dm-thin-metadata.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 2
  75. #define SECTOR_TO_BLOCK_SHIFT 3
  76. /*
  77. * For btree insert:
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. * For btree remove:
  81. * 2 for shadow spine +
  82. * 4 for rebalance 3 child node
  83. */
  84. #define THIN_MAX_CONCURRENT_LOCKS 6
  85. /* This should be plenty */
  86. #define SPACE_MAP_ROOT_SIZE 128
  87. /*
  88. * Little endian on-disk superblock and device details.
  89. */
  90. struct thin_disk_superblock {
  91. __le32 csum; /* Checksum of superblock except for this field. */
  92. __le32 flags;
  93. __le64 blocknr; /* This block number, dm_block_t. */
  94. __u8 uuid[16];
  95. __le64 magic;
  96. __le32 version;
  97. __le32 time;
  98. __le64 trans_id;
  99. /*
  100. * Root held by userspace transactions.
  101. */
  102. __le64 held_root;
  103. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  104. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  105. /*
  106. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  107. */
  108. __le64 data_mapping_root;
  109. /*
  110. * Device detail root mapping dev_id -> device_details
  111. */
  112. __le64 device_details_root;
  113. __le32 data_block_size; /* In 512-byte sectors. */
  114. __le32 metadata_block_size; /* In 512-byte sectors. */
  115. __le64 metadata_nr_blocks;
  116. __le32 compat_flags;
  117. __le32 compat_ro_flags;
  118. __le32 incompat_flags;
  119. } __packed;
  120. struct disk_device_details {
  121. __le64 mapped_blocks;
  122. __le64 transaction_id; /* When created. */
  123. __le32 creation_time;
  124. __le32 snapshotted_time;
  125. } __packed;
  126. struct dm_pool_metadata {
  127. struct hlist_node hash;
  128. struct block_device *bdev;
  129. struct dm_block_manager *bm;
  130. struct dm_space_map *metadata_sm;
  131. struct dm_space_map *data_sm;
  132. struct dm_transaction_manager *tm;
  133. struct dm_transaction_manager *nb_tm;
  134. /*
  135. * Two-level btree.
  136. * First level holds thin_dev_t.
  137. * Second level holds mappings.
  138. */
  139. struct dm_btree_info info;
  140. /*
  141. * Non-blocking version of the above.
  142. */
  143. struct dm_btree_info nb_info;
  144. /*
  145. * Just the top level for deleting whole devices.
  146. */
  147. struct dm_btree_info tl_info;
  148. /*
  149. * Just the bottom level for creating new devices.
  150. */
  151. struct dm_btree_info bl_info;
  152. /*
  153. * Describes the device details btree.
  154. */
  155. struct dm_btree_info details_info;
  156. struct rw_semaphore root_lock;
  157. uint32_t time;
  158. dm_block_t root;
  159. dm_block_t details_root;
  160. struct list_head thin_devices;
  161. uint64_t trans_id;
  162. unsigned long flags;
  163. sector_t data_block_size;
  164. /*
  165. * We reserve a section of the metadata for commit overhead.
  166. * All reported space does *not* include this.
  167. */
  168. dm_block_t metadata_reserve;
  169. /*
  170. * Set if a transaction has to be aborted but the attempt to roll back
  171. * to the previous (good) transaction failed. The only pool metadata
  172. * operation possible in this state is the closing of the device.
  173. */
  174. bool fail_io:1;
  175. /*
  176. * Reading the space map roots can fail, so we read it into these
  177. * buffers before the superblock is locked and updated.
  178. */
  179. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  180. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  181. };
  182. struct dm_thin_device {
  183. struct list_head list;
  184. struct dm_pool_metadata *pmd;
  185. dm_thin_id id;
  186. int open_count;
  187. bool changed:1;
  188. bool aborted_with_changes:1;
  189. uint64_t mapped_blocks;
  190. uint64_t transaction_id;
  191. uint32_t creation_time;
  192. uint32_t snapshotted_time;
  193. };
  194. /*----------------------------------------------------------------
  195. * superblock validator
  196. *--------------------------------------------------------------*/
  197. #define SUPERBLOCK_CSUM_XOR 160774
  198. static void sb_prepare_for_write(struct dm_block_validator *v,
  199. struct dm_block *b,
  200. size_t block_size)
  201. {
  202. struct thin_disk_superblock *disk_super = dm_block_data(b);
  203. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  204. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  205. block_size - sizeof(__le32),
  206. SUPERBLOCK_CSUM_XOR));
  207. }
  208. static int sb_check(struct dm_block_validator *v,
  209. struct dm_block *b,
  210. size_t block_size)
  211. {
  212. struct thin_disk_superblock *disk_super = dm_block_data(b);
  213. __le32 csum_le;
  214. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  215. DMERR("sb_check failed: blocknr %llu: "
  216. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  217. (unsigned long long)dm_block_location(b));
  218. return -ENOTBLK;
  219. }
  220. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  221. DMERR("sb_check failed: magic %llu: "
  222. "wanted %llu", le64_to_cpu(disk_super->magic),
  223. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  224. return -EILSEQ;
  225. }
  226. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  227. block_size - sizeof(__le32),
  228. SUPERBLOCK_CSUM_XOR));
  229. if (csum_le != disk_super->csum) {
  230. DMERR("sb_check failed: csum %u: wanted %u",
  231. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  232. return -EILSEQ;
  233. }
  234. return 0;
  235. }
  236. static struct dm_block_validator sb_validator = {
  237. .name = "superblock",
  238. .prepare_for_write = sb_prepare_for_write,
  239. .check = sb_check
  240. };
  241. /*----------------------------------------------------------------
  242. * Methods for the btree value types
  243. *--------------------------------------------------------------*/
  244. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  245. {
  246. return (b << 24) | t;
  247. }
  248. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  249. {
  250. *b = v >> 24;
  251. *t = v & ((1 << 24) - 1);
  252. }
  253. static void data_block_inc(void *context, const void *value_le)
  254. {
  255. struct dm_space_map *sm = context;
  256. __le64 v_le;
  257. uint64_t b;
  258. uint32_t t;
  259. memcpy(&v_le, value_le, sizeof(v_le));
  260. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  261. dm_sm_inc_block(sm, b);
  262. }
  263. static void data_block_dec(void *context, const void *value_le)
  264. {
  265. struct dm_space_map *sm = context;
  266. __le64 v_le;
  267. uint64_t b;
  268. uint32_t t;
  269. memcpy(&v_le, value_le, sizeof(v_le));
  270. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  271. dm_sm_dec_block(sm, b);
  272. }
  273. static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
  274. {
  275. __le64 v1_le, v2_le;
  276. uint64_t b1, b2;
  277. uint32_t t;
  278. memcpy(&v1_le, value1_le, sizeof(v1_le));
  279. memcpy(&v2_le, value2_le, sizeof(v2_le));
  280. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  281. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  282. return b1 == b2;
  283. }
  284. static void subtree_inc(void *context, const void *value)
  285. {
  286. struct dm_btree_info *info = context;
  287. __le64 root_le;
  288. uint64_t root;
  289. memcpy(&root_le, value, sizeof(root_le));
  290. root = le64_to_cpu(root_le);
  291. dm_tm_inc(info->tm, root);
  292. }
  293. static void subtree_dec(void *context, const void *value)
  294. {
  295. struct dm_btree_info *info = context;
  296. __le64 root_le;
  297. uint64_t root;
  298. memcpy(&root_le, value, sizeof(root_le));
  299. root = le64_to_cpu(root_le);
  300. if (dm_btree_del(info, root))
  301. DMERR("btree delete failed");
  302. }
  303. static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
  304. {
  305. __le64 v1_le, v2_le;
  306. memcpy(&v1_le, value1_le, sizeof(v1_le));
  307. memcpy(&v2_le, value2_le, sizeof(v2_le));
  308. return v1_le == v2_le;
  309. }
  310. /*----------------------------------------------------------------*/
  311. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  312. struct dm_block **sblock)
  313. {
  314. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  315. &sb_validator, sblock);
  316. }
  317. static int superblock_lock(struct dm_pool_metadata *pmd,
  318. struct dm_block **sblock)
  319. {
  320. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  321. &sb_validator, sblock);
  322. }
  323. static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  324. {
  325. int r;
  326. unsigned i;
  327. struct dm_block *b;
  328. __le64 *data_le, zero = cpu_to_le64(0);
  329. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  330. /*
  331. * We can't use a validator here - it may be all zeroes.
  332. */
  333. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  334. if (r)
  335. return r;
  336. data_le = dm_block_data(b);
  337. *result = 1;
  338. for (i = 0; i < block_size; i++) {
  339. if (data_le[i] != zero) {
  340. *result = 0;
  341. break;
  342. }
  343. }
  344. dm_bm_unlock(b);
  345. return 0;
  346. }
  347. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  348. {
  349. pmd->info.tm = pmd->tm;
  350. pmd->info.levels = 2;
  351. pmd->info.value_type.context = pmd->data_sm;
  352. pmd->info.value_type.size = sizeof(__le64);
  353. pmd->info.value_type.inc = data_block_inc;
  354. pmd->info.value_type.dec = data_block_dec;
  355. pmd->info.value_type.equal = data_block_equal;
  356. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  357. pmd->nb_info.tm = pmd->nb_tm;
  358. pmd->tl_info.tm = pmd->tm;
  359. pmd->tl_info.levels = 1;
  360. pmd->tl_info.value_type.context = &pmd->bl_info;
  361. pmd->tl_info.value_type.size = sizeof(__le64);
  362. pmd->tl_info.value_type.inc = subtree_inc;
  363. pmd->tl_info.value_type.dec = subtree_dec;
  364. pmd->tl_info.value_type.equal = subtree_equal;
  365. pmd->bl_info.tm = pmd->tm;
  366. pmd->bl_info.levels = 1;
  367. pmd->bl_info.value_type.context = pmd->data_sm;
  368. pmd->bl_info.value_type.size = sizeof(__le64);
  369. pmd->bl_info.value_type.inc = data_block_inc;
  370. pmd->bl_info.value_type.dec = data_block_dec;
  371. pmd->bl_info.value_type.equal = data_block_equal;
  372. pmd->details_info.tm = pmd->tm;
  373. pmd->details_info.levels = 1;
  374. pmd->details_info.value_type.context = NULL;
  375. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  376. pmd->details_info.value_type.inc = NULL;
  377. pmd->details_info.value_type.dec = NULL;
  378. pmd->details_info.value_type.equal = NULL;
  379. }
  380. static int save_sm_roots(struct dm_pool_metadata *pmd)
  381. {
  382. int r;
  383. size_t len;
  384. r = dm_sm_root_size(pmd->metadata_sm, &len);
  385. if (r < 0)
  386. return r;
  387. r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
  388. if (r < 0)
  389. return r;
  390. r = dm_sm_root_size(pmd->data_sm, &len);
  391. if (r < 0)
  392. return r;
  393. return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
  394. }
  395. static void copy_sm_roots(struct dm_pool_metadata *pmd,
  396. struct thin_disk_superblock *disk)
  397. {
  398. memcpy(&disk->metadata_space_map_root,
  399. &pmd->metadata_space_map_root,
  400. sizeof(pmd->metadata_space_map_root));
  401. memcpy(&disk->data_space_map_root,
  402. &pmd->data_space_map_root,
  403. sizeof(pmd->data_space_map_root));
  404. }
  405. static int __write_initial_superblock(struct dm_pool_metadata *pmd)
  406. {
  407. int r;
  408. struct dm_block *sblock;
  409. struct thin_disk_superblock *disk_super;
  410. sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
  411. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  412. bdev_size = THIN_METADATA_MAX_SECTORS;
  413. r = dm_sm_commit(pmd->data_sm);
  414. if (r < 0)
  415. return r;
  416. r = dm_tm_pre_commit(pmd->tm);
  417. if (r < 0)
  418. return r;
  419. r = save_sm_roots(pmd);
  420. if (r < 0)
  421. return r;
  422. r = superblock_lock_zero(pmd, &sblock);
  423. if (r)
  424. return r;
  425. disk_super = dm_block_data(sblock);
  426. disk_super->flags = 0;
  427. memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
  428. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  429. disk_super->version = cpu_to_le32(THIN_VERSION);
  430. disk_super->time = 0;
  431. disk_super->trans_id = 0;
  432. disk_super->held_root = 0;
  433. copy_sm_roots(pmd, disk_super);
  434. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  435. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  436. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
  437. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  438. disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
  439. return dm_tm_commit(pmd->tm, sblock);
  440. }
  441. static int __format_metadata(struct dm_pool_metadata *pmd)
  442. {
  443. int r;
  444. r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  445. &pmd->tm, &pmd->metadata_sm);
  446. if (r < 0) {
  447. DMERR("tm_create_with_sm failed");
  448. return r;
  449. }
  450. pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
  451. if (IS_ERR(pmd->data_sm)) {
  452. DMERR("sm_disk_create failed");
  453. r = PTR_ERR(pmd->data_sm);
  454. goto bad_cleanup_tm;
  455. }
  456. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  457. if (!pmd->nb_tm) {
  458. DMERR("could not create non-blocking clone tm");
  459. r = -ENOMEM;
  460. goto bad_cleanup_data_sm;
  461. }
  462. __setup_btree_details(pmd);
  463. r = dm_btree_empty(&pmd->info, &pmd->root);
  464. if (r < 0)
  465. goto bad_cleanup_nb_tm;
  466. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  467. if (r < 0) {
  468. DMERR("couldn't create devices root");
  469. goto bad_cleanup_nb_tm;
  470. }
  471. r = __write_initial_superblock(pmd);
  472. if (r)
  473. goto bad_cleanup_nb_tm;
  474. return 0;
  475. bad_cleanup_nb_tm:
  476. dm_tm_destroy(pmd->nb_tm);
  477. bad_cleanup_data_sm:
  478. dm_sm_destroy(pmd->data_sm);
  479. bad_cleanup_tm:
  480. dm_tm_destroy(pmd->tm);
  481. dm_sm_destroy(pmd->metadata_sm);
  482. return r;
  483. }
  484. static int __check_incompat_features(struct thin_disk_superblock *disk_super,
  485. struct dm_pool_metadata *pmd)
  486. {
  487. uint32_t features;
  488. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  489. if (features) {
  490. DMERR("could not access metadata due to unsupported optional features (%lx).",
  491. (unsigned long)features);
  492. return -EINVAL;
  493. }
  494. /*
  495. * Check for read-only metadata to skip the following RDWR checks.
  496. */
  497. if (get_disk_ro(pmd->bdev->bd_disk))
  498. return 0;
  499. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  500. if (features) {
  501. DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
  502. (unsigned long)features);
  503. return -EINVAL;
  504. }
  505. return 0;
  506. }
  507. static int __open_metadata(struct dm_pool_metadata *pmd)
  508. {
  509. int r;
  510. struct dm_block *sblock;
  511. struct thin_disk_superblock *disk_super;
  512. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  513. &sb_validator, &sblock);
  514. if (r < 0) {
  515. DMERR("couldn't read superblock");
  516. return r;
  517. }
  518. disk_super = dm_block_data(sblock);
  519. /* Verify the data block size hasn't changed */
  520. if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
  521. DMERR("changing the data block size (from %u to %llu) is not supported",
  522. le32_to_cpu(disk_super->data_block_size),
  523. (unsigned long long)pmd->data_block_size);
  524. r = -EINVAL;
  525. goto bad_unlock_sblock;
  526. }
  527. r = __check_incompat_features(disk_super, pmd);
  528. if (r < 0)
  529. goto bad_unlock_sblock;
  530. r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  531. disk_super->metadata_space_map_root,
  532. sizeof(disk_super->metadata_space_map_root),
  533. &pmd->tm, &pmd->metadata_sm);
  534. if (r < 0) {
  535. DMERR("tm_open_with_sm failed");
  536. goto bad_unlock_sblock;
  537. }
  538. pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
  539. sizeof(disk_super->data_space_map_root));
  540. if (IS_ERR(pmd->data_sm)) {
  541. DMERR("sm_disk_open failed");
  542. r = PTR_ERR(pmd->data_sm);
  543. goto bad_cleanup_tm;
  544. }
  545. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  546. if (!pmd->nb_tm) {
  547. DMERR("could not create non-blocking clone tm");
  548. r = -ENOMEM;
  549. goto bad_cleanup_data_sm;
  550. }
  551. __setup_btree_details(pmd);
  552. dm_bm_unlock(sblock);
  553. return 0;
  554. bad_cleanup_data_sm:
  555. dm_sm_destroy(pmd->data_sm);
  556. bad_cleanup_tm:
  557. dm_tm_destroy(pmd->tm);
  558. dm_sm_destroy(pmd->metadata_sm);
  559. bad_unlock_sblock:
  560. dm_bm_unlock(sblock);
  561. return r;
  562. }
  563. static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
  564. {
  565. int r, unformatted;
  566. r = __superblock_all_zeroes(pmd->bm, &unformatted);
  567. if (r)
  568. return r;
  569. if (unformatted)
  570. return format_device ? __format_metadata(pmd) : -EPERM;
  571. return __open_metadata(pmd);
  572. }
  573. static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
  574. {
  575. int r;
  576. pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
  577. THIN_MAX_CONCURRENT_LOCKS);
  578. if (IS_ERR(pmd->bm)) {
  579. DMERR("could not create block manager");
  580. r = PTR_ERR(pmd->bm);
  581. pmd->bm = NULL;
  582. return r;
  583. }
  584. r = __open_or_format_metadata(pmd, format_device);
  585. if (r) {
  586. dm_block_manager_destroy(pmd->bm);
  587. pmd->bm = NULL;
  588. }
  589. return r;
  590. }
  591. static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
  592. {
  593. dm_sm_destroy(pmd->data_sm);
  594. dm_sm_destroy(pmd->metadata_sm);
  595. dm_tm_destroy(pmd->nb_tm);
  596. dm_tm_destroy(pmd->tm);
  597. dm_block_manager_destroy(pmd->bm);
  598. }
  599. static int __begin_transaction(struct dm_pool_metadata *pmd)
  600. {
  601. int r;
  602. struct thin_disk_superblock *disk_super;
  603. struct dm_block *sblock;
  604. /*
  605. * We re-read the superblock every time. Shouldn't need to do this
  606. * really.
  607. */
  608. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  609. &sb_validator, &sblock);
  610. if (r)
  611. return r;
  612. disk_super = dm_block_data(sblock);
  613. pmd->time = le32_to_cpu(disk_super->time);
  614. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  615. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  616. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  617. pmd->flags = le32_to_cpu(disk_super->flags);
  618. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  619. dm_bm_unlock(sblock);
  620. return 0;
  621. }
  622. static int __write_changed_details(struct dm_pool_metadata *pmd)
  623. {
  624. int r;
  625. struct dm_thin_device *td, *tmp;
  626. struct disk_device_details details;
  627. uint64_t key;
  628. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  629. if (!td->changed)
  630. continue;
  631. key = td->id;
  632. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  633. details.transaction_id = cpu_to_le64(td->transaction_id);
  634. details.creation_time = cpu_to_le32(td->creation_time);
  635. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  636. __dm_bless_for_disk(&details);
  637. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  638. &key, &details, &pmd->details_root);
  639. if (r)
  640. return r;
  641. if (td->open_count)
  642. td->changed = 0;
  643. else {
  644. list_del(&td->list);
  645. kfree(td);
  646. }
  647. }
  648. return 0;
  649. }
  650. static int __commit_transaction(struct dm_pool_metadata *pmd)
  651. {
  652. int r;
  653. struct thin_disk_superblock *disk_super;
  654. struct dm_block *sblock;
  655. /*
  656. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  657. */
  658. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  659. r = __write_changed_details(pmd);
  660. if (r < 0)
  661. return r;
  662. r = dm_sm_commit(pmd->data_sm);
  663. if (r < 0)
  664. return r;
  665. r = dm_tm_pre_commit(pmd->tm);
  666. if (r < 0)
  667. return r;
  668. r = save_sm_roots(pmd);
  669. if (r < 0)
  670. return r;
  671. r = superblock_lock(pmd, &sblock);
  672. if (r)
  673. return r;
  674. disk_super = dm_block_data(sblock);
  675. disk_super->time = cpu_to_le32(pmd->time);
  676. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  677. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  678. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  679. disk_super->flags = cpu_to_le32(pmd->flags);
  680. copy_sm_roots(pmd, disk_super);
  681. return dm_tm_commit(pmd->tm, sblock);
  682. }
  683. static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
  684. {
  685. int r;
  686. dm_block_t total;
  687. dm_block_t max_blocks = 4096; /* 16M */
  688. r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
  689. if (r) {
  690. DMERR("could not get size of metadata device");
  691. pmd->metadata_reserve = max_blocks;
  692. } else
  693. pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
  694. }
  695. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  696. sector_t data_block_size,
  697. bool format_device)
  698. {
  699. int r;
  700. struct dm_pool_metadata *pmd;
  701. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  702. if (!pmd) {
  703. DMERR("could not allocate metadata struct");
  704. return ERR_PTR(-ENOMEM);
  705. }
  706. init_rwsem(&pmd->root_lock);
  707. pmd->time = 0;
  708. INIT_LIST_HEAD(&pmd->thin_devices);
  709. pmd->fail_io = false;
  710. pmd->bdev = bdev;
  711. pmd->data_block_size = data_block_size;
  712. r = __create_persistent_data_objects(pmd, format_device);
  713. if (r) {
  714. kfree(pmd);
  715. return ERR_PTR(r);
  716. }
  717. r = __begin_transaction(pmd);
  718. if (r < 0) {
  719. if (dm_pool_metadata_close(pmd) < 0)
  720. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  721. return ERR_PTR(r);
  722. }
  723. __set_metadata_reserve(pmd);
  724. return pmd;
  725. }
  726. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  727. {
  728. int r;
  729. unsigned open_devices = 0;
  730. struct dm_thin_device *td, *tmp;
  731. down_read(&pmd->root_lock);
  732. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  733. if (td->open_count)
  734. open_devices++;
  735. else {
  736. list_del(&td->list);
  737. kfree(td);
  738. }
  739. }
  740. up_read(&pmd->root_lock);
  741. if (open_devices) {
  742. DMERR("attempt to close pmd when %u device(s) are still open",
  743. open_devices);
  744. return -EBUSY;
  745. }
  746. if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
  747. r = __commit_transaction(pmd);
  748. if (r < 0)
  749. DMWARN("%s: __commit_transaction() failed, error = %d",
  750. __func__, r);
  751. }
  752. if (!pmd->fail_io)
  753. __destroy_persistent_data_objects(pmd);
  754. kfree(pmd);
  755. return 0;
  756. }
  757. /*
  758. * __open_device: Returns @td corresponding to device with id @dev,
  759. * creating it if @create is set and incrementing @td->open_count.
  760. * On failure, @td is undefined.
  761. */
  762. static int __open_device(struct dm_pool_metadata *pmd,
  763. dm_thin_id dev, int create,
  764. struct dm_thin_device **td)
  765. {
  766. int r, changed = 0;
  767. struct dm_thin_device *td2;
  768. uint64_t key = dev;
  769. struct disk_device_details details_le;
  770. /*
  771. * If the device is already open, return it.
  772. */
  773. list_for_each_entry(td2, &pmd->thin_devices, list)
  774. if (td2->id == dev) {
  775. /*
  776. * May not create an already-open device.
  777. */
  778. if (create)
  779. return -EEXIST;
  780. td2->open_count++;
  781. *td = td2;
  782. return 0;
  783. }
  784. /*
  785. * Check the device exists.
  786. */
  787. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  788. &key, &details_le);
  789. if (r) {
  790. if (r != -ENODATA || !create)
  791. return r;
  792. /*
  793. * Create new device.
  794. */
  795. changed = 1;
  796. details_le.mapped_blocks = 0;
  797. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  798. details_le.creation_time = cpu_to_le32(pmd->time);
  799. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  800. }
  801. *td = kmalloc(sizeof(**td), GFP_NOIO);
  802. if (!*td)
  803. return -ENOMEM;
  804. (*td)->pmd = pmd;
  805. (*td)->id = dev;
  806. (*td)->open_count = 1;
  807. (*td)->changed = changed;
  808. (*td)->aborted_with_changes = false;
  809. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  810. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  811. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  812. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  813. list_add(&(*td)->list, &pmd->thin_devices);
  814. return 0;
  815. }
  816. static void __close_device(struct dm_thin_device *td)
  817. {
  818. --td->open_count;
  819. }
  820. static int __create_thin(struct dm_pool_metadata *pmd,
  821. dm_thin_id dev)
  822. {
  823. int r;
  824. dm_block_t dev_root;
  825. uint64_t key = dev;
  826. struct disk_device_details details_le;
  827. struct dm_thin_device *td;
  828. __le64 value;
  829. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  830. &key, &details_le);
  831. if (!r)
  832. return -EEXIST;
  833. /*
  834. * Create an empty btree for the mappings.
  835. */
  836. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  837. if (r)
  838. return r;
  839. /*
  840. * Insert it into the main mapping tree.
  841. */
  842. value = cpu_to_le64(dev_root);
  843. __dm_bless_for_disk(&value);
  844. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  845. if (r) {
  846. dm_btree_del(&pmd->bl_info, dev_root);
  847. return r;
  848. }
  849. r = __open_device(pmd, dev, 1, &td);
  850. if (r) {
  851. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  852. dm_btree_del(&pmd->bl_info, dev_root);
  853. return r;
  854. }
  855. __close_device(td);
  856. return r;
  857. }
  858. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  859. {
  860. int r = -EINVAL;
  861. down_write(&pmd->root_lock);
  862. if (!pmd->fail_io)
  863. r = __create_thin(pmd, dev);
  864. up_write(&pmd->root_lock);
  865. return r;
  866. }
  867. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  868. struct dm_thin_device *snap,
  869. dm_thin_id origin, uint32_t time)
  870. {
  871. int r;
  872. struct dm_thin_device *td;
  873. r = __open_device(pmd, origin, 0, &td);
  874. if (r)
  875. return r;
  876. td->changed = 1;
  877. td->snapshotted_time = time;
  878. snap->mapped_blocks = td->mapped_blocks;
  879. snap->snapshotted_time = time;
  880. __close_device(td);
  881. return 0;
  882. }
  883. static int __create_snap(struct dm_pool_metadata *pmd,
  884. dm_thin_id dev, dm_thin_id origin)
  885. {
  886. int r;
  887. dm_block_t origin_root;
  888. uint64_t key = origin, dev_key = dev;
  889. struct dm_thin_device *td;
  890. struct disk_device_details details_le;
  891. __le64 value;
  892. /* check this device is unused */
  893. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  894. &dev_key, &details_le);
  895. if (!r)
  896. return -EEXIST;
  897. /* find the mapping tree for the origin */
  898. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  899. if (r)
  900. return r;
  901. origin_root = le64_to_cpu(value);
  902. /* clone the origin, an inc will do */
  903. dm_tm_inc(pmd->tm, origin_root);
  904. /* insert into the main mapping tree */
  905. value = cpu_to_le64(origin_root);
  906. __dm_bless_for_disk(&value);
  907. key = dev;
  908. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  909. if (r) {
  910. dm_tm_dec(pmd->tm, origin_root);
  911. return r;
  912. }
  913. pmd->time++;
  914. r = __open_device(pmd, dev, 1, &td);
  915. if (r)
  916. goto bad;
  917. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  918. __close_device(td);
  919. if (r)
  920. goto bad;
  921. return 0;
  922. bad:
  923. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  924. dm_btree_remove(&pmd->details_info, pmd->details_root,
  925. &key, &pmd->details_root);
  926. return r;
  927. }
  928. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  929. dm_thin_id dev,
  930. dm_thin_id origin)
  931. {
  932. int r = -EINVAL;
  933. down_write(&pmd->root_lock);
  934. if (!pmd->fail_io)
  935. r = __create_snap(pmd, dev, origin);
  936. up_write(&pmd->root_lock);
  937. return r;
  938. }
  939. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  940. {
  941. int r;
  942. uint64_t key = dev;
  943. struct dm_thin_device *td;
  944. /* TODO: failure should mark the transaction invalid */
  945. r = __open_device(pmd, dev, 0, &td);
  946. if (r)
  947. return r;
  948. if (td->open_count > 1) {
  949. __close_device(td);
  950. return -EBUSY;
  951. }
  952. list_del(&td->list);
  953. kfree(td);
  954. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  955. &key, &pmd->details_root);
  956. if (r)
  957. return r;
  958. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  959. if (r)
  960. return r;
  961. return 0;
  962. }
  963. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  964. dm_thin_id dev)
  965. {
  966. int r = -EINVAL;
  967. down_write(&pmd->root_lock);
  968. if (!pmd->fail_io)
  969. r = __delete_device(pmd, dev);
  970. up_write(&pmd->root_lock);
  971. return r;
  972. }
  973. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  974. uint64_t current_id,
  975. uint64_t new_id)
  976. {
  977. int r = -EINVAL;
  978. down_write(&pmd->root_lock);
  979. if (pmd->fail_io)
  980. goto out;
  981. if (pmd->trans_id != current_id) {
  982. DMERR("mismatched transaction id");
  983. goto out;
  984. }
  985. pmd->trans_id = new_id;
  986. r = 0;
  987. out:
  988. up_write(&pmd->root_lock);
  989. return r;
  990. }
  991. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  992. uint64_t *result)
  993. {
  994. int r = -EINVAL;
  995. down_read(&pmd->root_lock);
  996. if (!pmd->fail_io) {
  997. *result = pmd->trans_id;
  998. r = 0;
  999. }
  1000. up_read(&pmd->root_lock);
  1001. return r;
  1002. }
  1003. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  1004. {
  1005. int r, inc;
  1006. struct thin_disk_superblock *disk_super;
  1007. struct dm_block *copy, *sblock;
  1008. dm_block_t held_root;
  1009. /*
  1010. * We commit to ensure the btree roots which we increment in a
  1011. * moment are up to date.
  1012. */
  1013. __commit_transaction(pmd);
  1014. /*
  1015. * Copy the superblock.
  1016. */
  1017. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  1018. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  1019. &sb_validator, &copy, &inc);
  1020. if (r)
  1021. return r;
  1022. BUG_ON(!inc);
  1023. held_root = dm_block_location(copy);
  1024. disk_super = dm_block_data(copy);
  1025. if (le64_to_cpu(disk_super->held_root)) {
  1026. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  1027. dm_tm_dec(pmd->tm, held_root);
  1028. dm_tm_unlock(pmd->tm, copy);
  1029. return -EBUSY;
  1030. }
  1031. /*
  1032. * Wipe the spacemap since we're not publishing this.
  1033. */
  1034. memset(&disk_super->data_space_map_root, 0,
  1035. sizeof(disk_super->data_space_map_root));
  1036. memset(&disk_super->metadata_space_map_root, 0,
  1037. sizeof(disk_super->metadata_space_map_root));
  1038. /*
  1039. * Increment the data structures that need to be preserved.
  1040. */
  1041. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  1042. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  1043. dm_tm_unlock(pmd->tm, copy);
  1044. /*
  1045. * Write the held root into the superblock.
  1046. */
  1047. r = superblock_lock(pmd, &sblock);
  1048. if (r) {
  1049. dm_tm_dec(pmd->tm, held_root);
  1050. return r;
  1051. }
  1052. disk_super = dm_block_data(sblock);
  1053. disk_super->held_root = cpu_to_le64(held_root);
  1054. dm_bm_unlock(sblock);
  1055. return 0;
  1056. }
  1057. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  1058. {
  1059. int r = -EINVAL;
  1060. down_write(&pmd->root_lock);
  1061. if (!pmd->fail_io)
  1062. r = __reserve_metadata_snap(pmd);
  1063. up_write(&pmd->root_lock);
  1064. return r;
  1065. }
  1066. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  1067. {
  1068. int r;
  1069. struct thin_disk_superblock *disk_super;
  1070. struct dm_block *sblock, *copy;
  1071. dm_block_t held_root;
  1072. r = superblock_lock(pmd, &sblock);
  1073. if (r)
  1074. return r;
  1075. disk_super = dm_block_data(sblock);
  1076. held_root = le64_to_cpu(disk_super->held_root);
  1077. disk_super->held_root = cpu_to_le64(0);
  1078. dm_bm_unlock(sblock);
  1079. if (!held_root) {
  1080. DMWARN("No pool metadata snapshot found: nothing to release.");
  1081. return -EINVAL;
  1082. }
  1083. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  1084. if (r)
  1085. return r;
  1086. disk_super = dm_block_data(copy);
  1087. dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
  1088. dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
  1089. dm_sm_dec_block(pmd->metadata_sm, held_root);
  1090. dm_tm_unlock(pmd->tm, copy);
  1091. return 0;
  1092. }
  1093. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  1094. {
  1095. int r = -EINVAL;
  1096. down_write(&pmd->root_lock);
  1097. if (!pmd->fail_io)
  1098. r = __release_metadata_snap(pmd);
  1099. up_write(&pmd->root_lock);
  1100. return r;
  1101. }
  1102. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  1103. dm_block_t *result)
  1104. {
  1105. int r;
  1106. struct thin_disk_superblock *disk_super;
  1107. struct dm_block *sblock;
  1108. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1109. &sb_validator, &sblock);
  1110. if (r)
  1111. return r;
  1112. disk_super = dm_block_data(sblock);
  1113. *result = le64_to_cpu(disk_super->held_root);
  1114. dm_bm_unlock(sblock);
  1115. return 0;
  1116. }
  1117. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1118. dm_block_t *result)
  1119. {
  1120. int r = -EINVAL;
  1121. down_read(&pmd->root_lock);
  1122. if (!pmd->fail_io)
  1123. r = __get_metadata_snap(pmd, result);
  1124. up_read(&pmd->root_lock);
  1125. return r;
  1126. }
  1127. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1128. struct dm_thin_device **td)
  1129. {
  1130. int r = -EINVAL;
  1131. down_write(&pmd->root_lock);
  1132. if (!pmd->fail_io)
  1133. r = __open_device(pmd, dev, 0, td);
  1134. up_write(&pmd->root_lock);
  1135. return r;
  1136. }
  1137. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1138. {
  1139. down_write(&td->pmd->root_lock);
  1140. __close_device(td);
  1141. up_write(&td->pmd->root_lock);
  1142. return 0;
  1143. }
  1144. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1145. {
  1146. return td->id;
  1147. }
  1148. /*
  1149. * Check whether @time (of block creation) is older than @td's last snapshot.
  1150. * If so then the associated block is shared with the last snapshot device.
  1151. * Any block on a device created *after* the device last got snapshotted is
  1152. * necessarily not shared.
  1153. */
  1154. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1155. {
  1156. return td->snapshotted_time > time;
  1157. }
  1158. static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
  1159. struct dm_thin_lookup_result *result)
  1160. {
  1161. uint64_t block_time = 0;
  1162. dm_block_t exception_block;
  1163. uint32_t exception_time;
  1164. block_time = le64_to_cpu(value);
  1165. unpack_block_time(block_time, &exception_block, &exception_time);
  1166. result->block = exception_block;
  1167. result->shared = __snapshotted_since(td, exception_time);
  1168. }
  1169. static int __find_block(struct dm_thin_device *td, dm_block_t block,
  1170. int can_issue_io, struct dm_thin_lookup_result *result)
  1171. {
  1172. int r;
  1173. __le64 value;
  1174. struct dm_pool_metadata *pmd = td->pmd;
  1175. dm_block_t keys[2] = { td->id, block };
  1176. struct dm_btree_info *info;
  1177. if (can_issue_io) {
  1178. info = &pmd->info;
  1179. } else
  1180. info = &pmd->nb_info;
  1181. r = dm_btree_lookup(info, pmd->root, keys, &value);
  1182. if (!r)
  1183. unpack_lookup_result(td, value, result);
  1184. return r;
  1185. }
  1186. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1187. int can_issue_io, struct dm_thin_lookup_result *result)
  1188. {
  1189. int r;
  1190. struct dm_pool_metadata *pmd = td->pmd;
  1191. down_read(&pmd->root_lock);
  1192. if (pmd->fail_io) {
  1193. up_read(&pmd->root_lock);
  1194. return -EINVAL;
  1195. }
  1196. r = __find_block(td, block, can_issue_io, result);
  1197. up_read(&pmd->root_lock);
  1198. return r;
  1199. }
  1200. static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
  1201. dm_block_t *vblock,
  1202. struct dm_thin_lookup_result *result)
  1203. {
  1204. int r;
  1205. __le64 value;
  1206. struct dm_pool_metadata *pmd = td->pmd;
  1207. dm_block_t keys[2] = { td->id, block };
  1208. r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
  1209. if (!r)
  1210. unpack_lookup_result(td, value, result);
  1211. return r;
  1212. }
  1213. static int __find_mapped_range(struct dm_thin_device *td,
  1214. dm_block_t begin, dm_block_t end,
  1215. dm_block_t *thin_begin, dm_block_t *thin_end,
  1216. dm_block_t *pool_begin, bool *maybe_shared)
  1217. {
  1218. int r;
  1219. dm_block_t pool_end;
  1220. struct dm_thin_lookup_result lookup;
  1221. if (end < begin)
  1222. return -ENODATA;
  1223. r = __find_next_mapped_block(td, begin, &begin, &lookup);
  1224. if (r)
  1225. return r;
  1226. if (begin >= end)
  1227. return -ENODATA;
  1228. *thin_begin = begin;
  1229. *pool_begin = lookup.block;
  1230. *maybe_shared = lookup.shared;
  1231. begin++;
  1232. pool_end = *pool_begin + 1;
  1233. while (begin != end) {
  1234. r = __find_block(td, begin, true, &lookup);
  1235. if (r) {
  1236. if (r == -ENODATA)
  1237. break;
  1238. else
  1239. return r;
  1240. }
  1241. if ((lookup.block != pool_end) ||
  1242. (lookup.shared != *maybe_shared))
  1243. break;
  1244. pool_end++;
  1245. begin++;
  1246. }
  1247. *thin_end = begin;
  1248. return 0;
  1249. }
  1250. int dm_thin_find_mapped_range(struct dm_thin_device *td,
  1251. dm_block_t begin, dm_block_t end,
  1252. dm_block_t *thin_begin, dm_block_t *thin_end,
  1253. dm_block_t *pool_begin, bool *maybe_shared)
  1254. {
  1255. int r = -EINVAL;
  1256. struct dm_pool_metadata *pmd = td->pmd;
  1257. down_read(&pmd->root_lock);
  1258. if (!pmd->fail_io) {
  1259. r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
  1260. pool_begin, maybe_shared);
  1261. }
  1262. up_read(&pmd->root_lock);
  1263. return r;
  1264. }
  1265. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1266. dm_block_t data_block)
  1267. {
  1268. int r, inserted;
  1269. __le64 value;
  1270. struct dm_pool_metadata *pmd = td->pmd;
  1271. dm_block_t keys[2] = { td->id, block };
  1272. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1273. __dm_bless_for_disk(&value);
  1274. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1275. &pmd->root, &inserted);
  1276. if (r)
  1277. return r;
  1278. td->changed = 1;
  1279. if (inserted)
  1280. td->mapped_blocks++;
  1281. return 0;
  1282. }
  1283. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1284. dm_block_t data_block)
  1285. {
  1286. int r = -EINVAL;
  1287. down_write(&td->pmd->root_lock);
  1288. if (!td->pmd->fail_io)
  1289. r = __insert(td, block, data_block);
  1290. up_write(&td->pmd->root_lock);
  1291. return r;
  1292. }
  1293. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1294. {
  1295. int r;
  1296. struct dm_pool_metadata *pmd = td->pmd;
  1297. dm_block_t keys[2] = { td->id, block };
  1298. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1299. if (r)
  1300. return r;
  1301. td->mapped_blocks--;
  1302. td->changed = 1;
  1303. return 0;
  1304. }
  1305. static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
  1306. {
  1307. int r;
  1308. unsigned count, total_count = 0;
  1309. struct dm_pool_metadata *pmd = td->pmd;
  1310. dm_block_t keys[1] = { td->id };
  1311. __le64 value;
  1312. dm_block_t mapping_root;
  1313. /*
  1314. * Find the mapping tree
  1315. */
  1316. r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
  1317. if (r)
  1318. return r;
  1319. /*
  1320. * Remove from the mapping tree, taking care to inc the
  1321. * ref count so it doesn't get deleted.
  1322. */
  1323. mapping_root = le64_to_cpu(value);
  1324. dm_tm_inc(pmd->tm, mapping_root);
  1325. r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
  1326. if (r)
  1327. return r;
  1328. /*
  1329. * Remove leaves stops at the first unmapped entry, so we have to
  1330. * loop round finding mapped ranges.
  1331. */
  1332. while (begin < end) {
  1333. r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
  1334. if (r == -ENODATA)
  1335. break;
  1336. if (r)
  1337. return r;
  1338. if (begin >= end)
  1339. break;
  1340. r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
  1341. if (r)
  1342. return r;
  1343. total_count += count;
  1344. }
  1345. td->mapped_blocks -= total_count;
  1346. td->changed = 1;
  1347. /*
  1348. * Reinsert the mapping tree.
  1349. */
  1350. value = cpu_to_le64(mapping_root);
  1351. __dm_bless_for_disk(&value);
  1352. return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
  1353. }
  1354. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1355. {
  1356. int r = -EINVAL;
  1357. down_write(&td->pmd->root_lock);
  1358. if (!td->pmd->fail_io)
  1359. r = __remove(td, block);
  1360. up_write(&td->pmd->root_lock);
  1361. return r;
  1362. }
  1363. int dm_thin_remove_range(struct dm_thin_device *td,
  1364. dm_block_t begin, dm_block_t end)
  1365. {
  1366. int r = -EINVAL;
  1367. down_write(&td->pmd->root_lock);
  1368. if (!td->pmd->fail_io)
  1369. r = __remove_range(td, begin, end);
  1370. up_write(&td->pmd->root_lock);
  1371. return r;
  1372. }
  1373. int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
  1374. {
  1375. int r;
  1376. uint32_t ref_count;
  1377. down_read(&pmd->root_lock);
  1378. r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
  1379. if (!r)
  1380. *result = (ref_count > 1);
  1381. up_read(&pmd->root_lock);
  1382. return r;
  1383. }
  1384. int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
  1385. {
  1386. int r = 0;
  1387. down_write(&pmd->root_lock);
  1388. for (; b != e; b++) {
  1389. r = dm_sm_inc_block(pmd->data_sm, b);
  1390. if (r)
  1391. break;
  1392. }
  1393. up_write(&pmd->root_lock);
  1394. return r;
  1395. }
  1396. int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
  1397. {
  1398. int r = 0;
  1399. down_write(&pmd->root_lock);
  1400. for (; b != e; b++) {
  1401. r = dm_sm_dec_block(pmd->data_sm, b);
  1402. if (r)
  1403. break;
  1404. }
  1405. up_write(&pmd->root_lock);
  1406. return r;
  1407. }
  1408. bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
  1409. {
  1410. int r;
  1411. down_read(&td->pmd->root_lock);
  1412. r = td->changed;
  1413. up_read(&td->pmd->root_lock);
  1414. return r;
  1415. }
  1416. bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
  1417. {
  1418. bool r = false;
  1419. struct dm_thin_device *td, *tmp;
  1420. down_read(&pmd->root_lock);
  1421. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  1422. if (td->changed) {
  1423. r = td->changed;
  1424. break;
  1425. }
  1426. }
  1427. up_read(&pmd->root_lock);
  1428. return r;
  1429. }
  1430. bool dm_thin_aborted_changes(struct dm_thin_device *td)
  1431. {
  1432. bool r;
  1433. down_read(&td->pmd->root_lock);
  1434. r = td->aborted_with_changes;
  1435. up_read(&td->pmd->root_lock);
  1436. return r;
  1437. }
  1438. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1439. {
  1440. int r = -EINVAL;
  1441. down_write(&pmd->root_lock);
  1442. if (!pmd->fail_io)
  1443. r = dm_sm_new_block(pmd->data_sm, result);
  1444. up_write(&pmd->root_lock);
  1445. return r;
  1446. }
  1447. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1448. {
  1449. int r = -EINVAL;
  1450. down_write(&pmd->root_lock);
  1451. if (pmd->fail_io)
  1452. goto out;
  1453. r = __commit_transaction(pmd);
  1454. if (r <= 0)
  1455. goto out;
  1456. /*
  1457. * Open the next transaction.
  1458. */
  1459. r = __begin_transaction(pmd);
  1460. out:
  1461. up_write(&pmd->root_lock);
  1462. return r;
  1463. }
  1464. static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
  1465. {
  1466. struct dm_thin_device *td;
  1467. list_for_each_entry(td, &pmd->thin_devices, list)
  1468. td->aborted_with_changes = td->changed;
  1469. }
  1470. int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
  1471. {
  1472. int r = -EINVAL;
  1473. down_write(&pmd->root_lock);
  1474. if (pmd->fail_io)
  1475. goto out;
  1476. __set_abort_with_changes_flags(pmd);
  1477. __destroy_persistent_data_objects(pmd);
  1478. r = __create_persistent_data_objects(pmd, false);
  1479. if (r)
  1480. pmd->fail_io = true;
  1481. out:
  1482. up_write(&pmd->root_lock);
  1483. return r;
  1484. }
  1485. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1486. {
  1487. int r = -EINVAL;
  1488. down_read(&pmd->root_lock);
  1489. if (!pmd->fail_io)
  1490. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1491. up_read(&pmd->root_lock);
  1492. return r;
  1493. }
  1494. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1495. dm_block_t *result)
  1496. {
  1497. int r = -EINVAL;
  1498. down_read(&pmd->root_lock);
  1499. if (!pmd->fail_io)
  1500. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1501. if (!r) {
  1502. if (*result < pmd->metadata_reserve)
  1503. *result = 0;
  1504. else
  1505. *result -= pmd->metadata_reserve;
  1506. }
  1507. up_read(&pmd->root_lock);
  1508. return r;
  1509. }
  1510. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1511. dm_block_t *result)
  1512. {
  1513. int r = -EINVAL;
  1514. down_read(&pmd->root_lock);
  1515. if (!pmd->fail_io)
  1516. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1517. up_read(&pmd->root_lock);
  1518. return r;
  1519. }
  1520. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1521. {
  1522. int r = -EINVAL;
  1523. down_read(&pmd->root_lock);
  1524. if (!pmd->fail_io)
  1525. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1526. up_read(&pmd->root_lock);
  1527. return r;
  1528. }
  1529. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1530. {
  1531. int r = -EINVAL;
  1532. struct dm_pool_metadata *pmd = td->pmd;
  1533. down_read(&pmd->root_lock);
  1534. if (!pmd->fail_io) {
  1535. *result = td->mapped_blocks;
  1536. r = 0;
  1537. }
  1538. up_read(&pmd->root_lock);
  1539. return r;
  1540. }
  1541. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1542. {
  1543. int r;
  1544. __le64 value_le;
  1545. dm_block_t thin_root;
  1546. struct dm_pool_metadata *pmd = td->pmd;
  1547. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1548. if (r)
  1549. return r;
  1550. thin_root = le64_to_cpu(value_le);
  1551. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1552. }
  1553. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1554. dm_block_t *result)
  1555. {
  1556. int r = -EINVAL;
  1557. struct dm_pool_metadata *pmd = td->pmd;
  1558. down_read(&pmd->root_lock);
  1559. if (!pmd->fail_io)
  1560. r = __highest_block(td, result);
  1561. up_read(&pmd->root_lock);
  1562. return r;
  1563. }
  1564. static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
  1565. {
  1566. int r;
  1567. dm_block_t old_count;
  1568. r = dm_sm_get_nr_blocks(sm, &old_count);
  1569. if (r)
  1570. return r;
  1571. if (new_count == old_count)
  1572. return 0;
  1573. if (new_count < old_count) {
  1574. DMERR("cannot reduce size of space map");
  1575. return -EINVAL;
  1576. }
  1577. return dm_sm_extend(sm, new_count - old_count);
  1578. }
  1579. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1580. {
  1581. int r = -EINVAL;
  1582. down_write(&pmd->root_lock);
  1583. if (!pmd->fail_io)
  1584. r = __resize_space_map(pmd->data_sm, new_count);
  1585. up_write(&pmd->root_lock);
  1586. return r;
  1587. }
  1588. int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1589. {
  1590. int r = -EINVAL;
  1591. down_write(&pmd->root_lock);
  1592. if (!pmd->fail_io) {
  1593. r = __resize_space_map(pmd->metadata_sm, new_count);
  1594. if (!r)
  1595. __set_metadata_reserve(pmd);
  1596. }
  1597. up_write(&pmd->root_lock);
  1598. return r;
  1599. }
  1600. void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
  1601. {
  1602. down_write(&pmd->root_lock);
  1603. dm_bm_set_read_only(pmd->bm);
  1604. up_write(&pmd->root_lock);
  1605. }
  1606. void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
  1607. {
  1608. down_write(&pmd->root_lock);
  1609. dm_bm_set_read_write(pmd->bm);
  1610. up_write(&pmd->root_lock);
  1611. }
  1612. int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
  1613. dm_block_t threshold,
  1614. dm_sm_threshold_fn fn,
  1615. void *context)
  1616. {
  1617. int r;
  1618. down_write(&pmd->root_lock);
  1619. r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
  1620. up_write(&pmd->root_lock);
  1621. return r;
  1622. }
  1623. int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
  1624. {
  1625. int r = -EINVAL;
  1626. struct dm_block *sblock;
  1627. struct thin_disk_superblock *disk_super;
  1628. down_write(&pmd->root_lock);
  1629. if (pmd->fail_io)
  1630. goto out;
  1631. pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
  1632. r = superblock_lock(pmd, &sblock);
  1633. if (r) {
  1634. DMERR("couldn't lock superblock");
  1635. goto out;
  1636. }
  1637. disk_super = dm_block_data(sblock);
  1638. disk_super->flags = cpu_to_le32(pmd->flags);
  1639. dm_bm_unlock(sblock);
  1640. out:
  1641. up_write(&pmd->root_lock);
  1642. return r;
  1643. }
  1644. bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
  1645. {
  1646. bool needs_check;
  1647. down_read(&pmd->root_lock);
  1648. needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
  1649. up_read(&pmd->root_lock);
  1650. return needs_check;
  1651. }
  1652. void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
  1653. {
  1654. down_read(&pmd->root_lock);
  1655. if (!pmd->fail_io)
  1656. dm_tm_issue_prefetches(pmd->tm);
  1657. up_read(&pmd->root_lock);
  1658. }