetch(b, k);
  1533. /*
  1534. * initiallize c->gc_stats.nodes
  1535. * for incremental GC
  1536. */
  1537. b->c->gc_stats.nodes++;
  1538. }
  1539. if (p)
  1540. ret = btree(check_recurse, p, b, op);
  1541. p = k;
  1542. } while (p && !ret);
  1543. }
  1544. return ret;
  1545. }
  1546. int bch_btree_check(struct cache_set *c)
  1547. {
  1548. struct btree_op op;
  1549. bch_btree_op_init(&op, SHRT_MAX);
  1550. return btree_root(check_recurse, c, &op);
  1551. }
  1552. void bch_initial_gc_finish(struct cache_set *c)
  1553. {
  1554. struct cache *ca;
  1555. struct bucket *b;
  1556. unsigned int i;
  1557. bch_btree_gc_finish(c);
  1558. mutex_lock(&c->bucket_lock);
  1559. /*
  1560. * We need to put some unused buckets directly on the prio freelist in
  1561. * order to get the allocator thread started - it needs freed buckets in
  1562. * order to rewrite the prios and gens, and it needs to rewrite prios
  1563. * and gens in order to free buckets.
  1564. *
  1565. * This is only safe for buckets that have no live data in them, which
  1566. * there should always be some of.
  1567. */
  1568. for_each_cache(ca, c, i) {
  1569. for_each_bucket(b, ca) {
  1570. if (fifo_full(&ca->free[RESERVE_PRIO]) &&
  1571. fifo_full(&ca->free[RESERVE_BTREE]))
  1572. break;
  1573. if (bch_can_invalidate_bucket(ca, b) &&
  1574. !GC_MARK(b)) {
  1575. __bch_invalidate_one_bucket(ca, b);
  1576. if (!fifo_push(&ca->free[RESERVE_PRIO],
  1577. b - ca->buckets))
  1578. fifo_push(&ca->free[RESERVE_BTREE],
  1579. b - ca->buckets);
  1580. }
  1581. }
  1582. }
  1583. mutex_unlock(&c->bucket_lock);
  1584. }
  1585. /* Btree insertion */
  1586. static bool btree_insert_key(struct btree *b, struct bkey *k,
  1587. struct bkey *replace_key)
  1588. {
  1589. unsigned int status;
  1590. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1591. status = bch_btree_insert_key(&b->keys, k, replace_key);
  1592. if (status != BTREE_INSERT_STATUS_NO_INSERT) {
  1593. bch_check_keys(&b->keys, "%u for %s", status,
  1594. replace_key ? "replace" : "insert");
  1595. trace_bcache_btree_insert_key(b, k, replace_key != NULL,
  1596. status);
  1597. return true;
  1598. } else
  1599. return false;
  1600. }
  1601. static size_t insert_u64s_remaining(struct btree *b)
  1602. {
  1603. long ret = bch_btree_keys_u64s_remaining(&b->keys);
  1604. /*
  1605. * Might land in the middle of an existing extent and have to split it
  1606. */
  1607. if (b->keys.ops->is_extents)
  1608. ret -= KEY_MAX_U64S;
  1609. return max(ret, 0L);
  1610. }
  1611. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1612. struct keylist *insert_keys,
  1613. struct bkey *replace_key)
  1614. {
  1615. bool ret = false;
  1616. int oldsize = bch_count_data(&b->keys);
  1617. while (!bch_keylist_empty(insert_keys)) {
  1618. struct bkey *k = insert_keys->keys;
  1619. if (bkey_u64s(k) > insert_u64s_remaining(b))
  1620. break;
  1621. if (bkey_cmp(k, &b->key) <= 0) {
  1622. if (!b->level)
  1623. bkey_put(b->c, k);
  1624. ret |= btree_insert_key(b, k, replace_key);
  1625. bch_keylist_pop_front(insert_keys);
  1626. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1627. BKEY_PADDED(key) temp;
  1628. bkey_copy(&temp.key, insert_keys->keys);
  1629. bch_cut_back(&b->key, &temp.key);
  1630. bch_cut_front(&b->key, insert_keys->keys);
  1631. ret |= btree_insert_key(b, &temp.key, replace_key);
  1632. break;
  1633. } else {
  1634. break;
  1635. }
  1636. }
  1637. if (!ret)
  1638. op->insert_collision = true;
  1639. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1640. BUG_ON(bch_count_data(&b->keys) < oldsize);
  1641. return ret;
  1642. }
  1643. static int btree_split(struct btree *b, struct btree_op *op,
  1644. struct keylist *insert_keys,
  1645. struct bkey *replace_key)
  1646. {
  1647. bool split;
  1648. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1649. uint64_t start_time = local_clock();
  1650. struct closure cl;
  1651. struct keylist parent_keys;
  1652. closure_init_stack(&cl);
  1653. bch_keylist_init(&parent_keys);
  1654. if (btree_check_reserve(b, op)) {
  1655. if (!b->level)
  1656. return -EINTR;
  1657. else
  1658. WARN(1, "insufficient reserve for split\n");
  1659. }
  1660. n1 = btree_node_alloc_replacement(b, op);
  1661. if (IS_ERR(n1))
  1662. goto err;
  1663. split = set_blocks(btree_bset_first(n1),
  1664. block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
  1665. if (split) {
  1666. unsigned int keys = 0;
  1667. trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
  1668. n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
  1669. if (IS_ERR(n2))
  1670. goto err_free1;
  1671. if (!b->parent) {
  1672. n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
  1673. if (IS_ERR(n3))
  1674. goto err_free2;
  1675. }
  1676. mutex_lock(&n1->write_lock);
  1677. mutex_lock(&n2->write_lock);
  1678. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1679. /*
  1680. * Has to be a linear search because we don't have an auxiliary
  1681. * search tree yet
  1682. */
  1683. while (keys < (btree_bset_first(n1)->keys * 3) / 5)
  1684. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
  1685. keys));
  1686. bkey_copy_key(&n1->key,
  1687. bset_bkey_idx(btree_bset_first(n1), keys));
  1688. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
  1689. btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
  1690. btree_bset_first(n1)->keys = keys;
  1691. memcpy(btree_bset_first(n2)->start,
  1692. bset_bkey_last(btree_bset_first(n1)),
  1693. btree_bset_first(n2)->keys * sizeof(uint64_t));
  1694. bkey_copy_key(&n2->key, &b->key);
  1695. bch_keylist_add(&parent_keys, &n2->key);
  1696. bch_btree_node_write(n2, &cl);
  1697. mutex_unlock(&n2->write_lock);
  1698. rw_unlock(true, n2);
  1699. } else {
  1700. trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
  1701. mutex_lock(&n1->write_lock);
  1702. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1703. }
  1704. bch_keylist_add(&parent_keys, &n1->key);
  1705. bch_btree_node_write(n1, &cl);
  1706. mutex_unlock(&n1->write_lock);
  1707. if (n3) {
  1708. /* Depth increases, make a new root */
  1709. mutex_lock(&n3->write_lock);
  1710. bkey_copy_key(&n3->key, &MAX_KEY);
  1711. bch_btree_insert_keys(n3, op, &parent_keys, NULL);
  1712. bch_btree_node_write(n3, &cl);
  1713. mutex_unlock(&n3->write_lock);
  1714. closure_sync(&cl);
  1715. bch_btree_set_root(n3);
  1716. rw_unlock(true, n3);
  1717. } else if (!b->parent) {
  1718. /* Root filled up but didn't need to be split */
  1719. closure_sync(&cl);
  1720. bch_btree_set_root(n1);
  1721. } else {
  1722. /* Split a non root node */
  1723. closure_sync(&cl);
  1724. make_btree_freeing_key(b, parent_keys.top);
  1725. bch_keylist_push(&parent_keys);
  1726. bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
  1727. BUG_ON(!bch_keylist_empty(&parent_keys));
  1728. }
  1729. btree_node_free(b);
  1730. rw_unlock(true, n1);
  1731. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1732. return 0;
  1733. err_free2:
  1734. bkey_put(b->c, &n2->key);
  1735. btree_node_free(n2);
  1736. rw_unlock(true, n2);
  1737. err_free1:
  1738. bkey_put(b->c, &n1->key);
  1739. btree_node_free(n1);
  1740. rw_unlock(true, n1);
  1741. err:
  1742. WARN(1, "bcache: btree split failed (level %u)", b->level);
  1743. if (n3 == ERR_PTR(-EAGAIN) ||
  1744. n2 == ERR_PTR(-EAGAIN) ||
  1745. n1 == ERR_PTR(-EAGAIN))
  1746. return -EAGAIN;
  1747. return -ENOMEM;
  1748. }
  1749. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1750. struct keylist *insert_keys,
  1751. atomic_t *journal_ref,
  1752. struct bkey *replace_key)
  1753. {
  1754. struct closure cl;
  1755. BUG_ON(b->level && replace_key);
  1756. closure_init_stack(&cl);
  1757. mutex_lock(&b->write_lock);
  1758. if (write_block(b) != btree_bset_last(b) &&
  1759. b->keys.last_set_unwritten)
  1760. bch_btree_init_next(b); /* just wrote a set */
  1761. if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
  1762. mutex_unlock(&b->write_lock);
  1763. goto split;
  1764. }
  1765. BUG_ON(write_block(b) != btree_bset_last(b));
  1766. if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
  1767. if (!b->level)
  1768. bch_btree_leaf_dirty(b, journal_ref);
  1769. else
  1770. bch_btree_node_write(b, &cl);
  1771. }
  1772. mutex_unlock(&b->write_lock);
  1773. /* wait for btree node write if necessary, after unlock */
  1774. closure_sync(&cl);
  1775. return 0;
  1776. split:
  1777. if (current->bio_list) {
  1778. op->lock = b->c->root->level + 1;
  1779. return -EAGAIN;
  1780. } else if (op->lock <= b->c->root->level) {
  1781. op->lock = b->c->root->level + 1;
  1782. return -EINTR;
  1783. } else {
  1784. /* Invalidated all iterators */
  1785. int ret = btree_split(b, op, insert_keys, replace_key);
  1786. if (bch_keylist_empty(insert_keys))
  1787. return 0;
  1788. else if (!ret)
  1789. return -EINTR;
  1790. return ret;
  1791. }
  1792. }
  1793. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1794. struct bkey *check_key)
  1795. {
  1796. int ret = -EINTR;
  1797. uint64_t btree_ptr = b->key.ptr[0];
  1798. unsigned long seq = b->seq;
  1799. struct keylist insert;
  1800. bool upgrade = op->lock == -1;
  1801. bch_keylist_init(&insert);
  1802. if (upgrade) {
  1803. rw_unlock(false, b);
  1804. rw_lock(true, b, b->level);
  1805. if (b->key.ptr[0] != btree_ptr ||
  1806. b->seq != seq + 1) {
  1807. op->lock = b->level;
  1808. goto out;
  1809. }
  1810. }
  1811. SET_KEY_PTRS(check_key, 1);
  1812. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1813. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1814. bch_keylist_add(&insert, check_key);
  1815. ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
  1816. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1817. out:
  1818. if (upgrade)
  1819. downgrade_write(&b->lock);
  1820. return ret;
  1821. }
  1822. struct btree_insert_op {
  1823. struct btree_op op;
  1824. struct keylist *keys;
  1825. atomic_t *journal_ref;
  1826. struct bkey *replace_key;
  1827. };
  1828. static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
  1829. {
  1830. struct btree_insert_op *op = container_of(b_op,
  1831. struct btree_insert_op, op);
  1832. int ret = bch_btree_insert_node(b, &op->op, op->keys,
  1833. op->journal_ref, op->replace_key);
  1834. if (ret && !bch_keylist_empty(op->keys))
  1835. return ret;
  1836. else
  1837. return MAP_DONE;
  1838. }
  1839. int bch_btree_insert(struct cache_set *c, struct keylist *keys,
  1840. atomic_t *journal_ref, struct bkey *replace_key)
  1841. {
  1842. struct btree_insert_op op;
  1843. int ret = 0;
  1844. BUG_ON(current->bio_list);
  1845. BUG_ON(bch_keylist_empty(keys));
  1846. bch_btree_op_init(&op.op, 0);
  1847. op.keys = keys;
  1848. op.journal_ref = journal_ref;
  1849. op.replace_key = replace_key;
  1850. while (!ret && !bch_keylist_empty(keys)) {
  1851. op.op.lock = 0;
  1852. ret = bch_btree_map_leaf_nodes(&op.op, c,
  1853. &START_KEY(keys->keys),
  1854. btree_insert_fn);
  1855. }
  1856. if (ret) {
  1857. struct bkey *k;
  1858. pr_err("error %i", ret);
  1859. while ((k = bch_keylist_pop(keys)))
  1860. bkey_put(c, k);
  1861. } else if (op.op.insert_collision)
  1862. ret = -ESRCH;
  1863. return ret;
  1864. }
  1865. void bch_btree_set_root(struct btree *b)
  1866. {
  1867. unsigned int i;
  1868. struct closure cl;
  1869. closure_init_stack(&cl);
  1870. trace_bcache_btree_set_root(b);
  1871. BUG_ON(!b->written);
  1872. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1873. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1874. mutex_lock(&b->c->bucket_lock);
  1875. list_del_init(&b->list);
  1876. mutex_unlock(&b->c->bucket_lock);
  1877. b->c->root = b;
  1878. bch_journal_meta(b->c, &cl);
  1879. closure_sync(&cl);
  1880. }
  1881. /* Map across nodes or keys */
  1882. static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
  1883. struct bkey *from,
  1884. btree_map_nodes_fn *fn, int flags)
  1885. {
  1886. int ret = MAP_CONTINUE;
  1887. if (b->level) {
  1888. struct bkey *k;
  1889. struct btree_iter iter;
  1890. bch_btree_iter_init(&b->keys, &iter, from);
  1891. while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
  1892. bch_ptr_bad))) {
  1893. ret = btree(map_nodes_recurse, k, b,
  1894. op, from, fn, flags);
  1895. from = NULL;
  1896. if (ret != MAP_CONTINUE)
  1897. return ret;
  1898. }
  1899. }
  1900. if (!b->level || flags == MAP_ALL_NODES)
  1901. ret = fn(op, b);
  1902. return ret;
  1903. }
  1904. int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
  1905. struct bkey *from, btree_map_nodes_fn *fn, int flags)
  1906. {
  1907. return btree_root(map_nodes_recurse, c, op, from, fn, flags);
  1908. }
  1909. static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
  1910. struct bkey *from, btree_map_keys_fn *fn,
  1911. int flags)
  1912. {
  1913. int ret = MAP_CONTINUE;
  1914. struct bkey *k;
  1915. struct btree_iter iter;
  1916. bch_btree_iter_init(&b->keys, &iter, from);
  1917. while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
  1918. ret = !b->level
  1919. ? fn(op, b, k)
  1920. : btree(map_keys_recurse, k, b, op, from, fn, flags);
  1921. from = NULL;
  1922. if (ret != MAP_CONTINUE)
  1923. return ret;
  1924. }
  1925. if (!b->level && (flags & MAP_END_KEY))
  1926. ret = fn(op, b, &KEY(KEY_INODE(&b->key),
  1927. KEY_OFFSET(&b->key), 0));
  1928. return ret;
  1929. }
  1930. int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
  1931. struct bkey *from, btree_map_keys_fn *fn, int flags)
  1932. {
  1933. return btree_root(map_keys_recurse, c, op, from, fn, flags);
  1934. }
  1935. /* Keybuf code */
  1936. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1937. {
  1938. /* Overlapping keys compare equal */
  1939. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1940. return -1;
  1941. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1942. return 1;
  1943. return 0;
  1944. }
  1945. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1946. struct keybuf_key *r)
  1947. {
  1948. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1949. }
  1950. struct refill {
  1951. struct btree_op op;
  1952. unsigned int nr_found;
  1953. struct keybuf *buf;
  1954. struct bkey *end;
  1955. keybuf_pred_fn *pred;
  1956. };
  1957. static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
  1958. struct bkey *k)
  1959. {
  1960. struct refill *refill = container_of(op, struct refill, op);
  1961. struct keybuf *buf = refill->buf;
  1962. int ret = MAP_CONTINUE;
  1963. if (bkey_cmp(k, refill->end) > 0) {
  1964. ret = MAP_DONE;
  1965. goto out;
  1966. }
  1967. if (!KEY_SIZE(k)) /* end key */
  1968. goto out;
  1969. if (refill->pred(buf, k)) {
  1970. struct keybuf_key *w;
  1971. spin_lock(&buf->lock);
  1972. w = array_alloc(&buf->freelist);
  1973. if (!w) {
  1974. spin_unlock(&buf->lock);
  1975. return MAP_DONE;
  1976. }
  1977. w->private = NULL;
  1978. bkey_copy(&w->key, k);
  1979. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1980. array_free(&buf->freelist, w);
  1981. else
  1982. refill->nr_found++;
  1983. if (array_freelist_empty(&buf->freelist))
  1984. ret = MAP_DONE;
  1985. spin_unlock(&buf->lock);
  1986. }
  1987. out:
  1988. buf->last_scanned = *k;
  1989. return ret;
  1990. }
  1991. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1992. struct bkey *end, keybuf_pred_fn *pred)
  1993. {
  1994. struct bkey start = buf->last_scanned;
  1995. struct refill refill;
  1996. cond_resched();
  1997. bch_btree_op_init(&refill.op, -1);
  1998. refill.nr_found = 0;
  1999. refill.buf = buf;
  2000. refill.end = end;
  2001. refill.pred = pred;
  2002. bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
  2003. refill_keybuf_fn, MAP_END_KEY);
  2004. trace_bcache_keyscan(refill.nr_found,
  2005. KEY_INODE(&start), KEY_OFFSET(&start),
  2006. KEY_INODE(&buf->last_scanned),
  2007. KEY_OFFSET(&buf->last_scanned));
  2008. spin_lock(&buf->lock);
  2009. if (!RB_EMPTY_ROOT(&buf->keys)) {
  2010. struct keybuf_key *w;
  2011. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  2012. buf->start = START_KEY(&w->key);
  2013. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  2014. buf->end = w->key;
  2015. } else {
  2016. buf->start = MAX_KEY;
  2017. buf->end = MAX_KEY;
  2018. }
  2019. spin_unlock(&buf->lock);
  2020. }
  2021. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  2022. {
  2023. rb_erase(&w->node, &buf->keys);
  2024. array_free(&buf->freelist, w);
  2025. }
  2026. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  2027. {
  2028. spin_lock(&buf->lock);
  2029. __bch_keybuf_del(buf, w);
  2030. spin_unlock(&buf->lock);
  2031. }
  2032. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  2033. struct bkey *end)
  2034. {
  2035. bool ret = false;
  2036. struct keybuf_key *p, *w, s;
  2037. s.key = *start;
  2038. if (bkey_cmp(end, &buf->start) <= 0 ||
  2039. bkey_cmp(start, &buf->end) >= 0)
  2040. return false;
  2041. spin_lock(&buf->lock);
  2042. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  2043. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  2044. p = w;
  2045. w = RB_NEXT(w, node);
  2046. if (p->private)
  2047. ret = true;
  2048. else
  2049. __bch_keybuf_del(buf, p);
  2050. }
  2051. spin_unlock(&buf->lock);
  2052. return ret;
  2053. }
  2054. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  2055. {
  2056. struct keybuf_key *w;
  2057. spin_lock(&buf->lock);
  2058. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  2059. while (w && w->private)
  2060. w = RB_NEXT(w, node);
  2061. if (w)
  2062. w->private = ERR_PTR(-EINTR);
  2063. spin_unlock(&buf->lock);
  2064. return w;
  2065. }
  2066. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  2067. struct keybuf *buf,
  2068. struct bkey *end,
  2069. keybuf_pred_fn *pred)
  2070. {
  2071. struct keybuf_key *ret;
  2072. while (1) {
  2073. ret = bch_keybuf_next(buf);
  2074. if (ret)
  2075. break;
  2076. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  2077. pr_debug("scan finished");
  2078. break;
  2079. }
  2080. bch_refill_keybuf(c, buf, end, pred);
  2081. }
  2082. return ret;
  2083. }
  2084. void bch_keybuf_init(struct keybuf *buf)
  2085. {
  2086. buf->last_scanned = MAX_KEY;
  2087. buf->keys = RB_ROOT;
  2088. spin_lock_init(&buf->lock);
  2089. array_allocator_init(&buf->freelist);
  2090. }