dm-integrity.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715
  1. /*
  2. * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
  3. * Copyright (C) 2016-2017 Milan Broz
  4. * Copyright (C) 2016-2017 Mikulas Patocka
  5. *
  6. * This file is released under the GPL.
  7. */
  8. #include "dm-bio-record.h"
  9. #include <linux/compiler.h>
  10. #include <linux/module.h>
  11. #include <linux/device-mapper.h>
  12. #include <linux/dm-io.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/sort.h>
  15. #include <linux/rbtree.h>
  16. #include <linux/delay.h>
  17. #include <linux/random.h>
  18. #include <crypto/hash.h>
  19. #include <crypto/skcipher.h>
  20. #include <linux/async_tx.h>
  21. #include <linux/dm-bufio.h>
  22. #define DM_MSG_PREFIX "integrity"
  23. #define DEFAULT_INTERLEAVE_SECTORS 32768
  24. #define DEFAULT_JOURNAL_SIZE_FACTOR 7
  25. #define DEFAULT_BUFFER_SECTORS 128
  26. #define DEFAULT_JOURNAL_WATERMARK 50
  27. #define DEFAULT_SYNC_MSEC 10000
  28. #define DEFAULT_MAX_JOURNAL_SECTORS 131072
  29. #define MIN_LOG2_INTERLEAVE_SECTORS 3
  30. #define MAX_LOG2_INTERLEAVE_SECTORS 31
  31. #define METADATA_WORKQUEUE_MAX_ACTIVE 16
  32. #define RECALC_SECTORS 8192
  33. #define RECALC_WRITE_SUPER 16
  34. /*
  35. * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  36. * so it should not be enabled in the official kernel
  37. */
  38. //#define DEBUG_PRINT
  39. //#define INTERNAL_VERIFY
  40. /*
  41. * On disk structures
  42. */
  43. #define SB_MAGIC "integrt"
  44. #define SB_VERSION_1 1
  45. #define SB_VERSION_2 2
  46. #define SB_SECTORS 8
  47. #define MAX_SECTORS_PER_BLOCK 8
  48. struct superblock {
  49. __u8 magic[8];
  50. __u8 version;
  51. __u8 log2_interleave_sectors;
  52. __u16 integrity_tag_size;
  53. __u32 journal_sections;
  54. __u64 provided_data_sectors; /* userspace uses this value */
  55. __u32 flags;
  56. __u8 log2_sectors_per_block;
  57. __u8 pad[3];
  58. __u64 recalc_sector;
  59. };
  60. #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
  61. #define SB_FLAG_RECALCULATING 0x2
  62. #define JOURNAL_ENTRY_ROUNDUP 8
  63. typedef __u64 commit_id_t;
  64. #define JOURNAL_MAC_PER_SECTOR 8
  65. struct journal_entry {
  66. union {
  67. struct {
  68. __u32 sector_lo;
  69. __u32 sector_hi;
  70. } s;
  71. __u64 sector;
  72. } u;
  73. commit_id_t last_bytes[0];
  74. /* __u8 tag[0]; */
  75. };
  76. #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
  77. #if BITS_PER_LONG == 64
  78. #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
  79. #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
  80. #elif defined(CONFIG_LBDAF)
  81. #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
  82. #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
  83. #else
  84. #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
  85. #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
  86. #endif
  87. #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
  88. #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
  89. #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
  90. #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
  91. #define JOURNAL_BLOCK_SECTORS 8
  92. #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
  93. #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
  94. struct journal_sector {
  95. __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
  96. __u8 mac[JOURNAL_MAC_PER_SECTOR];
  97. commit_id_t commit_id;
  98. };
  99. #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
  100. #define METADATA_PADDING_SECTORS 8
  101. #define N_COMMIT_IDS 4
  102. static unsigned char prev_commit_seq(unsigned char seq)
  103. {
  104. return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
  105. }
  106. static unsigned char next_commit_seq(unsigned char seq)
  107. {
  108. return (seq + 1) % N_COMMIT_IDS;
  109. }
  110. /*
  111. * In-memory structures
  112. */
  113. struct journal_node {
  114. struct rb_node node;
  115. sector_t sector;
  116. };
  117. struct alg_spec {
  118. char *alg_string;
  119. char *key_string;
  120. __u8 *key;
  121. unsigned key_size;
  122. };
  123. struct dm_integrity_c {
  124. struct dm_dev *dev;
  125. struct dm_dev *meta_dev;
  126. unsigned tag_size;
  127. __s8 log2_tag_size;
  128. sector_t start;
  129. mempool_t journal_io_mempool;
  130. struct dm_io_client *io;
  131. struct dm_bufio_client *bufio;
  132. struct workqueue_struct *metadata_wq;
  133. struct superblock *sb;
  134. unsigned journal_pages;
  135. struct page_list *journal;
  136. struct page_list *journal_io;
  137. struct page_list *journal_xor;
  138. struct crypto_skcipher *journal_crypt;
  139. struct scatterlist **journal_scatterlist;
  140. struct scatterlist **journal_io_scatterlist;
  141. struct skcipher_request **sk_requests;
  142. struct crypto_shash *journal_mac;
  143. struct journal_node *journal_tree;
  144. struct rb_root journal_tree_root;
  145. sector_t provided_data_sectors;
  146. unsigned short journal_entry_size;
  147. unsigned char journal_entries_per_sector;
  148. unsigned char journal_section_entries;
  149. unsigned short journal_section_sectors;
  150. unsigned journal_sections;
  151. unsigned journal_entries;
  152. sector_t data_device_sectors;
  153. sector_t meta_device_sectors;
  154. unsigned initial_sectors;
  155. unsigned metadata_run;
  156. __s8 log2_metadata_run;
  157. __u8 log2_buffer_sectors;
  158. __u8 sectors_per_block;
  159. unsigned char mode;
  160. int failed;
  161. struct crypto_shash *internal_hash;
  162. struct dm_target *ti;
  163. /* these variables are locked with endio_wait.lock */
  164. struct rb_root in_progress;
  165. struct list_head wait_list;
  166. wait_queue_head_t endio_wait;
  167. struct workqueue_struct *wait_wq;
  168. struct workqueue_struct *offload_wq;
  169. unsigned char commit_seq;
  170. commit_id_t commit_ids[N_COMMIT_IDS];
  171. unsigned committed_section;
  172. unsigned n_committed_sections;
  173. unsigned uncommitted_section;
  174. unsigned n_uncommitted_sections;
  175. unsigned free_section;
  176. unsigned char free_section_entry;
  177. unsigned free_sectors;
  178. unsigned free_sectors_threshold;
  179. struct workqueue_struct *commit_wq;
  180. struct work_struct commit_work;
  181. struct workqueue_struct *writer_wq;
  182. struct work_struct writer_work;
  183. struct workqueue_struct *recalc_wq;
  184. struct work_struct recalc_work;
  185. u8 *recalc_buffer;
  186. u8 *recalc_tags;
  187. struct bio_list flush_bio_list;
  188. unsigned long autocommit_jiffies;
  189. struct timer_list autocommit_timer;
  190. unsigned autocommit_msec;
  191. wait_queue_head_t copy_to_journal_wait;
  192. struct completion crypto_backoff;
  193. bool journal_uptodate;
  194. bool just_formatted;
  195. bool legacy_recalculate;
  196. struct alg_spec internal_hash_alg;
  197. struct alg_spec journal_crypt_alg;
  198. struct alg_spec journal_mac_alg;
  199. atomic64_t number_of_mismatches;
  200. };
  201. struct dm_integrity_range {
  202. sector_t logical_sector;
  203. unsigned n_sectors;
  204. bool waiting;
  205. union {
  206. struct rb_node node;
  207. struct {
  208. struct task_struct *task;
  209. struct list_head wait_entry;
  210. };
  211. };
  212. };
  213. struct dm_integrity_io {
  214. struct work_struct work;
  215. struct dm_integrity_c *ic;
  216. bool write;
  217. bool fua;
  218. struct dm_integrity_range range;
  219. sector_t metadata_block;
  220. unsigned metadata_offset;
  221. atomic_t in_flight;
  222. blk_status_t bi_status;
  223. struct completion *completion;
  224. struct dm_bio_details bio_details;
  225. };
  226. struct journal_completion {
  227. struct dm_integrity_c *ic;
  228. atomic_t in_flight;
  229. struct completion comp;
  230. };
  231. struct journal_io {
  232. struct dm_integrity_range range;
  233. struct journal_completion *comp;
  234. };
  235. static struct kmem_cache *journal_io_cache;
  236. #define JOURNAL_IO_MEMPOOL 32
  237. #ifdef DEBUG_PRINT
  238. #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
  239. static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
  240. {
  241. va_list args;
  242. va_start(args, msg);
  243. vprintk(msg, args);
  244. va_end(args);
  245. if (len)
  246. pr_cont(":");
  247. while (len) {
  248. pr_cont(" %02x", *bytes);
  249. bytes++;
  250. len--;
  251. }
  252. pr_cont("\n");
  253. }
  254. #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
  255. #else
  256. #define DEBUG_print(x, ...) do { } while (0)
  257. #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
  258. #endif
  259. /*
  260. * DM Integrity profile, protection is performed layer above (dm-crypt)
  261. */
  262. static const struct blk_integrity_profile dm_integrity_profile = {
  263. .name = "DM-DIF-EXT-TAG",
  264. .generate_fn = NULL,
  265. .verify_fn = NULL,
  266. };
  267. static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
  268. static void integrity_bio_wait(struct work_struct *w);
  269. static void dm_integrity_dtr(struct dm_target *ti);
  270. static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
  271. {
  272. if (err == -EILSEQ)
  273. atomic64_inc(&ic->number_of_mismatches);
  274. if (!cmpxchg(&ic->failed, 0, err))
  275. DMERR("Error on %s: %d", msg, err);
  276. }
  277. static int dm_integrity_failed(struct dm_integrity_c *ic)
  278. {
  279. return READ_ONCE(ic->failed);
  280. }
  281. static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
  282. {
  283. if ((ic->internal_hash_alg.key || ic->journal_mac_alg.key) &&
  284. !ic->legacy_recalculate)
  285. return true;
  286. return false;
  287. }
  288. static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
  289. unsigned j, unsigned char seq)
  290. {
  291. /*
  292. * Xor the number with section and sector, so that if a piece of
  293. * journal is written at wrong place, it is detected.
  294. */
  295. return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
  296. }
  297. static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
  298. sector_t *area, sector_t *offset)
  299. {
  300. if (!ic->meta_dev) {
  301. __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
  302. *area = data_sector >> log2_interleave_sectors;
  303. *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
  304. } else {
  305. *area = 0;
  306. *offset = data_sector;
  307. }
  308. }
  309. #define sector_to_block(ic, n) \
  310. do { \
  311. BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
  312. (n) >>= (ic)->sb->log2_sectors_per_block; \
  313. } while (0)
  314. static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
  315. sector_t offset, unsigned *metadata_offset)
  316. {
  317. __u64 ms;
  318. unsigned mo;
  319. ms = area << ic->sb->log2_interleave_sectors;
  320. if (likely(ic->log2_metadata_run >= 0))
  321. ms += area << ic->log2_metadata_run;
  322. else
  323. ms += area * ic->metadata_run;
  324. ms >>= ic->log2_buffer_sectors;
  325. sector_to_block(ic, offset);
  326. if (likely(ic->log2_tag_size >= 0)) {
  327. ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
  328. mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
  329. } else {
  330. ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
  331. mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
  332. }
  333. *metadata_offset = mo;
  334. return ms;
  335. }
  336. static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
  337. {
  338. sector_t result;
  339. if (ic->meta_dev)
  340. return offset;
  341. result = area << ic->sb->log2_interleave_sectors;
  342. if (likely(ic->log2_metadata_run >= 0))
  343. result += (area + 1) << ic->log2_metadata_run;
  344. else
  345. result += (area + 1) * ic->metadata_run;
  346. result += (sector_t)ic->initial_sectors + offset;
  347. result += ic->start;
  348. return result;
  349. }
  350. static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
  351. {
  352. if (unlikely(*sec_ptr >= ic->journal_sections))
  353. *sec_ptr -= ic->journal_sections;
  354. }
  355. static void sb_set_version(struct dm_integrity_c *ic)
  356. {
  357. if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
  358. ic->sb->version = SB_VERSION_2;
  359. else
  360. ic->sb->version = SB_VERSION_1;
  361. }
  362. static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
  363. {
  364. struct dm_io_request io_req;
  365. struct dm_io_region io_loc;
  366. io_req.bi_op = op;
  367. io_req.bi_op_flags = op_flags;
  368. io_req.mem.type = DM_IO_KMEM;
  369. io_req.mem.ptr.addr = ic->sb;
  370. io_req.notify.fn = NULL;
  371. io_req.client = ic->io;
  372. io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
  373. io_loc.sector = ic->start;
  374. io_loc.count = SB_SECTORS;
  375. return dm_io(&io_req, 1, &io_loc, NULL);
  376. }
  377. static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
  378. bool e, const char *function)
  379. {
  380. #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
  381. unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
  382. if (unlikely(section >= ic->journal_sections) ||
  383. unlikely(offset >= limit)) {
  384. printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
  385. function, section, offset, ic->journal_sections, limit);
  386. BUG();
  387. }
  388. #endif
  389. }
  390. static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
  391. unsigned *pl_index, unsigned *pl_offset)
  392. {
  393. unsigned sector;
  394. access_journal_check(ic, section, offset, false, "page_list_location");
  395. sector = section * ic->journal_section_sectors + offset;
  396. *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
  397. *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
  398. }
  399. static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
  400. unsigned section, unsigned offset, unsigned *n_sectors)
  401. {
  402. unsigned pl_index, pl_offset;
  403. char *va;
  404. page_list_location(ic, section, offset, &pl_index, &pl_offset);
  405. if (n_sectors)
  406. *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
  407. va = lowmem_page_address(pl[pl_index].page);
  408. return (struct journal_sector *)(va + pl_offset);
  409. }
  410. static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
  411. {
  412. return access_page_list(ic, ic->journal, section, offset, NULL);
  413. }
  414. static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
  415. {
  416. unsigned rel_sector, offset;
  417. struct journal_sector *js;
  418. access_journal_check(ic, section, n, true, "access_journal_entry");
  419. rel_sector = n % JOURNAL_BLOCK_SECTORS;
  420. offset = n / JOURNAL_BLOCK_SECTORS;
  421. js = access_journal(ic, section, rel_sector);
  422. return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
  423. }
  424. static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
  425. {
  426. n <<= ic->sb->log2_sectors_per_block;
  427. n += JOURNAL_BLOCK_SECTORS;
  428. access_journal_check(ic, section, n, false, "access_journal_data");
  429. return access_journal(ic, section, n);
  430. }
  431. static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
  432. {
  433. SHASH_DESC_ON_STACK(desc, ic->journal_mac);
  434. int r;
  435. unsigned j, size;
  436. desc->tfm = ic->journal_mac;
  437. desc->flags = 0;
  438. r = crypto_shash_init(desc);
  439. if (unlikely(r)) {
  440. dm_integrity_io_error(ic, "crypto_shash_init", r);
  441. goto err;
  442. }
  443. for (j = 0; j < ic->journal_section_entries; j++) {
  444. struct journal_entry *je = access_journal_entry(ic, section, j);
  445. r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
  446. if (unlikely(r)) {
  447. dm_integrity_io_error(ic, "crypto_shash_update", r);
  448. goto err;
  449. }
  450. }
  451. size = crypto_shash_digestsize(ic->journal_mac);
  452. if (likely(size <= JOURNAL_MAC_SIZE)) {
  453. r = crypto_shash_final(desc, result);
  454. if (unlikely(r)) {
  455. dm_integrity_io_error(ic, "crypto_shash_final", r);
  456. goto err;
  457. }
  458. memset(result + size, 0, JOURNAL_MAC_SIZE - size);
  459. } else {
  460. __u8 digest[size];
  461. r = crypto_shash_final(desc, digest);
  462. if (unlikely(r)) {
  463. dm_integrity_io_error(ic, "crypto_shash_final", r);
  464. goto err;
  465. }
  466. memcpy(result, digest, JOURNAL_MAC_SIZE);
  467. }
  468. return;
  469. err:
  470. memset(result, 0, JOURNAL_MAC_SIZE);
  471. }
  472. static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
  473. {
  474. __u8 result[JOURNAL_MAC_SIZE];
  475. unsigned j;
  476. if (!ic->journal_mac)
  477. return;
  478. section_mac(ic, section, result);
  479. for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
  480. struct journal_sector *js = access_journal(ic, section, j);
  481. if (likely(wr))
  482. memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
  483. else {
  484. if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
  485. dm_integrity_io_error(ic, "journal mac", -EILSEQ);
  486. }
  487. }
  488. }
  489. static void complete_journal_op(void *context)
  490. {
  491. struct journal_completion *comp = context;
  492. BUG_ON(!atomic_read(&comp->in_flight));
  493. if (likely(atomic_dec_and_test(&comp->in_flight)))
  494. complete(&comp->comp);
  495. }
  496. static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
  497. unsigned n_sections, struct journal_completion *comp)
  498. {
  499. struct async_submit_ctl submit;
  500. size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
  501. unsigned pl_index, pl_offset, section_index;
  502. struct page_list *source_pl, *target_pl;
  503. if (likely(encrypt)) {
  504. source_pl = ic->journal;
  505. target_pl = ic->journal_io;
  506. } else {
  507. source_pl = ic->journal_io;
  508. target_pl = ic->journal;
  509. }
  510. page_list_location(ic, section, 0, &pl_index, &pl_offset);
  511. atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
  512. init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
  513. section_index = pl_index;
  514. do {
  515. size_t this_step;
  516. struct page *src_pages[2];
  517. struct page *dst_page;
  518. while (unlikely(pl_index == section_index)) {
  519. unsigned dummy;
  520. if (likely(encrypt))
  521. rw_section_mac(ic, section, true);
  522. section++;
  523. n_sections--;
  524. if (!n_sections)
  525. break;
  526. page_list_location(ic, section, 0, &section_index, &dummy);
  527. }
  528. this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
  529. dst_page = target_pl[pl_index].page;
  530. src_pages[0] = source_pl[pl_index].page;
  531. src_pages[1] = ic->journal_xor[pl_index].page;
  532. async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
  533. pl_index++;
  534. pl_offset = 0;
  535. n_bytes -= this_step;
  536. } while (n_bytes);
  537. BUG_ON(n_sections);
  538. async_tx_issue_pending_all();
  539. }
  540. static void complete_journal_encrypt(struct crypto_async_request *req, int err)
  541. {
  542. struct journal_completion *comp = req->data;
  543. if (unlikely(err)) {
  544. if (likely(err == -EINPROGRESS)) {
  545. complete(&comp->ic->crypto_backoff);
  546. return;
  547. }
  548. dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
  549. }
  550. complete_journal_op(comp);
  551. }
  552. static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
  553. {
  554. int r;
  555. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  556. complete_journal_encrypt, comp);
  557. if (likely(encrypt))
  558. r = crypto_skcipher_encrypt(req);
  559. else
  560. r = crypto_skcipher_decrypt(req);
  561. if (likely(!r))
  562. return false;
  563. if (likely(r == -EINPROGRESS))
  564. return true;
  565. if (likely(r == -EBUSY)) {
  566. wait_for_completion(&comp->ic->crypto_backoff);
  567. reinit_completion(&comp->ic->crypto_backoff);
  568. return true;
  569. }
  570. dm_integrity_io_error(comp->ic, "encrypt", r);
  571. return false;
  572. }
  573. static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
  574. unsigned n_sections, struct journal_completion *comp)
  575. {
  576. struct scatterlist **source_sg;
  577. struct scatterlist **target_sg;
  578. atomic_add(2, &comp->in_flight);
  579. if (likely(encrypt)) {
  580. source_sg = ic->journal_scatterlist;
  581. target_sg = ic->journal_io_scatterlist;
  582. } else {
  583. source_sg = ic->journal_io_scatterlist;
  584. target_sg = ic->journal_scatterlist;
  585. }
  586. do {
  587. struct skcipher_request *req;
  588. unsigned ivsize;
  589. char *iv;
  590. if (likely(encrypt))
  591. rw_section_mac(ic, section, true);
  592. req = ic->sk_requests[section];
  593. ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
  594. iv = req->iv;
  595. memcpy(iv, iv + ivsize, ivsize);
  596. req->src = source_sg[section];
  597. req->dst = target_sg[section];
  598. if (unlikely(do_crypt(encrypt, req, comp)))
  599. atomic_inc(&comp->in_flight);
  600. section++;
  601. n_sections--;
  602. } while (n_sections);
  603. atomic_dec(&comp->in_flight);
  604. complete_journal_op(comp);
  605. }
  606. static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
  607. unsigned n_sections, struct journal_completion *comp)
  608. {
  609. if (ic->journal_xor)
  610. return xor_journal(ic, encrypt, section, n_sections, comp);
  611. else
  612. return crypt_journal(ic, encrypt, section, n_sections, comp);
  613. }
  614. static void complete_journal_io(unsigned long error, void *context)
  615. {
  616. struct journal_completion *comp = context;
  617. if (unlikely(error != 0))
  618. dm_integrity_io_error(comp->ic, "writing journal", -EIO);
  619. complete_journal_op(comp);
  620. }
  621. static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
  622. unsigned n_sections, struct journal_completion *comp)
  623. {
  624. struct dm_io_request io_req;
  625. struct dm_io_region io_loc;
  626. unsigned sector, n_sectors, pl_index, pl_offset;
  627. int r;
  628. if (unlikely(dm_integrity_failed(ic))) {
  629. if (comp)
  630. complete_journal_io(-1UL, comp);
  631. return;
  632. }
  633. sector = section * ic->journal_section_sectors;
  634. n_sectors = n_sections * ic->journal_section_sectors;
  635. pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
  636. pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
  637. io_req.bi_op = op;
  638. io_req.bi_op_flags = op_flags;
  639. io_req.mem.type = DM_IO_PAGE_LIST;
  640. if (ic->journal_io)
  641. io_req.mem.ptr.pl = &ic->journal_io[pl_index];
  642. else
  643. io_req.mem.ptr.pl = &ic->journal[pl_index];
  644. io_req.mem.offset = pl_offset;
  645. if (likely(comp != NULL)) {
  646. io_req.notify.fn = complete_journal_io;
  647. io_req.notify.context = comp;
  648. } else {
  649. io_req.notify.fn = NULL;
  650. }
  651. io_req.client = ic->io;
  652. io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
  653. io_loc.sector = ic->start + SB_SECTORS + sector;
  654. io_loc.count = n_sectors;
  655. r = dm_io(&io_req, 1, &io_loc, NULL);
  656. if (unlikely(r)) {
  657. dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
  658. if (comp) {
  659. WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
  660. complete_journal_io(-1UL, comp);
  661. }
  662. }
  663. }
  664. static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
  665. {
  666. struct journal_completion io_comp;
  667. struct journal_completion crypt_comp_1;
  668. struct journal_completion crypt_comp_2;
  669. unsigned i;
  670. io_comp.ic = ic;
  671. init_completion(&io_comp.comp);
  672. if (commit_start + commit_sections <= ic->journal_sections) {
  673. io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  674. if (ic->journal_io) {
  675. crypt_comp_1.ic = ic;
  676. init_completion(&crypt_comp_1.comp);
  677. crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
  678. encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
  679. wait_for_completion_io(&crypt_comp_1.comp);
  680. } else {
  681. for (i = 0; i < commit_sections; i++)
  682. rw_section_mac(ic, commit_start + i, true);
  683. }
  684. rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
  685. commit_sections, &io_comp);
  686. } else {
  687. unsigned to_end;
  688. io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
  689. to_end = ic->journal_sections - commit_start;
  690. if (ic->journal_io) {
  691. crypt_comp_1.ic = ic;
  692. init_completion(&crypt_comp_1.comp);
  693. crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
  694. encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
  695. if (try_wait_for_completion(&crypt_comp_1.comp)) {
  696. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
  697. reinit_completion(&crypt_comp_1.comp);
  698. crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
  699. encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
  700. wait_for_completion_io(&crypt_comp_1.comp);
  701. } else {
  702. crypt_comp_2.ic = ic;
  703. init_completion(&crypt_comp_2.comp);
  704. crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
  705. encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
  706. wait_for_completion_io(&crypt_comp_1.comp);
  707. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
  708. wait_for_completion_io(&crypt_comp_2.comp);
  709. }
  710. } else {
  711. for (i = 0; i < to_end; i++)
  712. rw_section_mac(ic, commit_start + i, true);
  713. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
  714. for (i = 0; i < commit_sections - to_end; i++)
  715. rw_section_mac(ic, i, true);
  716. }
  717. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
  718. }
  719. wait_for_completion_io(&io_comp.comp);
  720. }
  721. static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
  722. unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
  723. {
  724. struct dm_io_request io_req;
  725. struct dm_io_region io_loc;
  726. int r;
  727. unsigned sector, pl_index, pl_offset;
  728. BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
  729. if (unlikely(dm_integrity_failed(ic))) {
  730. fn(-1UL, data);
  731. return;
  732. }
  733. sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
  734. pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
  735. pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
  736. io_req.bi_op = REQ_OP_WRITE;
  737. io_req.bi_op_flags = 0;
  738. io_req.mem.type = DM_IO_PAGE_LIST;
  739. io_req.mem.ptr.pl = &ic->journal[pl_index];
  740. io_req.mem.offset = pl_offset;
  741. io_req.notify.fn = fn;
  742. io_req.notify.context = data;
  743. io_req.client = ic->io;
  744. io_loc.bdev = ic->dev->bdev;
  745. io_loc.sector = target;
  746. io_loc.count = n_sectors;
  747. r = dm_io(&io_req, 1, &io_loc, NULL);
  748. if (unlikely(r)) {
  749. WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
  750. fn(-1UL, data);
  751. }
  752. }
  753. static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
  754. {
  755. return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
  756. range1->logical_sector + range1->n_sectors > range2->logical_sector;
  757. }
  758. static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
  759. {
  760. struct rb_node **n = &ic->in_progress.rb_node;
  761. struct rb_node *parent;
  762. BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
  763. if (likely(check_waiting)) {
  764. struct dm_integrity_range *range;
  765. list_for_each_entry(range, &ic->wait_list, wait_entry) {
  766. if (unlikely(ranges_overlap(range, new_range)))
  767. return false;
  768. }
  769. }
  770. parent = NULL;
  771. while (*n) {
  772. struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
  773. parent = *n;
  774. if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
  775. n = &range->node.rb_left;
  776. } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
  777. n = &range->node.rb_right;
  778. } else {
  779. return false;
  780. }
  781. }
  782. rb_link_node(&new_range->node, parent, n);
  783. rb_insert_color(&new_range->node, &ic->in_progress);
  784. return true;
  785. }
  786. static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
  787. {
  788. rb_erase(&range->node, &ic->in_progress);
  789. while (unlikely(!list_empty(&ic->wait_list))) {
  790. struct dm_integrity_range *last_range =
  791. list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
  792. struct task_struct *last_range_task;
  793. last_range_task = last_range->task;
  794. list_del(&last_range->wait_entry);
  795. if (!add_new_range(ic, last_range, false)) {
  796. last_range->task = last_range_task;
  797. list_add(&last_range->wait_entry, &ic->wait_list);
  798. break;
  799. }
  800. last_range->waiting = false;
  801. wake_up_process(last_range_task);
  802. }
  803. }
  804. static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
  805. {
  806. unsigned long flags;
  807. spin_lock_irqsave(&ic->endio_wait.lock, flags);
  808. remove_range_unlocked(ic, range);
  809. spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
  810. }
  811. static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
  812. {
  813. new_range->waiting = true;
  814. list_add_tail(&new_range->wait_entry, &ic->wait_list);
  815. new_range->task = current;
  816. do {
  817. __set_current_state(TASK_UNINTERRUPTIBLE);
  818. spin_unlock_irq(&ic->endio_wait.lock);
  819. io_schedule();
  820. spin_lock_irq(&ic->endio_wait.lock);
  821. } while (unlikely(new_range->waiting));
  822. }
  823. static void init_journal_node(struct journal_node *node)
  824. {
  825. RB_CLEAR_NODE(&node->node);
  826. node->sector = (sector_t)-1;
  827. }
  828. static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
  829. {
  830. struct rb_node **link;
  831. struct rb_node *parent;
  832. node->sector = sector;
  833. BUG_ON(!RB_EMPTY_NODE(&node->node));
  834. link = &ic->journal_tree_root.rb_node;
  835. parent = NULL;
  836. while (*link) {
  837. struct journal_node *j;
  838. parent = *link;
  839. j = container_of(parent, struct journal_node, node);
  840. if (sector < j->sector)
  841. link = &j->node.rb_left;
  842. else
  843. link = &j->node.rb_right;
  844. }
  845. rb_link_node(&node->node, parent, link);
  846. rb_insert_color(&node->node, &ic->journal_tree_root);
  847. }
  848. static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
  849. {
  850. BUG_ON(RB_EMPTY_NODE(&node->node));
  851. rb_erase(&node->node, &ic->journal_tree_root);
  852. init_journal_node(node);
  853. }
  854. #define NOT_FOUND (-1U)
  855. static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
  856. {
  857. struct rb_node *n = ic->journal_tree_root.rb_node;
  858. unsigned found = NOT_FOUND;
  859. *next_sector = (sector_t)-1;
  860. while (n) {
  861. struct journal_node *j = container_of(n, struct journal_node, node);
  862. if (sector == j->sector) {
  863. found = j - ic->journal_tree;
  864. }
  865. if (sector < j->sector) {
  866. *next_sector = j->sector;
  867. n = j->node.rb_left;
  868. } else {
  869. n = j->node.rb_right;
  870. }
  871. }
  872. return found;
  873. }
  874. static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
  875. {
  876. struct journal_node *node, *next_node;
  877. struct rb_node *next;
  878. if (unlikely(pos >= ic->journal_entries))
  879. return false;
  880. node = &ic->journal_tree[pos];
  881. if (unlikely(RB_EMPTY_NODE(&node->node)))
  882. return false;
  883. if (unlikely(node->sector != sector))
  884. return false;
  885. next = rb_next(&node->node);
  886. if (unlikely(!next))
  887. return true;
  888. next_node = container_of(next, struct journal_node, node);
  889. return next_node->sector != sector;
  890. }
  891. static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
  892. {
  893. struct rb_node *next;
  894. struct journal_node *next_node;
  895. unsigned next_section;
  896. BUG_ON(RB_EMPTY_NODE(&node->node));
  897. next = rb_next(&node->node);
  898. if (unlikely(!next))
  899. return false;
  900. next_node = container_of(next, struct journal_node, node);
  901. if (next_node->sector != node->sector)
  902. return false;
  903. next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
  904. if (next_section >= ic->committed_section &&
  905. next_section < ic->committed_section + ic->n_committed_sections)
  906. return true;
  907. if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
  908. return true;
  909. return false;
  910. }
  911. #define TAG_READ 0
  912. #define TAG_WRITE 1
  913. #define TAG_CMP 2
  914. static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
  915. unsigned *metadata_offset, unsigned total_size, int op)
  916. {
  917. do {
  918. unsigned char *data, *dp;
  919. struct dm_buffer *b;
  920. unsigned to_copy;
  921. int r;
  922. r = dm_integrity_failed(ic);
  923. if (unlikely(r))
  924. return r;
  925. data = dm_bufio_read(ic->bufio, *metadata_block, &b);
  926. if (unlikely(IS_ERR(data)))
  927. return PTR_ERR(data);
  928. to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
  929. dp = data + *metadata_offset;
  930. if (op == TAG_READ) {
  931. memcpy(tag, dp, to_copy);
  932. } else if (op == TAG_WRITE) {
  933. memcpy(dp, tag, to_copy);
  934. dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
  935. } else {
  936. /* e.g.: op == TAG_CMP */
  937. if (unlikely(memcmp(dp, tag, to_copy))) {
  938. unsigned i;
  939. for (i = 0; i < to_copy; i++) {
  940. if (dp[i] != tag[i])
  941. break;
  942. total_size--;
  943. }
  944. dm_bufio_release(b);
  945. return total_size;
  946. }
  947. }
  948. dm_bufio_release(b);
  949. tag += to_copy;
  950. *metadata_offset += to_copy;
  951. if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
  952. (*metadata_block)++;
  953. *metadata_offset = 0;
  954. }
  955. total_size -= to_copy;
  956. } while (unlikely(total_size));
  957. return 0;
  958. }
  959. struct flush_request {
  960. struct dm_io_request io_req;
  961. struct dm_io_region io_reg;
  962. struct dm_integrity_c *ic;
  963. struct completion comp;
  964. };
  965. static void flush_notify(unsigned long error, void *fr_)
  966. {
  967. struct flush_request *fr = fr_;
  968. if (unlikely(error != 0))
  969. dm_integrity_io_error(fr->ic, "flusing disk cache", -EIO);
  970. complete(&fr->comp);
  971. }
  972. static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
  973. {
  974. int r;
  975. struct flush_request fr;
  976. if (!ic->meta_dev)
  977. flush_data = false;
  978. if (flush_data) {
  979. fr.io_req.bi_op = REQ_OP_WRITE,
  980. fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
  981. fr.io_req.mem.type = DM_IO_KMEM,
  982. fr.io_req.mem.ptr.addr = NULL,
  983. fr.io_req.notify.fn = flush_notify,
  984. fr.io_req.notify.context = &fr;
  985. fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
  986. fr.io_reg.bdev = ic->dev->bdev,
  987. fr.io_reg.sector = 0,
  988. fr.io_reg.count = 0,
  989. fr.ic = ic;
  990. init_completion(&fr.comp);
  991. r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
  992. BUG_ON(r);
  993. }
  994. r = dm_bufio_write_dirty_buffers(ic->bufio);
  995. if (unlikely(r))
  996. dm_integrity_io_error(ic, "writing tags", r);
  997. if (flush_data)
  998. wait_for_completion(&fr.comp);
  999. }
  1000. static void sleep_on_endio_wait(struct dm_integrity_c *ic)
  1001. {
  1002. DECLARE_WAITQUEUE(wait, current);
  1003. __add_wait_queue(&ic->endio_wait, &wait);
  1004. __set_current_state(TASK_UNINTERRUPTIBLE);
  1005. spin_unlock_irq(&ic->endio_wait.lock);
  1006. io_schedule();
  1007. spin_lock_irq(&ic->endio_wait.lock);
  1008. __remove_wait_queue(&ic->endio_wait, &wait);
  1009. }
  1010. static void autocommit_fn(struct timer_list *t)
  1011. {
  1012. struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
  1013. if (likely(!dm_integrity_failed(ic)))
  1014. queue_work(ic->commit_wq, &ic->commit_work);
  1015. }
  1016. static void schedule_autocommit(struct dm_integrity_c *ic)
  1017. {
  1018. if (!timer_pending(&ic->autocommit_timer))
  1019. mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
  1020. }
  1021. static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
  1022. {
  1023. struct bio *bio;
  1024. unsigned long flags;
  1025. spin_lock_irqsave(&ic->endio_wait.lock, flags);
  1026. bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1027. bio_list_add(&ic->flush_bio_list, bio);
  1028. spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
  1029. queue_work(ic->commit_wq, &ic->commit_work);
  1030. }
  1031. static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
  1032. {
  1033. int r = dm_integrity_failed(ic);
  1034. if (unlikely(r) && !bio->bi_status)
  1035. bio->bi_status = errno_to_blk_status(r);
  1036. bio_endio(bio);
  1037. }
  1038. static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
  1039. {
  1040. struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1041. if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
  1042. submit_flush_bio(ic, dio);
  1043. else
  1044. do_endio(ic, bio);
  1045. }
  1046. static void dec_in_flight(struct dm_integrity_io *dio)
  1047. {
  1048. if (atomic_dec_and_test(&dio->in_flight)) {
  1049. struct dm_integrity_c *ic = dio->ic;
  1050. struct bio *bio;
  1051. remove_range(ic, &dio->range);
  1052. if (unlikely(dio->write))
  1053. schedule_autocommit(ic);
  1054. bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1055. if (unlikely(dio->bi_status) && !bio->bi_status)
  1056. bio->bi_status = dio->bi_status;
  1057. if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
  1058. dio->range.logical_sector += dio->range.n_sectors;
  1059. bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
  1060. INIT_WORK(&dio->work, integrity_bio_wait);
  1061. queue_work(ic->offload_wq, &dio->work);
  1062. return;
  1063. }
  1064. do_endio_flush(ic, dio);
  1065. }
  1066. }
  1067. static void integrity_end_io(struct bio *bio)
  1068. {
  1069. struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
  1070. dm_bio_restore(&dio->bio_details, bio);
  1071. if (bio->bi_integrity)
  1072. bio->bi_opf |= REQ_INTEGRITY;
  1073. if (dio->completion)
  1074. complete(dio->completion);
  1075. dec_in_flight(dio);
  1076. }
  1077. static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
  1078. const char *data, char *result)
  1079. {
  1080. __u64 sector_le = cpu_to_le64(sector);
  1081. SHASH_DESC_ON_STACK(req, ic->internal_hash);
  1082. int r;
  1083. unsigned digest_size;
  1084. req->tfm = ic->internal_hash;
  1085. req->flags = 0;
  1086. r = crypto_shash_init(req);
  1087. if (unlikely(r < 0)) {
  1088. dm_integrity_io_error(ic, "crypto_shash_init", r);
  1089. goto failed;
  1090. }
  1091. r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
  1092. if (unlikely(r < 0)) {
  1093. dm_integrity_io_error(ic, "crypto_shash_update", r);
  1094. goto failed;
  1095. }
  1096. r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
  1097. if (unlikely(r < 0)) {
  1098. dm_integrity_io_error(ic, "crypto_shash_update", r);
  1099. goto failed;
  1100. }
  1101. r = crypto_shash_final(req, result);
  1102. if (unlikely(r < 0)) {
  1103. dm_integrity_io_error(ic, "crypto_shash_final", r);
  1104. goto failed;
  1105. }
  1106. digest_size = crypto_shash_digestsize(ic->internal_hash);
  1107. if (unlikely(digest_size < ic->tag_size))
  1108. memset(result + digest_size, 0, ic->tag_size - digest_size);
  1109. return;
  1110. failed:
  1111. /* this shouldn't happen anyway, the hash functions have no reason to fail */
  1112. get_random_bytes(result, ic->tag_size);
  1113. }
  1114. static void integrity_metadata(struct work_struct *w)
  1115. {
  1116. struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
  1117. struct dm_integrity_c *ic = dio->ic;
  1118. int r;
  1119. if (ic->internal_hash) {
  1120. struct bvec_iter iter;
  1121. struct bio_vec bv;
  1122. unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
  1123. struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1124. char *checksums;
  1125. unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
  1126. char checksums_onstack[ic->tag_size + extra_space];
  1127. unsigned sectors_to_process = dio->range.n_sectors;
  1128. sector_t sector = dio->range.logical_sector;
  1129. if (unlikely(ic->mode == 'R'))
  1130. goto skip_io;
  1131. checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
  1132. GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
  1133. if (!checksums)
  1134. checksums = checksums_onstack;
  1135. __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
  1136. unsigned pos;
  1137. char *mem, *checksums_ptr;
  1138. again:
  1139. mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
  1140. pos = 0;
  1141. checksums_ptr = checksums;
  1142. do {
  1143. integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
  1144. checksums_ptr += ic->tag_size;
  1145. sectors_to_process -= ic->sectors_per_block;
  1146. pos += ic->sectors_per_block << SECTOR_SHIFT;
  1147. sector += ic->sectors_per_block;
  1148. } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
  1149. kunmap_atomic(mem);
  1150. r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
  1151. checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
  1152. if (unlikely(r)) {
  1153. if (r > 0) {
  1154. DMERR_LIMIT("Checksum failed at sector 0x%llx",
  1155. (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
  1156. r = -EILSEQ;
  1157. atomic64_inc(&ic->number_of_mismatches);
  1158. }
  1159. if (likely(checksums != checksums_onstack))
  1160. kfree(checksums);
  1161. goto error;
  1162. }
  1163. if (!sectors_to_process)
  1164. break;
  1165. if (unlikely(pos < bv.bv_len)) {
  1166. bv.bv_offset += pos;
  1167. bv.bv_len -= pos;
  1168. goto again;
  1169. }
  1170. }
  1171. if (likely(checksums != checksums_onstack))
  1172. kfree(checksums);
  1173. } else {
  1174. struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
  1175. if (bip) {
  1176. struct bio_vec biv;
  1177. struct bvec_iter iter;
  1178. unsigned data_to_process = dio->range.n_sectors;
  1179. sector_to_block(ic, data_to_process);
  1180. data_to_process *= ic->tag_size;
  1181. bip_for_each_vec(biv, bip, iter) {
  1182. unsigned char *tag;
  1183. unsigned this_len;
  1184. BUG_ON(PageHighMem(biv.bv_page));
  1185. tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
  1186. this_len = min(biv.bv_len, data_to_process);
  1187. r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
  1188. this_len, !dio->write ? TAG_READ : TAG_WRITE);
  1189. if (unlikely(r))
  1190. goto error;
  1191. data_to_process -= this_len;
  1192. if (!data_to_process)
  1193. break;
  1194. }
  1195. }
  1196. }
  1197. skip_io:
  1198. dec_in_flight(dio);
  1199. return;
  1200. error:
  1201. dio->bi_status = errno_to_blk_status(r);
  1202. dec_in_flight(dio);
  1203. }
  1204. static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
  1205. {
  1206. struct dm_integrity_c *ic = ti->private;
  1207. struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
  1208. struct bio_integrity_payload *bip;
  1209. sector_t area, offset;
  1210. dio->ic = ic;
  1211. dio->bi_status = 0;
  1212. if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
  1213. submit_flush_bio(ic, dio);
  1214. return DM_MAPIO_SUBMITTED;
  1215. }
  1216. dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
  1217. dio->write = bio_op(bio) == REQ_OP_WRITE;
  1218. dio->fua = dio->write && bio->bi_opf & REQ_FUA;
  1219. if (unlikely(dio->fua)) {
  1220. /*
  1221. * Don't pass down the FUA flag because we have to flush
  1222. * disk cache anyway.
  1223. */
  1224. bio->bi_opf &= ~REQ_FUA;
  1225. }
  1226. if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
  1227. DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
  1228. (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
  1229. (unsigned long long)ic->provided_data_sectors);
  1230. return DM_MAPIO_KILL;
  1231. }
  1232. if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
  1233. DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
  1234. ic->sectors_per_block,
  1235. (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
  1236. return DM_MAPIO_KILL;
  1237. }
  1238. if (ic->sectors_per_block > 1) {
  1239. struct bvec_iter iter;
  1240. struct bio_vec bv;
  1241. bio_for_each_segment(bv, bio, iter) {
  1242. if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
  1243. DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
  1244. bv.bv_offset, bv.bv_len, ic->sectors_per_block);
  1245. return DM_MAPIO_KILL;
  1246. }
  1247. }
  1248. }
  1249. bip = bio_integrity(bio);
  1250. if (!ic->internal_hash) {
  1251. if (bip) {
  1252. unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
  1253. if (ic->log2_tag_size >= 0)
  1254. wanted_tag_size <<= ic->log2_tag_size;
  1255. else
  1256. wanted_tag_size *= ic->tag_size;
  1257. if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
  1258. DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
  1259. return DM_MAPIO_KILL;
  1260. }
  1261. }
  1262. } else {
  1263. if (unlikely(bip != NULL)) {
  1264. DMERR("Unexpected integrity data when using internal hash");
  1265. return DM_MAPIO_KILL;
  1266. }
  1267. }
  1268. if (unlikely(ic->mode == 'R') && unlikely(dio->write))
  1269. return DM_MAPIO_KILL;
  1270. get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
  1271. dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
  1272. bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
  1273. dm_integrity_map_continue(dio, true);
  1274. return DM_MAPIO_SUBMITTED;
  1275. }
  1276. static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
  1277. unsigned journal_section, unsigned journal_entry)
  1278. {
  1279. struct dm_integrity_c *ic = dio->ic;
  1280. sector_t logical_sector;
  1281. unsigned n_sectors;
  1282. logical_sector = dio->range.logical_sector;
  1283. n_sectors = dio->range.n_sectors;
  1284. do {
  1285. struct bio_vec bv = bio_iovec(bio);
  1286. char *mem;
  1287. if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
  1288. bv.bv_len = n_sectors << SECTOR_SHIFT;
  1289. n_sectors -= bv.bv_len >> SECTOR_SHIFT;
  1290. bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
  1291. retry_kmap:
  1292. mem = kmap_atomic(bv.bv_page);
  1293. if (likely(dio->write))
  1294. flush_dcache_page(bv.bv_page);
  1295. do {
  1296. struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
  1297. if (unlikely(!dio->write)) {
  1298. struct journal_sector *js;
  1299. char *mem_ptr;
  1300. unsigned s;
  1301. if (unlikely(journal_entry_is_inprogress(je))) {
  1302. flush_dcache_page(bv.bv_page);
  1303. kunmap_atomic(mem);
  1304. __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
  1305. goto retry_kmap;
  1306. }
  1307. smp_rmb();
  1308. BUG_ON(journal_entry_get_sector(je) != logical_sector);
  1309. js = access_journal_data(ic, journal_section, journal_entry);
  1310. mem_ptr = mem + bv.bv_offset;
  1311. s = 0;
  1312. do {
  1313. memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
  1314. *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
  1315. js++;
  1316. mem_ptr += 1 << SECTOR_SHIFT;
  1317. } while (++s < ic->sectors_per_block);
  1318. #ifdef INTERNAL_VERIFY
  1319. if (ic->internal_hash) {
  1320. char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
  1321. integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
  1322. if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
  1323. DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
  1324. (unsigned long long)logical_sector);
  1325. }
  1326. }
  1327. #endif
  1328. }
  1329. if (!ic->internal_hash) {
  1330. struct bio_integrity_payload *bip = bio_integrity(bio);
  1331. unsigned tag_todo = ic->tag_size;
  1332. char *tag_ptr = journal_entry_tag(ic, je);
  1333. if (bip) do {
  1334. struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
  1335. unsigned tag_now = min(biv.bv_len, tag_todo);
  1336. char *tag_addr;
  1337. BUG_ON(PageHighMem(biv.bv_page));
  1338. tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
  1339. if (likely(dio->write))
  1340. memcpy(tag_ptr, tag_addr, tag_now);
  1341. else
  1342. memcpy(tag_addr, tag_ptr, tag_now);
  1343. bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
  1344. tag_ptr += tag_now;
  1345. tag_todo -= tag_now;
  1346. } while (unlikely(tag_todo)); else {
  1347. if (likely(dio->write))
  1348. memset(tag_ptr, 0, tag_todo);
  1349. }
  1350. }
  1351. if (likely(dio->write)) {
  1352. struct journal_sector *js;
  1353. unsigned s;
  1354. js = access_journal_data(ic, journal_section, journal_entry);
  1355. memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
  1356. s = 0;
  1357. do {
  1358. je->last_bytes[s] = js[s].commit_id;
  1359. } while (++s < ic->sectors_per_block);
  1360. if (ic->internal_hash) {
  1361. unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
  1362. if (unlikely(digest_size > ic->tag_size)) {
  1363. char checksums_onstack[digest_size];
  1364. integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
  1365. memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
  1366. } else
  1367. integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
  1368. }
  1369. journal_entry_set_sector(je, logical_sector);
  1370. }
  1371. logical_sector += ic->sectors_per_block;
  1372. journal_entry++;
  1373. if (unlikely(journal_entry == ic->journal_section_entries)) {
  1374. journal_entry = 0;
  1375. journal_section++;
  1376. wraparound_section(ic, &journal_section);
  1377. }
  1378. bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
  1379. } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
  1380. if (unlikely(!dio->write))
  1381. flush_dcache_page(bv.bv_page);
  1382. kunmap_atomic(mem);
  1383. } while (n_sectors);
  1384. if (likely(dio->write)) {
  1385. smp_mb();
  1386. if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
  1387. wake_up(&ic->copy_to_journal_wait);
  1388. if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
  1389. queue_work(ic->commit_wq, &ic->commit_work);
  1390. } else {
  1391. schedule_autocommit(ic);
  1392. }
  1393. } else {
  1394. remove_range(ic, &dio->range);
  1395. }
  1396. if (unlikely(bio->bi_iter.bi_size)) {
  1397. sector_t area, offset;
  1398. dio->range.logical_sector = logical_sector;
  1399. get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
  1400. dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
  1401. return true;
  1402. }
  1403. return false;
  1404. }
  1405. static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
  1406. {
  1407. struct dm_integrity_c *ic = dio->ic;
  1408. struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1409. unsigned journal_section, journal_entry;
  1410. unsigned journal_read_pos;
  1411. struct completion read_comp;
  1412. bool need_sync_io = ic->internal_hash && !dio->write;
  1413. if (need_sync_io && from_map) {
  1414. INIT_WORK(&dio->work, integrity_bio_wait);
  1415. queue_work(ic->offload_wq, &dio->work);
  1416. return;
  1417. }
  1418. lock_retry:
  1419. spin_lock_irq(&ic->endio_wait.lock);
  1420. retry:
  1421. if (unlikely(dm_integrity_failed(ic))) {
  1422. spin_unlock_irq(&ic->endio_wait.lock);
  1423. do_endio(ic, bio);
  1424. return;
  1425. }
  1426. dio->range.n_sectors = bio_sectors(bio);
  1427. journal_read_pos = NOT_FOUND;
  1428. if (likely(ic->mode == 'J')) {
  1429. if (dio->write) {
  1430. unsigned next_entry, i, pos;
  1431. unsigned ws, we, range_sectors;
  1432. dio->range.n_sectors = min(dio->range.n_sectors,
  1433. ic->free_sectors << ic->sb->log2_sectors_per_block);
  1434. if (unlikely(!dio->range.n_sectors)) {
  1435. if (from_map)
  1436. goto offload_to_thread;
  1437. sleep_on_endio_wait(ic);
  1438. goto retry;
  1439. }
  1440. range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
  1441. ic->free_sectors -= range_sectors;
  1442. journal_section = ic->free_section;
  1443. journal_entry = ic->free_section_entry;
  1444. next_entry = ic->free_section_entry + range_sectors;
  1445. ic->free_section_entry = next_entry % ic->journal_section_entries;
  1446. ic->free_section += next_entry / ic->journal_section_entries;
  1447. ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
  1448. wraparound_section(ic, &ic->free_section);
  1449. pos = journal_section * ic->journal_section_entries + journal_entry;
  1450. ws = journal_section;
  1451. we = journal_entry;
  1452. i = 0;
  1453. do {
  1454. struct journal_entry *je;
  1455. add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
  1456. pos++;
  1457. if (unlikely(pos >= ic->journal_entries))
  1458. pos = 0;
  1459. je = access_journal_entry(ic, ws, we);
  1460. BUG_ON(!journal_entry_is_unused(je));
  1461. journal_entry_set_inprogress(je);
  1462. we++;
  1463. if (unlikely(we == ic->journal_section_entries)) {
  1464. we = 0;
  1465. ws++;
  1466. wraparound_section(ic, &ws);
  1467. }
  1468. } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
  1469. spin_unlock_irq(&ic->endio_wait.lock);
  1470. goto journal_read_write;
  1471. } else {
  1472. sector_t next_sector;
  1473. journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
  1474. if (likely(journal_read_pos == NOT_FOUND)) {
  1475. if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
  1476. dio->range.n_sectors = next_sector - dio->range.logical_sector;
  1477. } else {
  1478. unsigned i;
  1479. unsigned jp = journal_read_pos + 1;
  1480. for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
  1481. if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
  1482. break;
  1483. }
  1484. dio->range.n_sectors = i;
  1485. }
  1486. }
  1487. }
  1488. if (unlikely(!add_new_range(ic, &dio->range, true))) {
  1489. /*
  1490. * We must not sleep in the request routine because it could
  1491. * stall bios on current->bio_list.
  1492. * So, we offload the bio to a workqueue if we have to sleep.
  1493. */
  1494. if (from_map) {
  1495. offload_to_thread:
  1496. spin_unlock_irq(&ic->endio_wait.lock);
  1497. INIT_WORK(&dio->work, integrity_bio_wait);
  1498. queue_work(ic->wait_wq, &dio->work);
  1499. return;
  1500. }
  1501. if (journal_read_pos != NOT_FOUND)
  1502. dio->range.n_sectors = ic->sectors_per_block;
  1503. wait_and_add_new_range(ic, &dio->range);
  1504. /*
  1505. * wait_and_add_new_range drops the spinlock, so the journal
  1506. * may have been changed arbitrarily. We need to recheck.
  1507. * To simplify the code, we restrict I/O size to just one block.
  1508. */
  1509. if (journal_read_pos != NOT_FOUND) {
  1510. sector_t next_sector;
  1511. unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
  1512. if (unlikely(new_pos != journal_read_pos)) {
  1513. remove_range_unlocked(ic, &dio->range);
  1514. goto retry;
  1515. }
  1516. }
  1517. }
  1518. spin_unlock_irq(&ic->endio_wait.lock);
  1519. if (unlikely(journal_read_pos != NOT_FOUND)) {
  1520. journal_section = journal_read_pos / ic->journal_section_entries;
  1521. journal_entry = journal_read_pos % ic->journal_section_entries;
  1522. goto journal_read_write;
  1523. }
  1524. dio->in_flight = (atomic_t)ATOMIC_INIT(2);
  1525. if (need_sync_io) {
  1526. init_completion(&read_comp);
  1527. dio->completion = &read_comp;
  1528. } else
  1529. dio->completion = NULL;
  1530. dm_bio_record(&dio->bio_details, bio);
  1531. bio_set_dev(bio, ic->dev->bdev);
  1532. bio->bi_integrity = NULL;
  1533. bio->bi_opf &= ~REQ_INTEGRITY;
  1534. bio->bi_end_io = integrity_end_io;
  1535. bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
  1536. generic_make_request(bio);
  1537. if (need_sync_io) {
  1538. wait_for_completion_io(&read_comp);
  1539. if (unlikely(ic->recalc_wq != NULL) &&
  1540. ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
  1541. dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
  1542. goto skip_check;
  1543. if (likely(!bio->bi_status))
  1544. integrity_metadata(&dio->work);
  1545. else
  1546. skip_check:
  1547. dec_in_flight(dio);
  1548. } else {
  1549. INIT_WORK(&dio->work, integrity_metadata);
  1550. queue_work(ic->metadata_wq, &dio->work);
  1551. }
  1552. return;
  1553. journal_read_write:
  1554. if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
  1555. goto lock_retry;
  1556. do_endio_flush(ic, dio);
  1557. }
  1558. static void integrity_bio_wait(struct work_struct *w)
  1559. {
  1560. struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
  1561. dm_integrity_map_continue(dio, false);
  1562. }
  1563. static void pad_uncommitted(struct dm_integrity_c *ic)
  1564. {
  1565. if (ic->free_section_entry) {
  1566. ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
  1567. ic->free_section_entry = 0;
  1568. ic->free_section++;
  1569. wraparound_section(ic, &ic->free_section);
  1570. ic->n_uncommitted_sections++;
  1571. }
  1572. WARN_ON(ic->journal_sections * ic->journal_section_entries !=
  1573. (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
  1574. }
  1575. static void integrity_commit(struct work_struct *w)
  1576. {
  1577. struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
  1578. unsigned commit_start, commit_sections;
  1579. unsigned i, j, n;
  1580. struct bio *flushes;
  1581. del_timer(&ic->autocommit_timer);
  1582. spin_lock_irq(&ic->endio_wait.lock);
  1583. flushes = bio_list_get(&ic->flush_bio_list);
  1584. if (unlikely(ic->mode != 'J')) {
  1585. spin_unlock_irq(&ic->endio_wait.lock);
  1586. dm_integrity_flush_buffers(ic, true);
  1587. goto release_flush_bios;
  1588. }
  1589. pad_uncommitted(ic);
  1590. commit_start = ic->uncommitted_section;
  1591. commit_sections = ic->n_uncommitted_sections;
  1592. spin_unlock_irq(&ic->endio_wait.lock);
  1593. if (!commit_sections)
  1594. goto release_flush_bios;
  1595. i = commit_start;
  1596. for (n = 0; n < commit_sections; n++) {
  1597. for (j = 0; j < ic->journal_section_entries; j++) {
  1598. struct journal_entry *je;
  1599. je = access_journal_entry(ic, i, j);
  1600. io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
  1601. }
  1602. for (j = 0; j < ic->journal_section_sectors; j++) {
  1603. struct journal_sector *js;
  1604. js = access_journal(ic, i, j);
  1605. js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
  1606. }
  1607. i++;
  1608. if (unlikely(i >= ic->journal_sections))
  1609. ic->commit_seq = next_commit_seq(ic->commit_seq);
  1610. wraparound_section(ic, &i);
  1611. }
  1612. smp_rmb();
  1613. write_journal(ic, commit_start, commit_sections);
  1614. spin_lock_irq(&ic->endio_wait.lock);
  1615. ic->uncommitted_section += commit_sections;
  1616. wraparound_section(ic, &ic->uncommitted_section);
  1617. ic->n_uncommitted_sections -= commit_sections;
  1618. ic->n_committed_sections += commit_sections;
  1619. spin_unlock_irq(&ic->endio_wait.lock);
  1620. if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
  1621. queue_work(ic->writer_wq, &ic->writer_work);
  1622. release_flush_bios:
  1623. while (flushes) {
  1624. struct bio *next = flushes->bi_next;
  1625. flushes->bi_next = NULL;
  1626. do_endio(ic, flushes);
  1627. flushes = next;
  1628. }
  1629. }
  1630. static void complete_copy_from_journal(unsigned long error, void *context)
  1631. {
  1632. struct journal_io *io = context;
  1633. struct journal_completion *comp = io->comp;
  1634. struct dm_integrity_c *ic = comp->ic;
  1635. remove_range(ic, &io->range);
  1636. mempool_free(io, &ic->journal_io_mempool);
  1637. if (unlikely(error != 0))
  1638. dm_integrity_io_error(ic, "copying from journal", -EIO);
  1639. complete_journal_op(comp);
  1640. }
  1641. static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
  1642. struct journal_entry *je)
  1643. {
  1644. unsigned s = 0;
  1645. do {
  1646. js->commit_id = je->last_bytes[s];
  1647. js++;
  1648. } while (++s < ic->sectors_per_block);
  1649. }
  1650. static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
  1651. unsigned write_sections, bool from_replay)
  1652. {
  1653. unsigned i, j, n;
  1654. struct journal_completion comp;
  1655. struct blk_plug plug;
  1656. blk_start_plug(&plug);
  1657. comp.ic = ic;
  1658. comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  1659. init_completion(&comp.comp);
  1660. i = write_start;
  1661. for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
  1662. #ifndef INTERNAL_VERIFY
  1663. if (unlikely(from_replay))
  1664. #endif
  1665. rw_section_mac(ic, i, false);
  1666. for (j = 0; j < ic->journal_section_entries; j++) {
  1667. struct journal_entry *je = access_journal_entry(ic, i, j);
  1668. sector_t sec, area, offset;
  1669. unsigned k, l, next_loop;
  1670. sector_t metadata_block;
  1671. unsigned metadata_offset;
  1672. struct journal_io *io;
  1673. if (journal_entry_is_unused(je))
  1674. continue;
  1675. BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
  1676. sec = journal_entry_get_sector(je);
  1677. if (unlikely(from_replay)) {
  1678. if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
  1679. dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
  1680. sec &= ~(sector_t)(ic->sectors_per_block - 1);
  1681. }
  1682. }
  1683. get_area_and_offset(ic, sec, &area, &offset);
  1684. restore_last_bytes(ic, access_journal_data(ic, i, j), je);
  1685. for (k = j + 1; k < ic->journal_section_entries; k++) {
  1686. struct journal_entry *je2 = access_journal_entry(ic, i, k);
  1687. sector_t sec2, area2, offset2;
  1688. if (journal_entry_is_unused(je2))
  1689. break;
  1690. BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
  1691. sec2 = journal_entry_get_sector(je2);
  1692. get_area_and_offset(ic, sec2, &area2, &offset2);
  1693. if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
  1694. break;
  1695. restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
  1696. }
  1697. next_loop = k - 1;
  1698. io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
  1699. io->comp = &comp;
  1700. io->range.logical_sector = sec;
  1701. io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
  1702. spin_lock_irq(&ic->endio_wait.lock);
  1703. if (unlikely(!add_new_range(ic, &io->range, true)))
  1704. wait_and_add_new_range(ic, &io->range);
  1705. if (likely(!from_replay)) {
  1706. struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
  1707. /* don't write if there is newer committed sector */
  1708. while (j < k && find_newer_committed_node(ic, &section_node[j])) {
  1709. struct journal_entry *je2 = access_journal_entry(ic, i, j);
  1710. journal_entry_set_unused(je2);
  1711. remove_journal_node(ic, &section_node[j]);
  1712. j++;
  1713. sec += ic->sectors_per_block;
  1714. offset += ic->sectors_per_block;
  1715. }
  1716. while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
  1717. struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
  1718. journal_entry_set_unused(je2);
  1719. remove_journal_node(ic, &section_node[k - 1]);
  1720. k--;
  1721. }
  1722. if (j == k) {
  1723. remove_range_unlocked(ic, &io->range);
  1724. spin_unlock_irq(&ic->endio_wait.lock);
  1725. mempool_free(io, &ic->journal_io_mempool);
  1726. goto skip_io;
  1727. }
  1728. for (l = j; l < k; l++) {
  1729. remove_journal_node(ic, &section_node[l]);
  1730. }
  1731. }
  1732. spin_unlock_irq(&ic->endio_wait.lock);
  1733. metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
  1734. for (l = j; l < k; l++) {
  1735. int r;
  1736. struct journal_entry *je2 = access_journal_entry(ic, i, l);
  1737. if (
  1738. #ifndef INTERNAL_VERIFY
  1739. unlikely(from_replay) &&
  1740. #endif
  1741. ic->internal_hash) {
  1742. char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
  1743. integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
  1744. (char *)access_journal_data(ic, i, l), test_tag);
  1745. if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
  1746. dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
  1747. }
  1748. journal_entry_set_unused(je2);
  1749. r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
  1750. ic->tag_size, TAG_WRITE);
  1751. if (unlikely(r)) {
  1752. dm_integrity_io_error(ic, "reading tags", r);
  1753. }
  1754. }
  1755. atomic_inc(&comp.in_flight);
  1756. copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
  1757. (k - j) << ic->sb->log2_sectors_per_block,
  1758. get_data_sector(ic, area, offset),
  1759. complete_copy_from_journal, io);
  1760. skip_io:
  1761. j = next_loop;
  1762. }
  1763. }
  1764. dm_bufio_write_dirty_buffers_async(ic->bufio);
  1765. blk_finish_plug(&plug);
  1766. complete_journal_op(&comp);
  1767. wait_for_completion_io(&comp.comp);
  1768. dm_integrity_flush_buffers(ic, true);
  1769. }
  1770. static void integrity_writer(struct work_struct *w)
  1771. {
  1772. struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
  1773. unsigned write_start, write_sections;
  1774. unsigned prev_free_sectors;
  1775. /* the following test is not needed, but it tests the replay code */
  1776. if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
  1777. return;
  1778. spin_lock_irq(&ic->endio_wait.lock);
  1779. write_start = ic->committed_section;
  1780. write_sections = ic->n_committed_sections;
  1781. spin_unlock_irq(&ic->endio_wait.lock);
  1782. if (!write_sections)
  1783. return;
  1784. do_journal_write(ic, write_start, write_sections, false);
  1785. spin_lock_irq(&ic->endio_wait.lock);
  1786. ic->committed_section += write_sections;
  1787. wraparound_section(ic, &ic->committed_section);
  1788. ic->n_committed_sections -= write_sections;
  1789. prev_free_sectors = ic->free_sectors;
  1790. ic->free_sectors += write_sections * ic->journal_section_entries;
  1791. if (unlikely(!prev_free_sectors))
  1792. wake_up_locked(&ic->endio_wait);
  1793. spin_unlock_irq(&ic->endio_wait.lock);
  1794. }
  1795. static void recalc_write_super(struct dm_integrity_c *ic)
  1796. {
  1797. int r;
  1798. dm_integrity_flush_buffers(ic, false);
  1799. if (dm_integrity_failed(ic))
  1800. return;
  1801. sb_set_version(ic);
  1802. r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
  1803. if (unlikely(r))
  1804. dm_integrity_io_error(ic, "writing superblock", r);
  1805. }
  1806. static void integrity_recalc(struct work_struct *w)
  1807. {
  1808. struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
  1809. struct dm_integrity_range range;
  1810. struct dm_io_request io_req;
  1811. struct dm_io_region io_loc;
  1812. sector_t area, offset;
  1813. sector_t metadata_block;
  1814. unsigned metadata_offset;
  1815. __u8 *t;
  1816. unsigned i;
  1817. int r;
  1818. unsigned super_counter = 0;
  1819. spin_lock_irq(&ic->endio_wait.lock);
  1820. next_chunk:
  1821. if (unlikely(dm_post_suspending(ic->ti)))
  1822. goto unlock_ret;
  1823. range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
  1824. if (unlikely(range.logical_sector >= ic->provided_data_sectors))
  1825. goto unlock_ret;
  1826. get_area_and_offset(ic, range.logical_sector, &area, &offset);
  1827. range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
  1828. if (!ic->meta_dev)
  1829. range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
  1830. if (unlikely(!add_new_range(ic, &range, true)))
  1831. wait_and_add_new_range(ic, &range);
  1832. spin_unlock_irq(&ic->endio_wait.lock);
  1833. if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
  1834. recalc_write_super(ic);
  1835. super_counter = 0;
  1836. }
  1837. if (unlikely(dm_integrity_failed(ic)))
  1838. goto err;
  1839. io_req.bi_op = REQ_OP_READ;
  1840. io_req.bi_op_flags = 0;
  1841. io_req.mem.type = DM_IO_VMA;
  1842. io_req.mem.ptr.addr = ic->recalc_buffer;
  1843. io_req.notify.fn = NULL;
  1844. io_req.client = ic->io;
  1845. io_loc.bdev = ic->dev->bdev;
  1846. io_loc.sector = get_data_sector(ic, area, offset);
  1847. io_loc.count = range.n_sectors;
  1848. r = dm_io(&io_req, 1, &io_loc, NULL);
  1849. if (unlikely(r)) {
  1850. dm_integrity_io_error(ic, "reading data", r);
  1851. goto err;
  1852. }
  1853. t = ic->recalc_tags;
  1854. for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
  1855. integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
  1856. t += ic->tag_size;
  1857. }
  1858. metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
  1859. r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
  1860. if (unlikely(r)) {
  1861. dm_integrity_io_error(ic, "writing tags", r);
  1862. goto err;
  1863. }
  1864. spin_lock_irq(&ic->endio_wait.lock);
  1865. remove_range_unlocked(ic, &range);
  1866. ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
  1867. goto next_chunk;
  1868. err:
  1869. remove_range(ic, &range);
  1870. return;
  1871. unlock_ret:
  1872. spin_unlock_irq(&ic->endio_wait.lock);
  1873. recalc_write_super(ic);
  1874. }
  1875. static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
  1876. unsigned n_sections, unsigned char commit_seq)
  1877. {
  1878. unsigned i, j, n;
  1879. if (!n_sections)
  1880. return;
  1881. for (n = 0; n < n_sections; n++) {
  1882. i = start_section + n;
  1883. wraparound_section(ic, &i);
  1884. for (j = 0; j < ic->journal_section_sectors; j++) {
  1885. struct journal_sector *js = access_journal(ic, i, j);
  1886. memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
  1887. js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
  1888. }
  1889. for (j = 0; j < ic->journal_section_entries; j++) {
  1890. struct journal_entry *je = access_journal_entry(ic, i, j);
  1891. journal_entry_set_unused(je);
  1892. }
  1893. }
  1894. write_journal(ic, start_section, n_sections);
  1895. }
  1896. static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
  1897. {
  1898. unsigned char k;
  1899. for (k = 0; k < N_COMMIT_IDS; k++) {
  1900. if (dm_integrity_commit_id(ic, i, j, k) == id)
  1901. return k;
  1902. }
  1903. dm_integrity_io_error(ic, "journal commit id", -EIO);
  1904. return -EIO;
  1905. }
  1906. static void replay_journal(struct dm_integrity_c *ic)
  1907. {
  1908. unsigned i, j;
  1909. bool used_commit_ids[N_COMMIT_IDS];
  1910. unsigned max_commit_id_sections[N_COMMIT_IDS];
  1911. unsigned write_start, write_sections;
  1912. unsigned continue_section;
  1913. bool journal_empty;
  1914. unsigned char unused, last_used, want_commit_seq;
  1915. if (ic->mode == 'R')
  1916. return;
  1917. if (ic->journal_uptodate)
  1918. return;
  1919. last_used = 0;
  1920. write_start = 0;
  1921. if (!ic->just_formatted) {
  1922. DEBUG_print("reading journal\n");
  1923. rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
  1924. if (ic->journal_io)
  1925. DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
  1926. if (ic->journal_io) {
  1927. struct journal_completion crypt_comp;
  1928. crypt_comp.ic = ic;
  1929. init_completion(&crypt_comp.comp);
  1930. crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
  1931. encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
  1932. wait_for_completion(&crypt_comp.comp);
  1933. }
  1934. DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
  1935. }
  1936. if (dm_integrity_failed(ic))
  1937. goto clear_journal;
  1938. journal_empty = true;
  1939. memset(used_commit_ids, 0, sizeof used_commit_ids);
  1940. memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
  1941. for (i = 0; i < ic->journal_sections; i++) {
  1942. for (j = 0; j < ic->journal_section_sectors; j++) {
  1943. int k;
  1944. struct journal_sector *js = access_journal(ic, i, j);
  1945. k = find_commit_seq(ic, i, j, js->commit_id);
  1946. if (k < 0)
  1947. goto clear_journal;
  1948. used_commit_ids[k] = true;
  1949. max_commit_id_sections[k] = i;
  1950. }
  1951. if (journal_empty) {
  1952. for (j = 0; j < ic->journal_section_entries; j++) {
  1953. struct journal_entry *je = access_journal_entry(ic, i, j);
  1954. if (!journal_entry_is_unused(je)) {
  1955. journal_empty = false;
  1956. break;
  1957. }
  1958. }
  1959. }
  1960. }
  1961. if (!used_commit_ids[N_COMMIT_IDS - 1]) {
  1962. unused = N_COMMIT_IDS - 1;
  1963. while (unused && !used_commit_ids[unused - 1])
  1964. unused--;
  1965. } else {
  1966. for (unused = 0; unused < N_COMMIT_IDS; unused++)
  1967. if (!used_commit_ids[unused])
  1968. break;
  1969. if (unused == N_COMMIT_IDS) {
  1970. dm_integrity_io_error(ic, "journal commit ids", -EIO);
  1971. goto clear_journal;
  1972. }
  1973. }
  1974. DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
  1975. unused, used_commit_ids[0], used_commit_ids[1],
  1976. used_commit_ids[2], used_commit_ids[3]);
  1977. last_used = prev_commit_seq(unused);
  1978. want_commit_seq = prev_commit_seq(last_used);
  1979. if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
  1980. journal_empty = true;
  1981. write_start = max_commit_id_sections[last_used] + 1;
  1982. if (unlikely(write_start >= ic->journal_sections))
  1983. want_commit_seq = next_commit_seq(want_commit_seq);
  1984. wraparound_section(ic, &write_start);
  1985. i = write_start;
  1986. for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
  1987. for (j = 0; j < ic->journal_section_sectors; j++) {
  1988. struct journal_sector *js = access_journal(ic, i, j);
  1989. if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
  1990. /*
  1991. * This could be caused by crash during writing.
  1992. * We won't replay the inconsistent part of the
  1993. * journal.
  1994. */
  1995. DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
  1996. i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
  1997. goto brk;
  1998. }
  1999. }
  2000. i++;
  2001. if (unlikely(i >= ic->journal_sections))
  2002. want_commit_seq = next_commit_seq(want_commit_seq);
  2003. wraparound_section(ic, &i);
  2004. }
  2005. brk:
  2006. if (!journal_empty) {
  2007. DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
  2008. write_sections, write_start, want_commit_seq);
  2009. do_journal_write(ic, write_start, write_sections, true);
  2010. }
  2011. if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
  2012. continue_section = write_start;
  2013. ic->commit_seq = want_commit_seq;
  2014. DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
  2015. } else {
  2016. unsigned s;
  2017. unsigned char erase_seq;
  2018. clear_journal:
  2019. DEBUG_print("clearing journal\n");
  2020. erase_seq = prev_commit_seq(prev_commit_seq(last_used));
  2021. s = write_start;
  2022. init_journal(ic, s, 1, erase_seq);
  2023. s++;
  2024. wraparound_section(ic, &s);
  2025. if (ic->journal_sections >= 2) {
  2026. init_journal(ic, s, ic->journal_sections - 2, erase_seq);
  2027. s += ic->journal_sections - 2;
  2028. wraparound_section(ic, &s);
  2029. init_journal(ic, s, 1, erase_seq);
  2030. }
  2031. continue_section = 0;
  2032. ic->commit_seq = next_commit_seq(erase_seq);
  2033. }
  2034. ic->committed_section = continue_section;
  2035. ic->n_committed_sections = 0;
  2036. ic->uncommitted_section = continue_section;
  2037. ic->n_uncommitted_sections = 0;
  2038. ic->free_section = continue_section;
  2039. ic->free_section_entry = 0;
  2040. ic->free_sectors = ic->journal_entries;
  2041. ic->journal_tree_root = RB_ROOT;
  2042. for (i = 0; i < ic->journal_entries; i++)
  2043. init_journal_node(&ic->journal_tree[i]);
  2044. }
  2045. static void dm_integrity_postsuspend(struct dm_target *ti)
  2046. {
  2047. struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
  2048. del_timer_sync(&ic->autocommit_timer);
  2049. if (ic->recalc_wq)
  2050. drain_workqueue(ic->recalc_wq);
  2051. queue_work(ic->commit_wq, &ic->commit_work);
  2052. drain_workqueue(ic->commit_wq);
  2053. if (ic->mode == 'J') {
  2054. if (ic->meta_dev)
  2055. queue_work(ic->writer_wq, &ic->writer_work);
  2056. drain_workqueue(ic->writer_wq);
  2057. dm_integrity_flush_buffers(ic, true);
  2058. }
  2059. BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
  2060. ic->journal_uptodate = true;
  2061. }
  2062. static void dm_integrity_resume(struct dm_target *ti)
  2063. {
  2064. struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
  2065. replay_journal(ic);
  2066. if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
  2067. __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
  2068. if (recalc_pos < ic->provided_data_sectors) {
  2069. queue_work(ic->recalc_wq, &ic->recalc_work);
  2070. } else if (recalc_pos > ic->provided_data_sectors) {
  2071. ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
  2072. recalc_write_super(ic);
  2073. }
  2074. }
  2075. }
  2076. static void dm_integrity_status(struct dm_target *ti, status_type_t type,
  2077. unsigned status_flags, char *result, unsigned maxlen)
  2078. {
  2079. struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
  2080. unsigned arg_count;
  2081. size_t sz = 0;
  2082. switch (type) {
  2083. case STATUSTYPE_INFO:
  2084. DMEMIT("%llu %llu",
  2085. (unsigned long long)atomic64_read(&ic->number_of_mismatches),
  2086. (unsigned long long)ic->provided_data_sectors);
  2087. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
  2088. DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
  2089. else
  2090. DMEMIT(" -");
  2091. break;
  2092. case STATUSTYPE_TABLE: {
  2093. __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
  2094. watermark_percentage += ic->journal_entries / 2;
  2095. do_div(watermark_percentage, ic->journal_entries);
  2096. arg_count = 5;
  2097. arg_count += !!ic->meta_dev;
  2098. arg_count += ic->sectors_per_block != 1;
  2099. arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
  2100. arg_count += !!ic->internal_hash_alg.alg_string;
  2101. arg_count += !!ic->journal_crypt_alg.alg_string;
  2102. arg_count += !!ic->journal_mac_alg.alg_string;
  2103. arg_count += ic->legacy_recalculate;
  2104. DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
  2105. ic->tag_size, ic->mode, arg_count);
  2106. if (ic->meta_dev)
  2107. DMEMIT(" meta_device:%s", ic->meta_dev->name);
  2108. if (ic->sectors_per_block != 1)
  2109. DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
  2110. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
  2111. DMEMIT(" recalculate");
  2112. DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
  2113. DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
  2114. DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
  2115. DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
  2116. DMEMIT(" commit_time:%u", ic->autocommit_msec);
  2117. if (ic->legacy_recalculate)
  2118. DMEMIT(" legacy_recalculate");
  2119. #define EMIT_ALG(a, n) \
  2120. do { \
  2121. if (ic->a.alg_string) { \
  2122. DMEMIT(" %s:%s", n, ic->a.alg_string); \
  2123. if (ic->a.key_string) \
  2124. DMEMIT(":%s", ic->a.key_string);\
  2125. } \
  2126. } while (0)
  2127. EMIT_ALG(internal_hash_alg, "internal_hash");
  2128. EMIT_ALG(journal_crypt_alg, "journal_crypt");
  2129. EMIT_ALG(journal_mac_alg, "journal_mac");
  2130. break;
  2131. }
  2132. }
  2133. }
  2134. static int dm_integrity_iterate_devices(struct dm_target *ti,
  2135. iterate_devices_callout_fn fn, void *data)
  2136. {
  2137. struct dm_integrity_c *ic = ti->private;
  2138. if (!ic->meta_dev)
  2139. return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
  2140. else
  2141. return fn(ti, ic->dev, 0, ti->len, data);
  2142. }
  2143. static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2144. {
  2145. struct dm_integrity_c *ic = ti->private;
  2146. if (ic->sectors_per_block > 1) {
  2147. limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
  2148. limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
  2149. blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
  2150. }
  2151. }
  2152. static void calculate_journal_section_size(struct dm_integrity_c *ic)
  2153. {
  2154. unsigned sector_space = JOURNAL_SECTOR_DATA;
  2155. ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
  2156. ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
  2157. JOURNAL_ENTRY_ROUNDUP);
  2158. if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
  2159. sector_space -= JOURNAL_MAC_PER_SECTOR;
  2160. ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
  2161. ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
  2162. ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
  2163. ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
  2164. }
  2165. static int calculate_device_limits(struct dm_integrity_c *ic)
  2166. {
  2167. __u64 initial_sectors;
  2168. calculate_journal_section_size(ic);
  2169. initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
  2170. if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
  2171. return -EINVAL;
  2172. ic->initial_sectors = initial_sectors;
  2173. if (!ic->meta_dev) {
  2174. sector_t last_sector, last_area, last_offset;
  2175. ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
  2176. (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
  2177. if (!(ic->metadata_run & (ic->metadata_run - 1)))
  2178. ic->log2_metadata_run = __ffs(ic->metadata_run);
  2179. else
  2180. ic->log2_metadata_run = -1;
  2181. get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
  2182. last_sector = get_data_sector(ic, last_area, last_offset);
  2183. if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
  2184. return -EINVAL;
  2185. } else {
  2186. __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
  2187. meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
  2188. >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
  2189. meta_size <<= ic->log2_buffer_sectors;
  2190. if (ic->initial_sectors + meta_size < ic->initial_sectors ||
  2191. ic->initial_sectors + meta_size > ic->meta_device_sectors)
  2192. return -EINVAL;
  2193. ic->metadata_run = 1;
  2194. ic->log2_metadata_run = 0;
  2195. }
  2196. return 0;
  2197. }
  2198. static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
  2199. {
  2200. unsigned journal_sections;
  2201. int test_bit;
  2202. memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
  2203. memcpy(ic->sb->magic, SB_MAGIC, 8);
  2204. ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
  2205. ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
  2206. if (ic->journal_mac_alg.alg_string)
  2207. ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
  2208. calculate_journal_section_size(ic);
  2209. journal_sections = journal_sectors / ic->journal_section_sectors;
  2210. if (!journal_sections)
  2211. journal_sections = 1;
  2212. if (!ic->meta_dev) {
  2213. ic->sb->journal_sections = cpu_to_le32(journal_sections);
  2214. if (!interleave_sectors)
  2215. interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
  2216. ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
  2217. ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
  2218. ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
  2219. ic->provided_data_sectors = 0;
  2220. for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
  2221. __u64 prev_data_sectors = ic->provided_data_sectors;
  2222. ic->provided_data_sectors |= (sector_t)1 << test_bit;
  2223. if (calculate_device_limits(ic))
  2224. ic->provided_data_sectors = prev_data_sectors;
  2225. }
  2226. if (!ic->provided_data_sectors)
  2227. return -EINVAL;
  2228. } else {
  2229. ic->sb->log2_interleave_sectors = 0;
  2230. ic->provided_data_sectors = ic->data_device_sectors;
  2231. ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
  2232. try_smaller_buffer:
  2233. ic->sb->journal_sections = cpu_to_le32(0);
  2234. for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
  2235. __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
  2236. __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
  2237. if (test_journal_sections > journal_sections)
  2238. continue;
  2239. ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
  2240. if (calculate_device_limits(ic))
  2241. ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
  2242. }
  2243. if (!le32_to_cpu(ic->sb->journal_sections)) {
  2244. if (ic->log2_buffer_sectors > 3) {
  2245. ic->log2_buffer_sectors--;
  2246. goto try_smaller_buffer;
  2247. }
  2248. return -EINVAL;
  2249. }
  2250. }
  2251. ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
  2252. sb_set_version(ic);
  2253. return 0;
  2254. }
  2255. static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
  2256. {
  2257. struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
  2258. struct blk_integrity bi;
  2259. memset(&bi, 0, sizeof(bi));
  2260. bi.profile = &dm_integrity_profile;
  2261. bi.tuple_size = ic->tag_size;
  2262. bi.tag_size = bi.tuple_size;
  2263. bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
  2264. blk_integrity_register(disk, &bi);
  2265. blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
  2266. }
  2267. static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
  2268. {
  2269. unsigned i;
  2270. if (!pl)
  2271. return;
  2272. for (i = 0; i < ic->journal_pages; i++)
  2273. if (pl[i].page)
  2274. __free_page(pl[i].page);
  2275. kvfree(pl);
  2276. }
  2277. static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
  2278. {
  2279. size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
  2280. struct page_list *pl;
  2281. unsigned i;
  2282. pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
  2283. if (!pl)
  2284. return NULL;
  2285. for (i = 0; i < ic->journal_pages; i++) {
  2286. pl[i].page = alloc_page(GFP_KERNEL);
  2287. if (!pl[i].page) {
  2288. dm_integrity_free_page_list(ic, pl);
  2289. return NULL;
  2290. }
  2291. if (i)
  2292. pl[i - 1].next = &pl[i];
  2293. }
  2294. return pl;
  2295. }
  2296. static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
  2297. {
  2298. unsigned i;
  2299. for (i = 0; i < ic->journal_sections; i++)
  2300. kvfree(sl[i]);
  2301. kvfree(sl);
  2302. }
  2303. static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
  2304. {
  2305. struct scatterlist **sl;
  2306. unsigned i;
  2307. sl = kvmalloc_array(ic->journal_sections,
  2308. sizeof(struct scatterlist *),
  2309. GFP_KERNEL | __GFP_ZERO);
  2310. if (!sl)
  2311. return NULL;
  2312. for (i = 0; i < ic->journal_sections; i++) {
  2313. struct scatterlist *s;
  2314. unsigned start_index, start_offset;
  2315. unsigned end_index, end_offset;
  2316. unsigned n_pages;
  2317. unsigned idx;
  2318. page_list_location(ic, i, 0, &start_index, &start_offset);
  2319. page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
  2320. n_pages = (end_index - start_index + 1);
  2321. s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
  2322. GFP_KERNEL);
  2323. if (!s) {
  2324. dm_integrity_free_journal_scatterlist(ic, sl);
  2325. return NULL;
  2326. }
  2327. sg_init_table(s, n_pages);
  2328. for (idx = start_index; idx <= end_index; idx++) {
  2329. char *va = lowmem_page_address(pl[idx].page);
  2330. unsigned start = 0, end = PAGE_SIZE;
  2331. if (idx == start_index)
  2332. start = start_offset;
  2333. if (idx == end_index)
  2334. end = end_offset + (1 << SECTOR_SHIFT);
  2335. sg_set_buf(&s[idx - start_index], va + start, end - start);
  2336. }
  2337. sl[i] = s;
  2338. }
  2339. return sl;
  2340. }
  2341. static void free_alg(struct alg_spec *a)
  2342. {
  2343. kzfree(a->alg_string);
  2344. kzfree(a->key);
  2345. memset(a, 0, sizeof *a);
  2346. }
  2347. static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
  2348. {
  2349. char *k;
  2350. free_alg(a);
  2351. a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
  2352. if (!a->alg_string)
  2353. goto nomem;
  2354. k = strchr(a->alg_string, ':');
  2355. if (k) {
  2356. *k = 0;
  2357. a->key_string = k + 1;
  2358. if (strlen(a->key_string) & 1)
  2359. goto inval;
  2360. a->key_size = strlen(a->key_string) / 2;
  2361. a->key = kmalloc(a->key_size, GFP_KERNEL);
  2362. if (!a->key)
  2363. goto nomem;
  2364. if (hex2bin(a->key, a->key_string, a->key_size))
  2365. goto inval;
  2366. }
  2367. return 0;
  2368. inval:
  2369. *error = error_inval;
  2370. return -EINVAL;
  2371. nomem:
  2372. *error = "Out of memory for an argument";
  2373. return -ENOMEM;
  2374. }
  2375. static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
  2376. char *error_alg, char *error_key)
  2377. {
  2378. int r;
  2379. if (a->alg_string) {
  2380. *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
  2381. if (IS_ERR(*hash)) {
  2382. *error = error_alg;
  2383. r = PTR_ERR(*hash);
  2384. *hash = NULL;
  2385. return r;
  2386. }
  2387. if (a->key) {
  2388. r = crypto_shash_setkey(*hash, a->key, a->key_size);
  2389. if (r) {
  2390. *error = error_key;
  2391. return r;
  2392. }
  2393. } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
  2394. *error = error_key;
  2395. return -ENOKEY;
  2396. }
  2397. }
  2398. return 0;
  2399. }
  2400. static int create_journal(struct dm_integrity_c *ic, char **error)
  2401. {
  2402. int r = 0;
  2403. unsigned i;
  2404. __u64 journal_pages, journal_desc_size, journal_tree_size;
  2405. unsigned char *crypt_data = NULL, *crypt_iv = NULL;
  2406. struct skcipher_request *req = NULL;
  2407. ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
  2408. ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
  2409. ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
  2410. ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
  2411. journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
  2412. PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
  2413. journal_desc_size = journal_pages * sizeof(struct page_list);
  2414. if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
  2415. *error = "Journal doesn't fit into memory";
  2416. r = -ENOMEM;
  2417. goto bad;
  2418. }
  2419. ic->journal_pages = journal_pages;
  2420. ic->journal = dm_integrity_alloc_page_list(ic);
  2421. if (!ic->journal) {
  2422. *error = "Could not allocate memory for journal";
  2423. r = -ENOMEM;
  2424. goto bad;
  2425. }
  2426. if (ic->journal_crypt_alg.alg_string) {
  2427. unsigned ivsize, blocksize;
  2428. struct journal_completion comp;
  2429. comp.ic = ic;
  2430. ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
  2431. if (IS_ERR(ic->journal_crypt)) {
  2432. *error = "Invalid journal cipher";
  2433. r = PTR_ERR(ic->journal_crypt);
  2434. ic->journal_crypt = NULL;
  2435. goto bad;
  2436. }
  2437. ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
  2438. blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
  2439. if (ic->journal_crypt_alg.key) {
  2440. r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
  2441. ic->journal_crypt_alg.key_size);
  2442. if (r) {
  2443. *error = "Error setting encryption key";
  2444. goto bad;
  2445. }
  2446. }
  2447. DEBUG_print("cipher %s, block size %u iv size %u\n",
  2448. ic->journal_crypt_alg.alg_string, blocksize, ivsize);
  2449. ic->journal_io = dm_integrity_alloc_page_list(ic);
  2450. if (!ic->journal_io) {
  2451. *error = "Could not allocate memory for journal io";
  2452. r = -ENOMEM;
  2453. goto bad;
  2454. }
  2455. if (blocksize == 1) {
  2456. struct scatterlist *sg;
  2457. req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
  2458. if (!req) {
  2459. *error = "Could not allocate crypt request";
  2460. r = -ENOMEM;
  2461. goto bad;
  2462. }
  2463. crypt_iv = kmalloc(ivsize, GFP_KERNEL);
  2464. if (!crypt_iv) {
  2465. *error = "Could not allocate iv";
  2466. r = -ENOMEM;
  2467. goto bad;
  2468. }
  2469. ic->journal_xor = dm_integrity_alloc_page_list(ic);
  2470. if (!ic->journal_xor) {
  2471. *error = "Could not allocate memory for journal xor";
  2472. r = -ENOMEM;
  2473. goto bad;
  2474. }
  2475. sg = kvmalloc_array(ic->journal_pages + 1,
  2476. sizeof(struct scatterlist),
  2477. GFP_KERNEL);
  2478. if (!sg) {
  2479. *error = "Unable to allocate sg list";
  2480. r = -ENOMEM;
  2481. goto bad;
  2482. }
  2483. sg_init_table(sg, ic->journal_pages + 1);
  2484. for (i = 0; i < ic->journal_pages; i++) {
  2485. char *va = lowmem_page_address(ic->journal_xor[i].page);
  2486. clear_page(va);
  2487. sg_set_buf(&sg[i], va, PAGE_SIZE);
  2488. }
  2489. sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
  2490. memset(crypt_iv, 0x00, ivsize);
  2491. skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
  2492. init_completion(&comp.comp);
  2493. comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  2494. if (do_crypt(true, req, &comp))
  2495. wait_for_completion(&comp.comp);
  2496. kvfree(sg);
  2497. r = dm_integrity_failed(ic);
  2498. if (r) {
  2499. *error = "Unable to encrypt journal";
  2500. goto bad;
  2501. }
  2502. DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
  2503. crypto_free_skcipher(ic->journal_crypt);
  2504. ic->journal_crypt = NULL;
  2505. } else {
  2506. unsigned crypt_len = roundup(ivsize, blocksize);
  2507. req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
  2508. if (!req) {
  2509. *error = "Could not allocate crypt request";
  2510. r = -ENOMEM;
  2511. goto bad;
  2512. }
  2513. crypt_iv = kmalloc(ivsize, GFP_KERNEL);
  2514. if (!crypt_iv) {
  2515. *error = "Could not allocate iv";
  2516. r = -ENOMEM;
  2517. goto bad;
  2518. }
  2519. crypt_data = kmalloc(crypt_len, GFP_KERNEL);
  2520. if (!crypt_data) {
  2521. *error = "Unable to allocate crypt data";
  2522. r = -ENOMEM;
  2523. goto bad;
  2524. }
  2525. ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
  2526. if (!ic->journal_scatterlist) {
  2527. *error = "Unable to allocate sg list";
  2528. r = -ENOMEM;
  2529. goto bad;
  2530. }
  2531. ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
  2532. if (!ic->journal_io_scatterlist) {
  2533. *error = "Unable to allocate sg list";
  2534. r = -ENOMEM;
  2535. goto bad;
  2536. }
  2537. ic->sk_requests = kvmalloc_array(ic->journal_sections,
  2538. sizeof(struct skcipher_request *),
  2539. GFP_KERNEL | __GFP_ZERO);
  2540. if (!ic->sk_requests) {
  2541. *error = "Unable to allocate sk requests";
  2542. r = -ENOMEM;
  2543. goto bad;
  2544. }
  2545. for (i = 0; i < ic->journal_sections; i++) {
  2546. struct scatterlist sg;
  2547. struct skcipher_request *section_req;
  2548. __u32 section_le = cpu_to_le32(i);
  2549. memset(crypt_iv, 0x00, ivsize);
  2550. memset(crypt_data, 0x00, crypt_len);
  2551. memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
  2552. sg_init_one(&sg, crypt_data, crypt_len);
  2553. skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
  2554. init_completion(&comp.comp);
  2555. comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  2556. if (do_crypt(true, req, &comp))
  2557. wait_for_completion(&comp.comp);
  2558. r = dm_integrity_failed(ic);
  2559. if (r) {
  2560. *error = "Unable to generate iv";
  2561. goto bad;
  2562. }
  2563. section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
  2564. if (!section_req) {
  2565. *error = "Unable to allocate crypt request";
  2566. r = -ENOMEM;
  2567. goto bad;
  2568. }
  2569. section_req->iv = kmalloc_array(ivsize, 2,
  2570. GFP_KERNEL);
  2571. if (!section_req->iv) {
  2572. skcipher_request_free(section_req);
  2573. *error = "Unable to allocate iv";
  2574. r = -ENOMEM;
  2575. goto bad;
  2576. }
  2577. memcpy(section_req->iv + ivsize, crypt_data, ivsize);
  2578. section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
  2579. ic->sk_requests[i] = section_req;
  2580. DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
  2581. }
  2582. }
  2583. }
  2584. for (i = 0; i < N_COMMIT_IDS; i++) {
  2585. unsigned j;
  2586. retest_commit_id:
  2587. for (j = 0; j < i; j++) {
  2588. if (ic->commit_ids[j] == ic->commit_ids[i]) {
  2589. ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
  2590. goto retest_commit_id;
  2591. }
  2592. }
  2593. DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
  2594. }
  2595. journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
  2596. if (journal_tree_size > ULONG_MAX) {
  2597. *error = "Journal doesn't fit into memory";
  2598. r = -ENOMEM;
  2599. goto bad;
  2600. }
  2601. ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
  2602. if (!ic->journal_tree) {
  2603. *error = "Could not allocate memory for journal tree";
  2604. r = -ENOMEM;
  2605. }
  2606. bad:
  2607. kfree(crypt_data);
  2608. kfree(crypt_iv);
  2609. skcipher_request_free(req);
  2610. return r;
  2611. }
  2612. /*
  2613. * Construct a integrity mapping
  2614. *
  2615. * Arguments:
  2616. * device
  2617. * offset from the start of the device
  2618. * tag size
  2619. * D - direct writes, J - journal writes, R - recovery mode
  2620. * number of optional arguments
  2621. * optional arguments:
  2622. * journal_sectors
  2623. * interleave_sectors
  2624. * buffer_sectors
  2625. * journal_watermark
  2626. * commit_time
  2627. * internal_hash
  2628. * journal_crypt
  2629. * journal_mac
  2630. * block_size
  2631. */
  2632. static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2633. {
  2634. struct dm_integrity_c *ic;
  2635. char dummy;
  2636. int r;
  2637. unsigned extra_args;
  2638. struct dm_arg_set as;
  2639. static const struct dm_arg _args[] = {
  2640. {0, 12, "Invalid number of feature args"},
  2641. };
  2642. unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
  2643. bool recalculate;
  2644. bool should_write_sb;
  2645. __u64 threshold;
  2646. unsigned long long start;
  2647. #define DIRECT_ARGUMENTS 4
  2648. if (argc <= DIRECT_ARGUMENTS) {
  2649. ti->error = "Invalid argument count";
  2650. return -EINVAL;
  2651. }
  2652. ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
  2653. if (!ic) {
  2654. ti->error = "Cannot allocate integrity context";
  2655. return -ENOMEM;
  2656. }
  2657. ti->private = ic;
  2658. ti->per_io_data_size = sizeof(struct dm_integrity_io);
  2659. ic->ti = ti;
  2660. ic->in_progress = RB_ROOT;
  2661. INIT_LIST_HEAD(&ic->wait_list);
  2662. init_waitqueue_head(&ic->endio_wait);
  2663. bio_list_init(&ic->flush_bio_list);
  2664. init_waitqueue_head(&ic->copy_to_journal_wait);
  2665. init_completion(&ic->crypto_backoff);
  2666. atomic64_set(&ic->number_of_mismatches, 0);
  2667. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
  2668. if (r) {
  2669. ti->error = "Device lookup failed";
  2670. goto bad;
  2671. }
  2672. if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
  2673. ti->error = "Invalid starting offset";
  2674. r = -EINVAL;
  2675. goto bad;
  2676. }
  2677. ic->start = start;
  2678. if (strcmp(argv[2], "-")) {
  2679. if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
  2680. ti->error = "Invalid tag size";
  2681. r = -EINVAL;
  2682. goto bad;
  2683. }
  2684. }
  2685. if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
  2686. ic->mode = argv[3][0];
  2687. else {
  2688. ti->error = "Invalid mode (expecting J, D, R)";
  2689. r = -EINVAL;
  2690. goto bad;
  2691. }
  2692. journal_sectors = 0;
  2693. interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
  2694. buffer_sectors = DEFAULT_BUFFER_SECTORS;
  2695. journal_watermark = DEFAULT_JOURNAL_WATERMARK;
  2696. sync_msec = DEFAULT_SYNC_MSEC;
  2697. recalculate = false;
  2698. ic->sectors_per_block = 1;
  2699. as.argc = argc - DIRECT_ARGUMENTS;
  2700. as.argv = argv + DIRECT_ARGUMENTS;
  2701. r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
  2702. if (r)
  2703. goto bad;
  2704. while (extra_args--) {
  2705. const char *opt_string;
  2706. unsigned val;
  2707. opt_string = dm_shift_arg(&as);
  2708. if (!opt_string) {
  2709. r = -EINVAL;
  2710. ti->error = "Not enough feature arguments";
  2711. goto bad;
  2712. }
  2713. if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
  2714. journal_sectors = val ? val : 1;
  2715. else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
  2716. interleave_sectors = val;
  2717. else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
  2718. buffer_sectors = val;
  2719. else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
  2720. journal_watermark = val;
  2721. else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
  2722. sync_msec = val;
  2723. else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
  2724. if (ic->meta_dev) {
  2725. dm_put_device(ti, ic->meta_dev);
  2726. ic->meta_dev = NULL;
  2727. }
  2728. r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev);
  2729. if (r) {
  2730. ti->error = "Device lookup failed";
  2731. goto bad;
  2732. }
  2733. } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
  2734. if (val < 1 << SECTOR_SHIFT ||
  2735. val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
  2736. (val & (val -1))) {
  2737. r = -EINVAL;
  2738. ti->error = "Invalid block_size argument";
  2739. goto bad;
  2740. }
  2741. ic->sectors_per_block = val >> SECTOR_SHIFT;
  2742. } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
  2743. r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
  2744. "Invalid internal_hash argument");
  2745. if (r)
  2746. goto bad;
  2747. } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
  2748. r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
  2749. "Invalid journal_crypt argument");
  2750. if (r)
  2751. goto bad;
  2752. } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
  2753. r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
  2754. "Invalid journal_mac argument");
  2755. if (r)
  2756. goto bad;
  2757. } else if (!strcmp(opt_string, "recalculate")) {
  2758. recalculate = true;
  2759. } else if (!strcmp(opt_string, "legacy_recalculate")) {
  2760. ic->legacy_recalculate = true;
  2761. } else {
  2762. r = -EINVAL;
  2763. ti->error = "Invalid argument";
  2764. goto bad;
  2765. }
  2766. }
  2767. ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
  2768. if (!ic->meta_dev)
  2769. ic->meta_device_sectors = ic->data_device_sectors;
  2770. else
  2771. ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  2772. if (!journal_sectors) {
  2773. journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
  2774. ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
  2775. }
  2776. if (!buffer_sectors)
  2777. buffer_sectors = 1;
  2778. ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
  2779. r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
  2780. "Invalid internal hash", "Error setting internal hash key");
  2781. if (r)
  2782. goto bad;
  2783. r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
  2784. "Invalid journal mac", "Error setting journal mac key");
  2785. if (r)
  2786. goto bad;
  2787. if (!ic->tag_size) {
  2788. if (!ic->internal_hash) {
  2789. ti->error = "Unknown tag size";
  2790. r = -EINVAL;
  2791. goto bad;
  2792. }
  2793. ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
  2794. }
  2795. if (ic->tag_size > MAX_TAG_SIZE) {
  2796. ti->error = "Too big tag size";
  2797. r = -EINVAL;
  2798. goto bad;
  2799. }
  2800. if (!(ic->tag_size & (ic->tag_size - 1)))
  2801. ic->log2_tag_size = __ffs(ic->tag_size);
  2802. else
  2803. ic->log2_tag_size = -1;
  2804. ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
  2805. ic->autocommit_msec = sync_msec;
  2806. timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
  2807. ic->io = dm_io_client_create();
  2808. if (IS_ERR(ic->io)) {
  2809. r = PTR_ERR(ic->io);
  2810. ic->io = NULL;
  2811. ti->error = "Cannot allocate dm io";
  2812. goto bad;
  2813. }
  2814. r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
  2815. if (r) {
  2816. ti->error = "Cannot allocate mempool";
  2817. goto bad;
  2818. }
  2819. ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
  2820. WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
  2821. if (!ic->metadata_wq) {
  2822. ti->error = "Cannot allocate workqueue";
  2823. r = -ENOMEM;
  2824. goto bad;
  2825. }
  2826. /*
  2827. * If this workqueue were percpu, it would cause bio reordering
  2828. * and reduced performance.
  2829. */
  2830. ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
  2831. if (!ic->wait_wq) {
  2832. ti->error = "Cannot allocate workqueue";
  2833. r = -ENOMEM;
  2834. goto bad;
  2835. }
  2836. ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
  2837. METADATA_WORKQUEUE_MAX_ACTIVE);
  2838. if (!ic->offload_wq) {
  2839. ti->error = "Cannot allocate workqueue";
  2840. r = -ENOMEM;
  2841. goto bad;
  2842. }
  2843. ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
  2844. if (!ic->commit_wq) {
  2845. ti->error = "Cannot allocate workqueue";
  2846. r = -ENOMEM;
  2847. goto bad;
  2848. }
  2849. INIT_WORK(&ic->commit_work, integrity_commit);
  2850. if (ic->mode == 'J') {
  2851. ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
  2852. if (!ic->writer_wq) {
  2853. ti->error = "Cannot allocate workqueue";
  2854. r = -ENOMEM;
  2855. goto bad;
  2856. }
  2857. INIT_WORK(&ic->writer_work, integrity_writer);
  2858. }
  2859. ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
  2860. if (!ic->sb) {
  2861. r = -ENOMEM;
  2862. ti->error = "Cannot allocate superblock area";
  2863. goto bad;
  2864. }
  2865. r = sync_rw_sb(ic, REQ_OP_READ, 0);
  2866. if (r) {
  2867. ti->error = "Error reading superblock";
  2868. goto bad;
  2869. }
  2870. should_write_sb = false;
  2871. if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
  2872. if (ic->mode != 'R') {
  2873. if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
  2874. r = -EINVAL;
  2875. ti->error = "The device is not initialized";
  2876. goto bad;
  2877. }
  2878. }
  2879. r = initialize_superblock(ic, journal_sectors, interleave_sectors);
  2880. if (r) {
  2881. ti->error = "Could not initialize superblock";
  2882. goto bad;
  2883. }
  2884. if (ic->mode != 'R')
  2885. should_write_sb = true;
  2886. }
  2887. if (!ic->sb->version || ic->sb->version > SB_VERSION_2) {
  2888. r = -EINVAL;
  2889. ti->error = "Unknown version";
  2890. goto bad;
  2891. }
  2892. if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
  2893. r = -EINVAL;
  2894. ti->error = "Tag size doesn't match the information in superblock";
  2895. goto bad;
  2896. }
  2897. if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
  2898. r = -EINVAL;
  2899. ti->error = "Block size doesn't match the information in superblock";
  2900. goto bad;
  2901. }
  2902. if (!le32_to_cpu(ic->sb->journal_sections)) {
  2903. r = -EINVAL;
  2904. ti->error = "Corrupted superblock, journal_sections is 0";
  2905. goto bad;
  2906. }
  2907. /* make sure that ti->max_io_len doesn't overflow */
  2908. if (!ic->meta_dev) {
  2909. if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
  2910. ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
  2911. r = -EINVAL;
  2912. ti->error = "Invalid interleave_sectors in the superblock";
  2913. goto bad;
  2914. }
  2915. } else {
  2916. if (ic->sb->log2_interleave_sectors) {
  2917. r = -EINVAL;
  2918. ti->error = "Invalid interleave_sectors in the superblock";
  2919. goto bad;
  2920. }
  2921. }
  2922. ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
  2923. if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
  2924. /* test for overflow */
  2925. r = -EINVAL;
  2926. ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
  2927. goto bad;
  2928. }
  2929. if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
  2930. r = -EINVAL;
  2931. ti->error = "Journal mac mismatch";
  2932. goto bad;
  2933. }
  2934. try_smaller_buffer:
  2935. r = calculate_device_limits(ic);
  2936. if (r) {
  2937. if (ic->meta_dev) {
  2938. if (ic->log2_buffer_sectors > 3) {
  2939. ic->log2_buffer_sectors--;
  2940. goto try_smaller_buffer;
  2941. }
  2942. }
  2943. ti->error = "The device is too small";
  2944. goto bad;
  2945. }
  2946. if (!ic->meta_dev)
  2947. ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
  2948. if (ti->len > ic->provided_data_sectors) {
  2949. r = -EINVAL;
  2950. ti->error = "Not enough provided sectors for requested mapping size";
  2951. goto bad;
  2952. }
  2953. threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
  2954. threshold += 50;
  2955. do_div(threshold, 100);
  2956. ic->free_sectors_threshold = threshold;
  2957. DEBUG_print("initialized:\n");
  2958. DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
  2959. DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
  2960. DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
  2961. DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
  2962. DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
  2963. DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
  2964. DEBUG_print(" journal_entries %u\n", ic->journal_entries);
  2965. DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
  2966. DEBUG_print(" data_device_sectors 0x%llx\n", (unsigned long long)ic->data_device_sectors);
  2967. DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
  2968. DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
  2969. DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
  2970. DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
  2971. (unsigned long long)ic->provided_data_sectors);
  2972. DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
  2973. if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
  2974. ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
  2975. ic->sb->recalc_sector = cpu_to_le64(0);
  2976. }
  2977. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
  2978. if (!ic->internal_hash) {
  2979. r = -EINVAL;
  2980. ti->error = "Recalculate is only valid with internal hash";
  2981. goto bad;
  2982. }
  2983. ic->recalc_wq = alloc_workqueue("dm-intergrity-recalc", WQ_MEM_RECLAIM, 1);
  2984. if (!ic->recalc_wq ) {
  2985. ti->error = "Cannot allocate workqueue";
  2986. r = -ENOMEM;
  2987. goto bad;
  2988. }
  2989. INIT_WORK(&ic->recalc_work, integrity_recalc);
  2990. ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
  2991. if (!ic->recalc_buffer) {
  2992. ti->error = "Cannot allocate buffer for recalculating";
  2993. r = -ENOMEM;
  2994. goto bad;
  2995. }
  2996. ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
  2997. ic->tag_size, GFP_KERNEL);
  2998. if (!ic->recalc_tags) {
  2999. ti->error = "Cannot allocate tags for recalculating";
  3000. r = -ENOMEM;
  3001. goto bad;
  3002. }
  3003. } else {
  3004. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
  3005. ti->error = "Recalculate can only be specified with internal_hash";
  3006. r = -EINVAL;
  3007. goto bad;
  3008. }
  3009. }
  3010. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
  3011. le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
  3012. dm_integrity_disable_recalculate(ic)) {
  3013. ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
  3014. r = -EOPNOTSUPP;
  3015. goto bad;
  3016. }
  3017. ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
  3018. 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
  3019. if (IS_ERR(ic->bufio)) {
  3020. r = PTR_ERR(ic->bufio);
  3021. ti->error = "Cannot initialize dm-bufio";
  3022. ic->bufio = NULL;
  3023. goto bad;
  3024. }
  3025. dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
  3026. if (ic->mode != 'R') {
  3027. r = create_journal(ic, &ti->error);
  3028. if (r)
  3029. goto bad;
  3030. }
  3031. if (should_write_sb) {
  3032. int r;
  3033. init_journal(ic, 0, ic->journal_sections, 0);
  3034. r = dm_integrity_failed(ic);
  3035. if (unlikely(r)) {
  3036. ti->error = "Error initializing journal";
  3037. goto bad;
  3038. }
  3039. r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
  3040. if (r) {
  3041. ti->error = "Error initializing superblock";
  3042. goto bad;
  3043. }
  3044. ic->just_formatted = true;
  3045. }
  3046. if (!ic->meta_dev) {
  3047. r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
  3048. if (r)
  3049. goto bad;
  3050. }
  3051. if (!ic->internal_hash)
  3052. dm_integrity_set(ti, ic);
  3053. ti->num_flush_bios = 1;
  3054. ti->flush_supported = true;
  3055. return 0;
  3056. bad:
  3057. dm_integrity_dtr(ti);
  3058. return r;
  3059. }
  3060. static void dm_integrity_dtr(struct dm_target *ti)
  3061. {
  3062. struct dm_integrity_c *ic = ti->private;
  3063. BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
  3064. BUG_ON(!list_empty(&ic->wait_list));
  3065. if (ic->metadata_wq)
  3066. destroy_workqueue(ic->metadata_wq);
  3067. if (ic->wait_wq)
  3068. destroy_workqueue(ic->wait_wq);
  3069. if (ic->offload_wq)
  3070. destroy_workqueue(ic->offload_wq);
  3071. if (ic->commit_wq)
  3072. destroy_workqueue(ic->commit_wq);
  3073. if (ic->writer_wq)
  3074. destroy_workqueue(ic->writer_wq);
  3075. if (ic->recalc_wq)
  3076. destroy_workqueue(ic->recalc_wq);
  3077. if (ic->recalc_buffer)
  3078. vfree(ic->recalc_buffer);
  3079. if (ic->recalc_tags)
  3080. kvfree(ic->recalc_tags);
  3081. if (ic->bufio)
  3082. dm_bufio_client_destroy(ic->bufio);
  3083. mempool_exit(&ic->journal_io_mempool);
  3084. if (ic->io)
  3085. dm_io_client_destroy(ic->io);
  3086. if (ic->dev)
  3087. dm_put_device(ti, ic->dev);
  3088. if (ic->meta_dev)
  3089. dm_put_device(ti, ic->meta_dev);
  3090. dm_integrity_free_page_list(ic, ic->journal);
  3091. dm_integrity_free_page_list(ic, ic->journal_io);
  3092. dm_integrity_free_page_list(ic, ic->journal_xor);
  3093. if (ic->journal_scatterlist)
  3094. dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
  3095. if (ic->journal_io_scatterlist)
  3096. dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
  3097. if (ic->sk_requests) {
  3098. unsigned i;
  3099. for (i = 0; i < ic->journal_sections; i++) {
  3100. struct skcipher_request *req = ic->sk_requests[i];
  3101. if (req) {
  3102. kzfree(req->iv);
  3103. skcipher_request_free(req);
  3104. }
  3105. }
  3106. kvfree(ic->sk_requests);
  3107. }
  3108. kvfree(ic->journal_tree);
  3109. if (ic->sb)
  3110. free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
  3111. if (ic->internal_hash)
  3112. crypto_free_shash(ic->internal_hash);
  3113. free_alg(&ic->internal_hash_alg);
  3114. if (ic->journal_crypt)
  3115. crypto_free_skcipher(ic->journal_crypt);
  3116. free_alg(&ic->journal_crypt_alg);
  3117. if (ic->journal_mac)
  3118. crypto_free_shash(ic->journal_mac);
  3119. free_alg(&ic->journal_mac_alg);
  3120. kfree(ic);
  3121. }
  3122. static struct target_type integrity_target = {
  3123. .name = "integrity",
  3124. .version = {1, 2, 0},
  3125. .module = THIS_MODULE,
  3126. .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
  3127. .ctr = dm_integrity_ctr,
  3128. .dtr = dm_integrity_dtr,
  3129. .map = dm_integrity_map,
  3130. .postsuspend = dm_integrity_postsuspend,
  3131. .resume = dm_integrity_resume,
  3132. .status = dm_integrity_status,
  3133. .iterate_devices = dm_integrity_iterate_devices,
  3134. .io_hints = dm_integrity_io_hints,
  3135. };
  3136. int __init dm_integrity_init(void)
  3137. {
  3138. int r;
  3139. journal_io_cache = kmem_cache_create("integrity_journal_io",
  3140. sizeof(struct journal_io), 0, 0, NULL);
  3141. if (!journal_io_cache) {
  3142. DMERR("can't allocate journal io cache");
  3143. return -ENOMEM;
  3144. }
  3145. r = dm_register_target(&integrity_target);
  3146. if (r < 0)
  3147. DMERR("register failed %d", r);
  3148. return r;
  3149. }
  3150. void dm_integrity_exit(void)
  3151. {
  3152. dm_unregister_target(&integrity_target);
  3153. kmem_cache_destroy(journal_io_cache);
  3154. }
  3155. module_init(dm_integrity_init);
  3156. module_exit(dm_integrity_exit);
  3157. MODULE_AUTHOR("Milan Broz");
  3158. MODULE_AUTHOR("Mikulas Patocka");
  3159. MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
  3160. MODULE_LICENSE("GPL");