sfp.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957
  1. #include <linux/ctype.h>
  2. #include <linux/delay.h>
  3. #include <linux/gpio/consumer.h>
  4. #include <linux/hwmon.h>
  5. #include <linux/i2c.h>
  6. #include <linux/interrupt.h>
  7. #include <linux/jiffies.h>
  8. #include <linux/module.h>
  9. #include <linux/mutex.h>
  10. #include <linux/of.h>
  11. #include <linux/phy.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/rtnetlink.h>
  14. #include <linux/slab.h>
  15. #include <linux/workqueue.h>
  16. #include "mdio-i2c.h"
  17. #include "sfp.h"
  18. #include "swphy.h"
  19. enum {
  20. GPIO_MODDEF0,
  21. GPIO_LOS,
  22. GPIO_TX_FAULT,
  23. GPIO_TX_DISABLE,
  24. GPIO_RATE_SELECT,
  25. GPIO_MAX,
  26. SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  27. SFP_F_LOS = BIT(GPIO_LOS),
  28. SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  29. SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  30. SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  31. SFP_E_INSERT = 0,
  32. SFP_E_REMOVE,
  33. SFP_E_DEV_DOWN,
  34. SFP_E_DEV_UP,
  35. SFP_E_TX_FAULT,
  36. SFP_E_TX_CLEAR,
  37. SFP_E_LOS_HIGH,
  38. SFP_E_LOS_LOW,
  39. SFP_E_TIMEOUT,
  40. SFP_MOD_EMPTY = 0,
  41. SFP_MOD_PROBE,
  42. SFP_MOD_HPOWER,
  43. SFP_MOD_PRESENT,
  44. SFP_MOD_ERROR,
  45. SFP_DEV_DOWN = 0,
  46. SFP_DEV_UP,
  47. SFP_S_DOWN = 0,
  48. SFP_S_INIT,
  49. SFP_S_WAIT_LOS,
  50. SFP_S_LINK_UP,
  51. SFP_S_TX_FAULT,
  52. SFP_S_REINIT,
  53. SFP_S_TX_DISABLE,
  54. };
  55. static const char * const mod_state_strings[] = {
  56. [SFP_MOD_EMPTY] = "empty",
  57. [SFP_MOD_PROBE] = "probe",
  58. [SFP_MOD_HPOWER] = "hpower",
  59. [SFP_MOD_PRESENT] = "present",
  60. [SFP_MOD_ERROR] = "error",
  61. };
  62. static const char *mod_state_to_str(unsigned short mod_state)
  63. {
  64. if (mod_state >= ARRAY_SIZE(mod_state_strings))
  65. return "Unknown module state";
  66. return mod_state_strings[mod_state];
  67. }
  68. static const char * const dev_state_strings[] = {
  69. [SFP_DEV_DOWN] = "down",
  70. [SFP_DEV_UP] = "up",
  71. };
  72. static const char *dev_state_to_str(unsigned short dev_state)
  73. {
  74. if (dev_state >= ARRAY_SIZE(dev_state_strings))
  75. return "Unknown device state";
  76. return dev_state_strings[dev_state];
  77. }
  78. static const char * const event_strings[] = {
  79. [SFP_E_INSERT] = "insert",
  80. [SFP_E_REMOVE] = "remove",
  81. [SFP_E_DEV_DOWN] = "dev_down",
  82. [SFP_E_DEV_UP] = "dev_up",
  83. [SFP_E_TX_FAULT] = "tx_fault",
  84. [SFP_E_TX_CLEAR] = "tx_clear",
  85. [SFP_E_LOS_HIGH] = "los_high",
  86. [SFP_E_LOS_LOW] = "los_low",
  87. [SFP_E_TIMEOUT] = "timeout",
  88. };
  89. static const char *event_to_str(unsigned short event)
  90. {
  91. if (event >= ARRAY_SIZE(event_strings))
  92. return "Unknown event";
  93. return event_strings[event];
  94. }
  95. static const char * const sm_state_strings[] = {
  96. [SFP_S_DOWN] = "down",
  97. [SFP_S_INIT] = "init",
  98. [SFP_S_WAIT_LOS] = "wait_los",
  99. [SFP_S_LINK_UP] = "link_up",
  100. [SFP_S_TX_FAULT] = "tx_fault",
  101. [SFP_S_REINIT] = "reinit",
  102. [SFP_S_TX_DISABLE] = "rx_disable",
  103. };
  104. static const char *sm_state_to_str(unsigned short sm_state)
  105. {
  106. if (sm_state >= ARRAY_SIZE(sm_state_strings))
  107. return "Unknown state";
  108. return sm_state_strings[sm_state];
  109. }
  110. static const char *gpio_of_names[] = {
  111. "mod-def0",
  112. "los",
  113. "tx-fault",
  114. "tx-disable",
  115. "rate-select0",
  116. };
  117. static const enum gpiod_flags gpio_flags[] = {
  118. GPIOD_IN,
  119. GPIOD_IN,
  120. GPIOD_IN,
  121. GPIOD_ASIS,
  122. GPIOD_ASIS,
  123. };
  124. #define T_INIT_JIFFIES msecs_to_jiffies(300)
  125. #define T_RESET_US 10
  126. #define T_FAULT_RECOVER msecs_to_jiffies(1000)
  127. /* SFP module presence detection is poor: the three MOD DEF signals are
  128. * the same length on the PCB, which means it's possible for MOD DEF 0 to
  129. * connect before the I2C bus on MOD DEF 1/2.
  130. *
  131. * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
  132. * be deasserted) but makes no mention of the earliest time before we can
  133. * access the I2C EEPROM. However, Avago modules require 300ms.
  134. */
  135. #define T_PROBE_INIT msecs_to_jiffies(300)
  136. #define T_HPOWER_LEVEL msecs_to_jiffies(300)
  137. #define T_PROBE_RETRY msecs_to_jiffies(100)
  138. /* SFP modules appear to always have their PHY configured for bus address
  139. * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
  140. */
  141. #define SFP_PHY_ADDR 22
  142. /* Give this long for the PHY to reset. */
  143. #define T_PHY_RESET_MS 50
  144. struct sff_data {
  145. unsigned int gpios;
  146. bool (*module_supported)(const struct sfp_eeprom_id *id);
  147. };
  148. struct sfp {
  149. struct device *dev;
  150. struct i2c_adapter *i2c;
  151. struct mii_bus *i2c_mii;
  152. struct sfp_bus *sfp_bus;
  153. struct phy_device *mod_phy;
  154. const struct sff_data *type;
  155. u32 max_power_mW;
  156. unsigned int (*get_state)(struct sfp *);
  157. void (*set_state)(struct sfp *, unsigned int);
  158. int (*read)(struct sfp *, bool, u8, void *, size_t);
  159. int (*write)(struct sfp *, bool, u8, void *, size_t);
  160. struct gpio_desc *gpio[GPIO_MAX];
  161. bool attached;
  162. struct mutex st_mutex; /* Protects state */
  163. unsigned int state;
  164. struct delayed_work poll;
  165. struct delayed_work timeout;
  166. struct mutex sm_mutex; /* Protects state machine */
  167. unsigned char sm_mod_state;
  168. unsigned char sm_dev_state;
  169. unsigned short sm_state;
  170. unsigned int sm_retries;
  171. struct sfp_eeprom_id id;
  172. #if IS_ENABLED(CONFIG_HWMON)
  173. struct sfp_diag diag;
  174. struct device *hwmon_dev;
  175. char *hwmon_name;
  176. #endif
  177. };
  178. static bool sff_module_supported(const struct sfp_eeprom_id *id)
  179. {
  180. return id->base.phys_id == SFP_PHYS_ID_SFF &&
  181. id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
  182. }
  183. static const struct sff_data sff_data = {
  184. .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
  185. .module_supported = sff_module_supported,
  186. };
  187. static bool sfp_module_supported(const struct sfp_eeprom_id *id)
  188. {
  189. return id->base.phys_id == SFP_PHYS_ID_SFP &&
  190. id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
  191. }
  192. static const struct sff_data sfp_data = {
  193. .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
  194. SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
  195. .module_supported = sfp_module_supported,
  196. };
  197. static const struct of_device_id sfp_of_match[] = {
  198. { .compatible = "sff,sff", .data = &sff_data, },
  199. { .compatible = "sff,sfp", .data = &sfp_data, },
  200. { },
  201. };
  202. MODULE_DEVICE_TABLE(of, sfp_of_match);
  203. static unsigned long poll_jiffies;
  204. static unsigned int sfp_gpio_get_state(struct sfp *sfp)
  205. {
  206. unsigned int i, state, v;
  207. for (i = state = 0; i < GPIO_MAX; i++) {
  208. if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
  209. continue;
  210. v = gpiod_get_value_cansleep(sfp->gpio[i]);
  211. if (v)
  212. state |= BIT(i);
  213. }
  214. return state;
  215. }
  216. static unsigned int sff_gpio_get_state(struct sfp *sfp)
  217. {
  218. return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
  219. }
  220. static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
  221. {
  222. if (state & SFP_F_PRESENT) {
  223. /* If the module is present, drive the signals */
  224. if (sfp->gpio[GPIO_TX_DISABLE])
  225. gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
  226. state & SFP_F_TX_DISABLE);
  227. if (state & SFP_F_RATE_SELECT)
  228. gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
  229. state & SFP_F_RATE_SELECT);
  230. } else {
  231. /* Otherwise, let them float to the pull-ups */
  232. if (sfp->gpio[GPIO_TX_DISABLE])
  233. gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
  234. if (state & SFP_F_RATE_SELECT)
  235. gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
  236. }
  237. }
  238. static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
  239. size_t len)
  240. {
  241. struct i2c_msg msgs[2];
  242. u8 bus_addr = a2 ? 0x51 : 0x50;
  243. size_t this_len;
  244. int ret;
  245. msgs[0].addr = bus_addr;
  246. msgs[0].flags = 0;
  247. msgs[0].len = 1;
  248. msgs[0].buf = &dev_addr;
  249. msgs[1].addr = bus_addr;
  250. msgs[1].flags = I2C_M_RD;
  251. msgs[1].len = len;
  252. msgs[1].buf = buf;
  253. while (len) {
  254. this_len = len;
  255. if (this_len > 16)
  256. this_len = 16;
  257. msgs[1].len = this_len;
  258. ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
  259. if (ret < 0)
  260. return ret;
  261. if (ret != ARRAY_SIZE(msgs))
  262. break;
  263. msgs[1].buf += this_len;
  264. dev_addr += this_len;
  265. len -= this_len;
  266. }
  267. return msgs[1].buf - (u8 *)buf;
  268. }
  269. static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
  270. size_t len)
  271. {
  272. struct i2c_msg msgs[1];
  273. u8 bus_addr = a2 ? 0x51 : 0x50;
  274. int ret;
  275. msgs[0].addr = bus_addr;
  276. msgs[0].flags = 0;
  277. msgs[0].len = 1 + len;
  278. msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
  279. if (!msgs[0].buf)
  280. return -ENOMEM;
  281. msgs[0].buf[0] = dev_addr;
  282. memcpy(&msgs[0].buf[1], buf, len);
  283. ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
  284. kfree(msgs[0].buf);
  285. if (ret < 0)
  286. return ret;
  287. return ret == ARRAY_SIZE(msgs) ? len : 0;
  288. }
  289. static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
  290. {
  291. struct mii_bus *i2c_mii;
  292. int ret;
  293. if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
  294. return -EINVAL;
  295. sfp->i2c = i2c;
  296. sfp->read = sfp_i2c_read;
  297. sfp->write = sfp_i2c_write;
  298. i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
  299. if (IS_ERR(i2c_mii))
  300. return PTR_ERR(i2c_mii);
  301. i2c_mii->name = "SFP I2C Bus";
  302. i2c_mii->phy_mask = ~0;
  303. ret = mdiobus_register(i2c_mii);
  304. if (ret < 0) {
  305. mdiobus_free(i2c_mii);
  306. return ret;
  307. }
  308. sfp->i2c_mii = i2c_mii;
  309. return 0;
  310. }
  311. /* Interface */
  312. static unsigned int sfp_get_state(struct sfp *sfp)
  313. {
  314. return sfp->get_state(sfp);
  315. }
  316. static void sfp_set_state(struct sfp *sfp, unsigned int state)
  317. {
  318. sfp->set_state(sfp, state);
  319. }
  320. static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
  321. {
  322. return sfp->read(sfp, a2, addr, buf, len);
  323. }
  324. static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
  325. {
  326. return sfp->write(sfp, a2, addr, buf, len);
  327. }
  328. static unsigned int sfp_check(void *buf, size_t len)
  329. {
  330. u8 *p, check;
  331. for (p = buf, check = 0; len; p++, len--)
  332. check += *p;
  333. return check;
  334. }
  335. /* hwmon */
  336. #if IS_ENABLED(CONFIG_HWMON)
  337. static umode_t sfp_hwmon_is_visible(const void *data,
  338. enum hwmon_sensor_types type,
  339. u32 attr, int channel)
  340. {
  341. const struct sfp *sfp = data;
  342. switch (type) {
  343. case hwmon_temp:
  344. switch (attr) {
  345. case hwmon_temp_min_alarm:
  346. case hwmon_temp_max_alarm:
  347. case hwmon_temp_lcrit_alarm:
  348. case hwmon_temp_crit_alarm:
  349. case hwmon_temp_min:
  350. case hwmon_temp_max:
  351. case hwmon_temp_lcrit:
  352. case hwmon_temp_crit:
  353. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  354. return 0;
  355. /* fall through */
  356. case hwmon_temp_input:
  357. return 0444;
  358. default:
  359. return 0;
  360. }
  361. case hwmon_in:
  362. switch (attr) {
  363. case hwmon_in_min_alarm:
  364. case hwmon_in_max_alarm:
  365. case hwmon_in_lcrit_alarm:
  366. case hwmon_in_crit_alarm:
  367. case hwmon_in_min:
  368. case hwmon_in_max:
  369. case hwmon_in_lcrit:
  370. case hwmon_in_crit:
  371. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  372. return 0;
  373. /* fall through */
  374. case hwmon_in_input:
  375. return 0444;
  376. default:
  377. return 0;
  378. }
  379. case hwmon_curr:
  380. switch (attr) {
  381. case hwmon_curr_min_alarm:
  382. case hwmon_curr_max_alarm:
  383. case hwmon_curr_lcrit_alarm:
  384. case hwmon_curr_crit_alarm:
  385. case hwmon_curr_min:
  386. case hwmon_curr_max:
  387. case hwmon_curr_lcrit:
  388. case hwmon_curr_crit:
  389. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  390. return 0;
  391. /* fall through */
  392. case hwmon_curr_input:
  393. return 0444;
  394. default:
  395. return 0;
  396. }
  397. case hwmon_power:
  398. /* External calibration of receive power requires
  399. * floating point arithmetic. Doing that in the kernel
  400. * is not easy, so just skip it. If the module does
  401. * not require external calibration, we can however
  402. * show receiver power, since FP is then not needed.
  403. */
  404. if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
  405. channel == 1)
  406. return 0;
  407. switch (attr) {
  408. case hwmon_power_min_alarm:
  409. case hwmon_power_max_alarm:
  410. case hwmon_power_lcrit_alarm:
  411. case hwmon_power_crit_alarm:
  412. case hwmon_power_min:
  413. case hwmon_power_max:
  414. case hwmon_power_lcrit:
  415. case hwmon_power_crit:
  416. if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
  417. return 0;
  418. /* fall through */
  419. case hwmon_power_input:
  420. return 0444;
  421. default:
  422. return 0;
  423. }
  424. default:
  425. return 0;
  426. }
  427. }
  428. static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
  429. {
  430. __be16 val;
  431. int err;
  432. err = sfp_read(sfp, true, reg, &val, sizeof(val));
  433. if (err < 0)
  434. return err;
  435. *value = be16_to_cpu(val);
  436. return 0;
  437. }
  438. static void sfp_hwmon_to_rx_power(long *value)
  439. {
  440. *value = DIV_ROUND_CLOSEST(*value, 10);
  441. }
  442. static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
  443. long *value)
  444. {
  445. if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
  446. *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
  447. }
  448. static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
  449. {
  450. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
  451. be16_to_cpu(sfp->diag.cal_t_offset), value);
  452. if (*value >= 0x8000)
  453. *value -= 0x10000;
  454. *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
  455. }
  456. static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
  457. {
  458. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
  459. be16_to_cpu(sfp->diag.cal_v_offset), value);
  460. *value = DIV_ROUND_CLOSEST(*value, 10);
  461. }
  462. static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
  463. {
  464. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
  465. be16_to_cpu(sfp->diag.cal_txi_offset), value);
  466. *value = DIV_ROUND_CLOSEST(*value, 500);
  467. }
  468. static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
  469. {
  470. sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
  471. be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
  472. *value = DIV_ROUND_CLOSEST(*value, 10);
  473. }
  474. static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
  475. {
  476. int err;
  477. err = sfp_hwmon_read_sensor(sfp, reg, value);
  478. if (err < 0)
  479. return err;
  480. sfp_hwmon_calibrate_temp(sfp, value);
  481. return 0;
  482. }
  483. static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
  484. {
  485. int err;
  486. err = sfp_hwmon_read_sensor(sfp, reg, value);
  487. if (err < 0)
  488. return err;
  489. sfp_hwmon_calibrate_vcc(sfp, value);
  490. return 0;
  491. }
  492. static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
  493. {
  494. int err;
  495. err = sfp_hwmon_read_sensor(sfp, reg, value);
  496. if (err < 0)
  497. return err;
  498. sfp_hwmon_calibrate_bias(sfp, value);
  499. return 0;
  500. }
  501. static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
  502. {
  503. int err;
  504. err = sfp_hwmon_read_sensor(sfp, reg, value);
  505. if (err < 0)
  506. return err;
  507. sfp_hwmon_calibrate_tx_power(sfp, value);
  508. return 0;
  509. }
  510. static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
  511. {
  512. int err;
  513. err = sfp_hwmon_read_sensor(sfp, reg, value);
  514. if (err < 0)
  515. return err;
  516. sfp_hwmon_to_rx_power(value);
  517. return 0;
  518. }
  519. static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
  520. {
  521. u8 status;
  522. int err;
  523. switch (attr) {
  524. case hwmon_temp_input:
  525. return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
  526. case hwmon_temp_lcrit:
  527. *value = be16_to_cpu(sfp->diag.temp_low_alarm);
  528. sfp_hwmon_calibrate_temp(sfp, value);
  529. return 0;
  530. case hwmon_temp_min:
  531. *value = be16_to_cpu(sfp->diag.temp_low_warn);
  532. sfp_hwmon_calibrate_temp(sfp, value);
  533. return 0;
  534. case hwmon_temp_max:
  535. *value = be16_to_cpu(sfp->diag.temp_high_warn);
  536. sfp_hwmon_calibrate_temp(sfp, value);
  537. return 0;
  538. case hwmon_temp_crit:
  539. *value = be16_to_cpu(sfp->diag.temp_high_alarm);
  540. sfp_hwmon_calibrate_temp(sfp, value);
  541. return 0;
  542. case hwmon_temp_lcrit_alarm:
  543. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  544. if (err < 0)
  545. return err;
  546. *value = !!(status & SFP_ALARM0_TEMP_LOW);
  547. return 0;
  548. case hwmon_temp_min_alarm:
  549. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  550. if (err < 0)
  551. return err;
  552. *value = !!(status & SFP_WARN0_TEMP_LOW);
  553. return 0;
  554. case hwmon_temp_max_alarm:
  555. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  556. if (err < 0)
  557. return err;
  558. *value = !!(status & SFP_WARN0_TEMP_HIGH);
  559. return 0;
  560. case hwmon_temp_crit_alarm:
  561. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  562. if (err < 0)
  563. return err;
  564. *value = !!(status & SFP_ALARM0_TEMP_HIGH);
  565. return 0;
  566. default:
  567. return -EOPNOTSUPP;
  568. }
  569. return -EOPNOTSUPP;
  570. }
  571. static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
  572. {
  573. u8 status;
  574. int err;
  575. switch (attr) {
  576. case hwmon_in_input:
  577. return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
  578. case hwmon_in_lcrit:
  579. *value = be16_to_cpu(sfp->diag.volt_low_alarm);
  580. sfp_hwmon_calibrate_vcc(sfp, value);
  581. return 0;
  582. case hwmon_in_min:
  583. *value = be16_to_cpu(sfp->diag.volt_low_warn);
  584. sfp_hwmon_calibrate_vcc(sfp, value);
  585. return 0;
  586. case hwmon_in_max:
  587. *value = be16_to_cpu(sfp->diag.volt_high_warn);
  588. sfp_hwmon_calibrate_vcc(sfp, value);
  589. return 0;
  590. case hwmon_in_crit:
  591. *value = be16_to_cpu(sfp->diag.volt_high_alarm);
  592. sfp_hwmon_calibrate_vcc(sfp, value);
  593. return 0;
  594. case hwmon_in_lcrit_alarm:
  595. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  596. if (err < 0)
  597. return err;
  598. *value = !!(status & SFP_ALARM0_VCC_LOW);
  599. return 0;
  600. case hwmon_in_min_alarm:
  601. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  602. if (err < 0)
  603. return err;
  604. *value = !!(status & SFP_WARN0_VCC_LOW);
  605. return 0;
  606. case hwmon_in_max_alarm:
  607. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  608. if (err < 0)
  609. return err;
  610. *value = !!(status & SFP_WARN0_VCC_HIGH);
  611. return 0;
  612. case hwmon_in_crit_alarm:
  613. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  614. if (err < 0)
  615. return err;
  616. *value = !!(status & SFP_ALARM0_VCC_HIGH);
  617. return 0;
  618. default:
  619. return -EOPNOTSUPP;
  620. }
  621. return -EOPNOTSUPP;
  622. }
  623. static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
  624. {
  625. u8 status;
  626. int err;
  627. switch (attr) {
  628. case hwmon_curr_input:
  629. return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
  630. case hwmon_curr_lcrit:
  631. *value = be16_to_cpu(sfp->diag.bias_low_alarm);
  632. sfp_hwmon_calibrate_bias(sfp, value);
  633. return 0;
  634. case hwmon_curr_min:
  635. *value = be16_to_cpu(sfp->diag.bias_low_warn);
  636. sfp_hwmon_calibrate_bias(sfp, value);
  637. return 0;
  638. case hwmon_curr_max:
  639. *value = be16_to_cpu(sfp->diag.bias_high_warn);
  640. sfp_hwmon_calibrate_bias(sfp, value);
  641. return 0;
  642. case hwmon_curr_crit:
  643. *value = be16_to_cpu(sfp->diag.bias_high_alarm);
  644. sfp_hwmon_calibrate_bias(sfp, value);
  645. return 0;
  646. case hwmon_curr_lcrit_alarm:
  647. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  648. if (err < 0)
  649. return err;
  650. *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
  651. return 0;
  652. case hwmon_curr_min_alarm:
  653. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  654. if (err < 0)
  655. return err;
  656. *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
  657. return 0;
  658. case hwmon_curr_max_alarm:
  659. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  660. if (err < 0)
  661. return err;
  662. *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
  663. return 0;
  664. case hwmon_curr_crit_alarm:
  665. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  666. if (err < 0)
  667. return err;
  668. *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
  669. return 0;
  670. default:
  671. return -EOPNOTSUPP;
  672. }
  673. return -EOPNOTSUPP;
  674. }
  675. static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
  676. {
  677. u8 status;
  678. int err;
  679. switch (attr) {
  680. case hwmon_power_input:
  681. return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
  682. case hwmon_power_lcrit:
  683. *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
  684. sfp_hwmon_calibrate_tx_power(sfp, value);
  685. return 0;
  686. case hwmon_power_min:
  687. *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
  688. sfp_hwmon_calibrate_tx_power(sfp, value);
  689. return 0;
  690. case hwmon_power_max:
  691. *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
  692. sfp_hwmon_calibrate_tx_power(sfp, value);
  693. return 0;
  694. case hwmon_power_crit:
  695. *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
  696. sfp_hwmon_calibrate_tx_power(sfp, value);
  697. return 0;
  698. case hwmon_power_lcrit_alarm:
  699. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  700. if (err < 0)
  701. return err;
  702. *value = !!(status & SFP_ALARM0_TXPWR_LOW);
  703. return 0;
  704. case hwmon_power_min_alarm:
  705. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  706. if (err < 0)
  707. return err;
  708. *value = !!(status & SFP_WARN0_TXPWR_LOW);
  709. return 0;
  710. case hwmon_power_max_alarm:
  711. err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
  712. if (err < 0)
  713. return err;
  714. *value = !!(status & SFP_WARN0_TXPWR_HIGH);
  715. return 0;
  716. case hwmon_power_crit_alarm:
  717. err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
  718. if (err < 0)
  719. return err;
  720. *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
  721. return 0;
  722. default:
  723. return -EOPNOTSUPP;
  724. }
  725. return -EOPNOTSUPP;
  726. }
  727. static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
  728. {
  729. u8 status;
  730. int err;
  731. switch (attr) {
  732. case hwmon_power_input:
  733. return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
  734. case hwmon_power_lcrit:
  735. *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
  736. sfp_hwmon_to_rx_power(value);
  737. return 0;
  738. case hwmon_power_min:
  739. *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
  740. sfp_hwmon_to_rx_power(value);
  741. return 0;
  742. case hwmon_power_max:
  743. *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
  744. sfp_hwmon_to_rx_power(value);
  745. return 0;
  746. case hwmon_power_crit:
  747. *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
  748. sfp_hwmon_to_rx_power(value);
  749. return 0;
  750. case hwmon_power_lcrit_alarm:
  751. err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
  752. if (err < 0)
  753. return err;
  754. *value = !!(status & SFP_ALARM1_RXPWR_LOW);
  755. return 0;
  756. case hwmon_power_min_alarm:
  757. err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
  758. if (err < 0)
  759. return err;
  760. *value = !!(status & SFP_WARN1_RXPWR_LOW);
  761. return 0;
  762. case hwmon_power_max_alarm:
  763. err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
  764. if (err < 0)
  765. return err;
  766. *value = !!(status & SFP_WARN1_RXPWR_HIGH);
  767. return 0;
  768. case hwmon_power_crit_alarm:
  769. err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
  770. if (err < 0)
  771. return err;
  772. *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
  773. return 0;
  774. default:
  775. return -EOPNOTSUPP;
  776. }
  777. return -EOPNOTSUPP;
  778. }
  779. static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
  780. u32 attr, int channel, long *value)
  781. {
  782. struct sfp *sfp = dev_get_drvdata(dev);
  783. switch (type) {
  784. case hwmon_temp:
  785. return sfp_hwmon_temp(sfp, attr, value);
  786. case hwmon_in:
  787. return sfp_hwmon_vcc(sfp, attr, value);
  788. case hwmon_curr:
  789. return sfp_hwmon_bias(sfp, attr, value);
  790. case hwmon_power:
  791. switch (channel) {
  792. case 0:
  793. return sfp_hwmon_tx_power(sfp, attr, value);
  794. case 1:
  795. return sfp_hwmon_rx_power(sfp, attr, value);
  796. default:
  797. return -EOPNOTSUPP;
  798. }
  799. default:
  800. return -EOPNOTSUPP;
  801. }
  802. }
  803. static const struct hwmon_ops sfp_hwmon_ops = {
  804. .is_visible = sfp_hwmon_is_visible,
  805. .read = sfp_hwmon_read,
  806. };
  807. static u32 sfp_hwmon_chip_config[] = {
  808. HWMON_C_REGISTER_TZ,
  809. 0,
  810. };
  811. static const struct hwmon_channel_info sfp_hwmon_chip = {
  812. .type = hwmon_chip,
  813. .config = sfp_hwmon_chip_config,
  814. };
  815. static u32 sfp_hwmon_temp_config[] = {
  816. HWMON_T_INPUT |
  817. HWMON_T_MAX | HWMON_T_MIN |
  818. HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
  819. HWMON_T_CRIT | HWMON_T_LCRIT |
  820. HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
  821. 0,
  822. };
  823. static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
  824. .type = hwmon_temp,
  825. .config = sfp_hwmon_temp_config,
  826. };
  827. static u32 sfp_hwmon_vcc_config[] = {
  828. HWMON_I_INPUT |
  829. HWMON_I_MAX | HWMON_I_MIN |
  830. HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
  831. HWMON_I_CRIT | HWMON_I_LCRIT |
  832. HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
  833. 0,
  834. };
  835. static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
  836. .type = hwmon_in,
  837. .config = sfp_hwmon_vcc_config,
  838. };
  839. static u32 sfp_hwmon_bias_config[] = {
  840. HWMON_C_INPUT |
  841. HWMON_C_MAX | HWMON_C_MIN |
  842. HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
  843. HWMON_C_CRIT | HWMON_C_LCRIT |
  844. HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
  845. 0,
  846. };
  847. static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
  848. .type = hwmon_curr,
  849. .config = sfp_hwmon_bias_config,
  850. };
  851. static u32 sfp_hwmon_power_config[] = {
  852. /* Transmit power */
  853. HWMON_P_INPUT |
  854. HWMON_P_MAX | HWMON_P_MIN |
  855. HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
  856. HWMON_P_CRIT | HWMON_P_LCRIT |
  857. HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
  858. /* Receive power */
  859. HWMON_P_INPUT |
  860. HWMON_P_MAX | HWMON_P_MIN |
  861. HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
  862. HWMON_P_CRIT | HWMON_P_LCRIT |
  863. HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
  864. 0,
  865. };
  866. static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
  867. .type = hwmon_power,
  868. .config = sfp_hwmon_power_config,
  869. };
  870. static const struct hwmon_channel_info *sfp_hwmon_info[] = {
  871. &sfp_hwmon_chip,
  872. &sfp_hwmon_vcc_channel_info,
  873. &sfp_hwmon_temp_channel_info,
  874. &sfp_hwmon_bias_channel_info,
  875. &sfp_hwmon_power_channel_info,
  876. NULL,
  877. };
  878. static const struct hwmon_chip_info sfp_hwmon_chip_info = {
  879. .ops = &sfp_hwmon_ops,
  880. .info = sfp_hwmon_info,
  881. };
  882. static int sfp_hwmon_insert(struct sfp *sfp)
  883. {
  884. int err, i;
  885. if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
  886. return 0;
  887. if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
  888. return 0;
  889. if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
  890. /* This driver in general does not support address
  891. * change.
  892. */
  893. return 0;
  894. err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
  895. if (err < 0)
  896. return err;
  897. sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
  898. if (!sfp->hwmon_name)
  899. return -ENODEV;
  900. for (i = 0; sfp->hwmon_name[i]; i++)
  901. if (hwmon_is_bad_char(sfp->hwmon_name[i]))
  902. sfp->hwmon_name[i] = '_';
  903. sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
  904. sfp->hwmon_name, sfp,
  905. &sfp_hwmon_chip_info,
  906. NULL);
  907. return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
  908. }
  909. static void sfp_hwmon_remove(struct sfp *sfp)
  910. {
  911. if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
  912. hwmon_device_unregister(sfp->hwmon_dev);
  913. sfp->hwmon_dev = NULL;
  914. kfree(sfp->hwmon_name);
  915. }
  916. }
  917. #else
  918. static int sfp_hwmon_insert(struct sfp *sfp)
  919. {
  920. return 0;
  921. }
  922. static void sfp_hwmon_remove(struct sfp *sfp)
  923. {
  924. }
  925. #endif
  926. /* Helpers */
  927. static void sfp_module_tx_disable(struct sfp *sfp)
  928. {
  929. dev_dbg(sfp->dev, "tx disable %u -> %u\n",
  930. sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
  931. sfp->state |= SFP_F_TX_DISABLE;
  932. sfp_set_state(sfp, sfp->state);
  933. }
  934. static void sfp_module_tx_enable(struct sfp *sfp)
  935. {
  936. dev_dbg(sfp->dev, "tx disable %u -> %u\n",
  937. sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
  938. sfp->state &= ~SFP_F_TX_DISABLE;
  939. sfp_set_state(sfp, sfp->state);
  940. }
  941. static void sfp_module_tx_fault_reset(struct sfp *sfp)
  942. {
  943. unsigned int state = sfp->state;
  944. if (state & SFP_F_TX_DISABLE)
  945. return;
  946. sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
  947. udelay(T_RESET_US);
  948. sfp_set_state(sfp, state);
  949. }
  950. /* SFP state machine */
  951. static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
  952. {
  953. if (timeout)
  954. mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
  955. timeout);
  956. else
  957. cancel_delayed_work(&sfp->timeout);
  958. }
  959. static void sfp_sm_next(struct sfp *sfp, unsigned int state,
  960. unsigned int timeout)
  961. {
  962. sfp->sm_state = state;
  963. sfp_sm_set_timer(sfp, timeout);
  964. }
  965. static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
  966. unsigned int timeout)
  967. {
  968. sfp->sm_mod_state = state;
  969. sfp_sm_set_timer(sfp, timeout);
  970. }
  971. static void sfp_sm_phy_detach(struct sfp *sfp)
  972. {
  973. phy_stop(sfp->mod_phy);
  974. sfp_remove_phy(sfp->sfp_bus);
  975. phy_device_remove(sfp->mod_phy);
  976. phy_device_free(sfp->mod_phy);
  977. sfp->mod_phy = NULL;
  978. }
  979. static void sfp_sm_probe_phy(struct sfp *sfp)
  980. {
  981. struct phy_device *phy;
  982. int err;
  983. msleep(T_PHY_RESET_MS);
  984. phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
  985. if (phy == ERR_PTR(-ENODEV)) {
  986. dev_info(sfp->dev, "no PHY detected\n");
  987. return;
  988. }
  989. if (IS_ERR(phy)) {
  990. dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
  991. return;
  992. }
  993. err = sfp_add_phy(sfp->sfp_bus, phy);
  994. if (err) {
  995. phy_device_remove(phy);
  996. phy_device_free(phy);
  997. dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
  998. return;
  999. }
  1000. sfp->mod_phy = phy;
  1001. phy_start(phy);
  1002. }
  1003. static void sfp_sm_link_up(struct sfp *sfp)
  1004. {
  1005. sfp_link_up(sfp->sfp_bus);
  1006. sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
  1007. }
  1008. static void sfp_sm_link_down(struct sfp *sfp)
  1009. {
  1010. sfp_link_down(sfp->sfp_bus);
  1011. }
  1012. static void sfp_sm_link_check_los(struct sfp *sfp)
  1013. {
  1014. unsigned int los = sfp->state & SFP_F_LOS;
  1015. /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
  1016. * are set, we assume that no LOS signal is available.
  1017. */
  1018. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
  1019. los ^= SFP_F_LOS;
  1020. else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
  1021. los = 0;
  1022. if (los)
  1023. sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
  1024. else
  1025. sfp_sm_link_up(sfp);
  1026. }
  1027. static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
  1028. {
  1029. return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
  1030. event == SFP_E_LOS_LOW) ||
  1031. (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
  1032. event == SFP_E_LOS_HIGH);
  1033. }
  1034. static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
  1035. {
  1036. return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
  1037. event == SFP_E_LOS_HIGH) ||
  1038. (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
  1039. event == SFP_E_LOS_LOW);
  1040. }
  1041. static void sfp_sm_fault(struct sfp *sfp, bool warn)
  1042. {
  1043. if (sfp->sm_retries && !--sfp->sm_retries) {
  1044. dev_err(sfp->dev,
  1045. "module persistently indicates fault, disabling\n");
  1046. sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
  1047. } else {
  1048. if (warn)
  1049. dev_err(sfp->dev, "module transmit fault indicated\n");
  1050. sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
  1051. }
  1052. }
  1053. static void sfp_sm_mod_init(struct sfp *sfp)
  1054. {
  1055. sfp_module_tx_enable(sfp);
  1056. /* Wait t_init before indicating that the link is up, provided the
  1057. * current state indicates no TX_FAULT. If TX_FAULT clears before
  1058. * this time, that's fine too.
  1059. */
  1060. sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
  1061. sfp->sm_retries = 5;
  1062. /* Setting the serdes link mode is guesswork: there's no
  1063. * field in the EEPROM which indicates what mode should
  1064. * be used.
  1065. *
  1066. * If it's a gigabit-only fiber module, it probably does
  1067. * not have a PHY, so switch to 802.3z negotiation mode.
  1068. * Otherwise, switch to SGMII mode (which is required to
  1069. * support non-gigabit speeds) and probe for a PHY.
  1070. */
  1071. if (sfp->id.base.e1000_base_t ||
  1072. sfp->id.base.e100_base_lx ||
  1073. sfp->id.base.e100_base_fx)
  1074. sfp_sm_probe_phy(sfp);
  1075. }
  1076. static int sfp_sm_mod_hpower(struct sfp *sfp)
  1077. {
  1078. u32 power;
  1079. u8 val;
  1080. int err;
  1081. power = 1000;
  1082. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
  1083. power = 1500;
  1084. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
  1085. power = 2000;
  1086. if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
  1087. (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
  1088. SFP_DIAGMON_DDM) {
  1089. /* The module appears not to implement bus address 0xa2,
  1090. * or requires an address change sequence, so assume that
  1091. * the module powers up in the indicated power mode.
  1092. */
  1093. if (power > sfp->max_power_mW) {
  1094. dev_err(sfp->dev,
  1095. "Host does not support %u.%uW modules\n",
  1096. power / 1000, (power / 100) % 10);
  1097. return -EINVAL;
  1098. }
  1099. return 0;
  1100. }
  1101. if (power > sfp->max_power_mW) {
  1102. dev_warn(sfp->dev,
  1103. "Host does not support %u.%uW modules, module left in power mode 1\n",
  1104. power / 1000, (power / 100) % 10);
  1105. return 0;
  1106. }
  1107. if (power <= 1000)
  1108. return 0;
  1109. err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
  1110. if (err != sizeof(val)) {
  1111. dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
  1112. err = -EAGAIN;
  1113. goto err;
  1114. }
  1115. val |= BIT(0);
  1116. err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
  1117. if (err != sizeof(val)) {
  1118. dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
  1119. err = -EAGAIN;
  1120. goto err;
  1121. }
  1122. dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
  1123. power / 1000, (power / 100) % 10);
  1124. return T_HPOWER_LEVEL;
  1125. err:
  1126. return err;
  1127. }
  1128. static int sfp_sm_mod_probe(struct sfp *sfp)
  1129. {
  1130. /* SFP module inserted - read I2C data */
  1131. struct sfp_eeprom_id id;
  1132. bool cotsworks;
  1133. u8 check;
  1134. int ret;
  1135. ret = sfp_read(sfp, false, 0, &id, sizeof(id));
  1136. if (ret < 0) {
  1137. dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
  1138. return -EAGAIN;
  1139. }
  1140. if (ret != sizeof(id)) {
  1141. dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
  1142. return -EAGAIN;
  1143. }
  1144. /* Cotsworks do not seem to update the checksums when they
  1145. * do the final programming with the final module part number,
  1146. * serial number and date code.
  1147. */
  1148. cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
  1149. /* Validate the checksum over the base structure */
  1150. check = sfp_check(&id.base, sizeof(id.base) - 1);
  1151. if (check != id.base.cc_base) {
  1152. if (cotsworks) {
  1153. dev_warn(sfp->dev,
  1154. "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
  1155. check, id.base.cc_base);
  1156. } else {
  1157. dev_err(sfp->dev,
  1158. "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
  1159. check, id.base.cc_base);
  1160. print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
  1161. 16, 1, &id, sizeof(id), true);
  1162. return -EINVAL;
  1163. }
  1164. }
  1165. check = sfp_check(&id.ext, sizeof(id.ext) - 1);
  1166. if (check != id.ext.cc_ext) {
  1167. if (cotsworks) {
  1168. dev_warn(sfp->dev,
  1169. "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
  1170. check, id.ext.cc_ext);
  1171. } else {
  1172. dev_err(sfp->dev,
  1173. "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
  1174. check, id.ext.cc_ext);
  1175. print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
  1176. 16, 1, &id, sizeof(id), true);
  1177. memset(&id.ext, 0, sizeof(id.ext));
  1178. }
  1179. }
  1180. sfp->id = id;
  1181. dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
  1182. (int)sizeof(id.base.vendor_name), id.base.vendor_name,
  1183. (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
  1184. (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
  1185. (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
  1186. (int)sizeof(id.ext.datecode), id.ext.datecode);
  1187. /* Check whether we support this module */
  1188. if (!sfp->type->module_supported(&sfp->id)) {
  1189. dev_err(sfp->dev,
  1190. "module is not supported - phys id 0x%02x 0x%02x\n",
  1191. sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
  1192. return -EINVAL;
  1193. }
  1194. /* If the module requires address swap mode, warn about it */
  1195. if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
  1196. dev_warn(sfp->dev,
  1197. "module address swap to access page 0xA2 is not supported.\n");
  1198. ret = sfp_hwmon_insert(sfp);
  1199. if (ret < 0)
  1200. return ret;
  1201. ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
  1202. if (ret < 0)
  1203. return ret;
  1204. return sfp_sm_mod_hpower(sfp);
  1205. }
  1206. static void sfp_sm_mod_remove(struct sfp *sfp)
  1207. {
  1208. sfp_module_remove(sfp->sfp_bus);
  1209. sfp_hwmon_remove(sfp);
  1210. if (sfp->mod_phy)
  1211. sfp_sm_phy_detach(sfp);
  1212. sfp_module_tx_disable(sfp);
  1213. memset(&sfp->id, 0, sizeof(sfp->id));
  1214. dev_info(sfp->dev, "module removed\n");
  1215. }
  1216. static void sfp_sm_event(struct sfp *sfp, unsigned int event)
  1217. {
  1218. mutex_lock(&sfp->sm_mutex);
  1219. dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
  1220. mod_state_to_str(sfp->sm_mod_state),
  1221. dev_state_to_str(sfp->sm_dev_state),
  1222. sm_state_to_str(sfp->sm_state),
  1223. event_to_str(event));
  1224. /* This state machine tracks the insert/remove state of
  1225. * the module, and handles probing the on-board EEPROM.
  1226. */
  1227. switch (sfp->sm_mod_state) {
  1228. default:
  1229. if (event == SFP_E_INSERT && sfp->attached) {
  1230. sfp_module_tx_disable(sfp);
  1231. sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
  1232. }
  1233. break;
  1234. case SFP_MOD_PROBE:
  1235. if (event == SFP_E_REMOVE) {
  1236. sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
  1237. } else if (event == SFP_E_TIMEOUT) {
  1238. int val = sfp_sm_mod_probe(sfp);
  1239. if (val == 0)
  1240. sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
  1241. else if (val > 0)
  1242. sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
  1243. else if (val != -EAGAIN)
  1244. sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
  1245. else
  1246. sfp_sm_set_timer(sfp, T_PROBE_RETRY);
  1247. }
  1248. break;
  1249. case SFP_MOD_HPOWER:
  1250. if (event == SFP_E_TIMEOUT) {
  1251. sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
  1252. break;
  1253. }
  1254. /* fallthrough */
  1255. case SFP_MOD_PRESENT:
  1256. case SFP_MOD_ERROR:
  1257. if (event == SFP_E_REMOVE) {
  1258. sfp_sm_mod_remove(sfp);
  1259. sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
  1260. }
  1261. break;
  1262. }
  1263. /* This state machine tracks the netdev up/down state */
  1264. switch (sfp->sm_dev_state) {
  1265. default:
  1266. if (event == SFP_E_DEV_UP)
  1267. sfp->sm_dev_state = SFP_DEV_UP;
  1268. break;
  1269. case SFP_DEV_UP:
  1270. if (event == SFP_E_DEV_DOWN) {
  1271. /* If the module has a PHY, avoid raising TX disable
  1272. * as this resets the PHY. Otherwise, raise it to
  1273. * turn the laser off.
  1274. */
  1275. if (!sfp->mod_phy)
  1276. sfp_module_tx_disable(sfp);
  1277. sfp->sm_dev_state = SFP_DEV_DOWN;
  1278. }
  1279. break;
  1280. }
  1281. /* Some events are global */
  1282. if (sfp->sm_state != SFP_S_DOWN &&
  1283. (sfp->sm_mod_state != SFP_MOD_PRESENT ||
  1284. sfp->sm_dev_state != SFP_DEV_UP)) {
  1285. if (sfp->sm_state == SFP_S_LINK_UP &&
  1286. sfp->sm_dev_state == SFP_DEV_UP)
  1287. sfp_sm_link_down(sfp);
  1288. if (sfp->mod_phy)
  1289. sfp_sm_phy_detach(sfp);
  1290. sfp_sm_next(sfp, SFP_S_DOWN, 0);
  1291. mutex_unlock(&sfp->sm_mutex);
  1292. return;
  1293. }
  1294. /* The main state machine */
  1295. switch (sfp->sm_state) {
  1296. case SFP_S_DOWN:
  1297. if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
  1298. sfp->sm_dev_state == SFP_DEV_UP)
  1299. sfp_sm_mod_init(sfp);
  1300. break;
  1301. case SFP_S_INIT:
  1302. if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
  1303. sfp_sm_fault(sfp, true);
  1304. else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
  1305. sfp_sm_link_check_los(sfp);
  1306. break;
  1307. case SFP_S_WAIT_LOS:
  1308. if (event == SFP_E_TX_FAULT)
  1309. sfp_sm_fault(sfp, true);
  1310. else if (sfp_los_event_inactive(sfp, event))
  1311. sfp_sm_link_up(sfp);
  1312. break;
  1313. case SFP_S_LINK_UP:
  1314. if (event == SFP_E_TX_FAULT) {
  1315. sfp_sm_link_down(sfp);
  1316. sfp_sm_fault(sfp, true);
  1317. } else if (sfp_los_event_active(sfp, event)) {
  1318. sfp_sm_link_down(sfp);
  1319. sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
  1320. }
  1321. break;
  1322. case SFP_S_TX_FAULT:
  1323. if (event == SFP_E_TIMEOUT) {
  1324. sfp_module_tx_fault_reset(sfp);
  1325. sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
  1326. }
  1327. break;
  1328. case SFP_S_REINIT:
  1329. if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
  1330. sfp_sm_fault(sfp, false);
  1331. } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
  1332. dev_info(sfp->dev, "module transmit fault recovered\n");
  1333. sfp_sm_link_check_los(sfp);
  1334. }
  1335. break;
  1336. case SFP_S_TX_DISABLE:
  1337. break;
  1338. }
  1339. dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
  1340. mod_state_to_str(sfp->sm_mod_state),
  1341. dev_state_to_str(sfp->sm_dev_state),
  1342. sm_state_to_str(sfp->sm_state));
  1343. mutex_unlock(&sfp->sm_mutex);
  1344. }
  1345. static void sfp_attach(struct sfp *sfp)
  1346. {
  1347. sfp->attached = true;
  1348. if (sfp->state & SFP_F_PRESENT)
  1349. sfp_sm_event(sfp, SFP_E_INSERT);
  1350. }
  1351. static void sfp_detach(struct sfp *sfp)
  1352. {
  1353. sfp->attached = false;
  1354. sfp_sm_event(sfp, SFP_E_REMOVE);
  1355. }
  1356. static void sfp_start(struct sfp *sfp)
  1357. {
  1358. sfp_sm_event(sfp, SFP_E_DEV_UP);
  1359. }
  1360. static void sfp_stop(struct sfp *sfp)
  1361. {
  1362. sfp_sm_event(sfp, SFP_E_DEV_DOWN);
  1363. }
  1364. static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
  1365. {
  1366. /* locking... and check module is present */
  1367. if (sfp->id.ext.sff8472_compliance &&
  1368. !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
  1369. modinfo->type = ETH_MODULE_SFF_8472;
  1370. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  1371. } else {
  1372. modinfo->type = ETH_MODULE_SFF_8079;
  1373. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  1374. }
  1375. return 0;
  1376. }
  1377. static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
  1378. u8 *data)
  1379. {
  1380. unsigned int first, last, len;
  1381. int ret;
  1382. if (ee->len == 0)
  1383. return -EINVAL;
  1384. first = ee->offset;
  1385. last = ee->offset + ee->len;
  1386. if (first < ETH_MODULE_SFF_8079_LEN) {
  1387. len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
  1388. len -= first;
  1389. ret = sfp_read(sfp, false, first, data, len);
  1390. if (ret < 0)
  1391. return ret;
  1392. first += len;
  1393. data += len;
  1394. }
  1395. if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
  1396. len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
  1397. len -= first;
  1398. first -= ETH_MODULE_SFF_8079_LEN;
  1399. ret = sfp_read(sfp, true, first, data, len);
  1400. if (ret < 0)
  1401. return ret;
  1402. }
  1403. return 0;
  1404. }
  1405. static const struct sfp_socket_ops sfp_module_ops = {
  1406. .attach = sfp_attach,
  1407. .detach = sfp_detach,
  1408. .start = sfp_start,
  1409. .stop = sfp_stop,
  1410. .module_info = sfp_module_info,
  1411. .module_eeprom = sfp_module_eeprom,
  1412. };
  1413. static void sfp_timeout(struct work_struct *work)
  1414. {
  1415. struct sfp *sfp = container_of(work, struct sfp, timeout.work);
  1416. rtnl_lock();
  1417. sfp_sm_event(sfp, SFP_E_TIMEOUT);
  1418. rtnl_unlock();
  1419. }
  1420. static void sfp_check_state(struct sfp *sfp)
  1421. {
  1422. unsigned int state, i, changed;
  1423. mutex_lock(&sfp->st_mutex);
  1424. state = sfp_get_state(sfp);
  1425. changed = state ^ sfp->state;
  1426. changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
  1427. for (i = 0; i < GPIO_MAX; i++)
  1428. if (changed & BIT(i))
  1429. dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
  1430. !!(sfp->state & BIT(i)), !!(state & BIT(i)));
  1431. state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
  1432. sfp->state = state;
  1433. rtnl_lock();
  1434. if (changed & SFP_F_PRESENT)
  1435. sfp_sm_event(sfp, state & SFP_F_PRESENT ?
  1436. SFP_E_INSERT : SFP_E_REMOVE);
  1437. if (changed & SFP_F_TX_FAULT)
  1438. sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
  1439. SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
  1440. if (changed & SFP_F_LOS)
  1441. sfp_sm_event(sfp, state & SFP_F_LOS ?
  1442. SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
  1443. rtnl_unlock();
  1444. mutex_unlock(&sfp->st_mutex);
  1445. }
  1446. static irqreturn_t sfp_irq(int irq, void *data)
  1447. {
  1448. struct sfp *sfp = data;
  1449. sfp_check_state(sfp);
  1450. return IRQ_HANDLED;
  1451. }
  1452. static void sfp_poll(struct work_struct *work)
  1453. {
  1454. struct sfp *sfp = container_of(work, struct sfp, poll.work);
  1455. sfp_check_state(sfp);
  1456. mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
  1457. }
  1458. static struct sfp *sfp_alloc(struct device *dev)
  1459. {
  1460. struct sfp *sfp;
  1461. sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
  1462. if (!sfp)
  1463. return ERR_PTR(-ENOMEM);
  1464. sfp->dev = dev;
  1465. mutex_init(&sfp->sm_mutex);
  1466. mutex_init(&sfp->st_mutex);
  1467. INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
  1468. INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
  1469. return sfp;
  1470. }
  1471. static void sfp_cleanup(void *data)
  1472. {
  1473. struct sfp *sfp = data;
  1474. cancel_delayed_work_sync(&sfp->poll);
  1475. cancel_delayed_work_sync(&sfp->timeout);
  1476. if (sfp->i2c_mii) {
  1477. mdiobus_unregister(sfp->i2c_mii);
  1478. mdiobus_free(sfp->i2c_mii);
  1479. }
  1480. if (sfp->i2c)
  1481. i2c_put_adapter(sfp->i2c);
  1482. kfree(sfp);
  1483. }
  1484. static int sfp_probe(struct platform_device *pdev)
  1485. {
  1486. const struct sff_data *sff;
  1487. struct sfp *sfp;
  1488. bool poll = false;
  1489. int irq, err, i;
  1490. sfp = sfp_alloc(&pdev->dev);
  1491. if (IS_ERR(sfp))
  1492. return PTR_ERR(sfp);
  1493. platform_set_drvdata(pdev, sfp);
  1494. err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
  1495. if (err < 0)
  1496. return err;
  1497. sff = sfp->type = &sfp_data;
  1498. if (pdev->dev.of_node) {
  1499. struct device_node *node = pdev->dev.of_node;
  1500. const struct of_device_id *id;
  1501. struct i2c_adapter *i2c;
  1502. struct device_node *np;
  1503. id = of_match_node(sfp_of_match, node);
  1504. if (WARN_ON(!id))
  1505. return -EINVAL;
  1506. sff = sfp->type = id->data;
  1507. np = of_parse_phandle(node, "i2c-bus", 0);
  1508. if (!np) {
  1509. dev_err(sfp->dev, "missing 'i2c-bus' property\n");
  1510. return -ENODEV;
  1511. }
  1512. i2c = of_find_i2c_adapter_by_node(np);
  1513. of_node_put(np);
  1514. if (!i2c)
  1515. return -EPROBE_DEFER;
  1516. err = sfp_i2c_configure(sfp, i2c);
  1517. if (err < 0) {
  1518. i2c_put_adapter(i2c);
  1519. return err;
  1520. }
  1521. }
  1522. for (i = 0; i < GPIO_MAX; i++)
  1523. if (sff->gpios & BIT(i)) {
  1524. sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
  1525. gpio_of_names[i], gpio_flags[i]);
  1526. if (IS_ERR(sfp->gpio[i]))
  1527. return PTR_ERR(sfp->gpio[i]);
  1528. }
  1529. sfp->get_state = sfp_gpio_get_state;
  1530. sfp->set_state = sfp_gpio_set_state;
  1531. /* Modules that have no detect signal are always present */
  1532. if (!(sfp->gpio[GPIO_MODDEF0]))
  1533. sfp->get_state = sff_gpio_get_state;
  1534. device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
  1535. &sfp->max_power_mW);
  1536. if (!sfp->max_power_mW)
  1537. sfp->max_power_mW = 1000;
  1538. dev_info(sfp->dev, "Host maximum power %u.%uW\n",
  1539. sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
  1540. /* Get the initial state, and always signal TX disable,
  1541. * since the network interface will not be up.
  1542. */
  1543. sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
  1544. if (sfp->gpio[GPIO_RATE_SELECT] &&
  1545. gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
  1546. sfp->state |= SFP_F_RATE_SELECT;
  1547. sfp_set_state(sfp, sfp->state);
  1548. sfp_module_tx_disable(sfp);
  1549. for (i = 0; i < GPIO_MAX; i++) {
  1550. if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
  1551. continue;
  1552. irq = gpiod_to_irq(sfp->gpio[i]);
  1553. if (irq < 0) {
  1554. irq = 0;
  1555. poll = true;
  1556. continue;
  1557. }
  1558. err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
  1559. IRQF_ONESHOT |
  1560. IRQF_TRIGGER_RISING |
  1561. IRQF_TRIGGER_FALLING,
  1562. dev_name(sfp->dev), sfp);
  1563. if (err)
  1564. poll = true;
  1565. }
  1566. if (poll)
  1567. mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
  1568. /* We could have an issue in cases no Tx disable pin is available or
  1569. * wired as modules using a laser as their light source will continue to
  1570. * be active when the fiber is removed. This could be a safety issue and
  1571. * we should at least warn the user about that.
  1572. */
  1573. if (!sfp->gpio[GPIO_TX_DISABLE])
  1574. dev_warn(sfp->dev,
  1575. "No tx_disable pin: SFP modules will always be emitting.\n");
  1576. sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
  1577. if (!sfp->sfp_bus)
  1578. return -ENOMEM;
  1579. return 0;
  1580. }
  1581. static int sfp_remove(struct platform_device *pdev)
  1582. {
  1583. struct sfp *sfp = platform_get_drvdata(pdev);
  1584. sfp_unregister_socket(sfp->sfp_bus);
  1585. return 0;
  1586. }
  1587. static struct platform_driver sfp_driver = {
  1588. .probe = sfp_probe,
  1589. .remove = sfp_remove,
  1590. .driver = {
  1591. .name = "sfp",
  1592. .of_match_table = sfp_of_match,
  1593. },
  1594. };
  1595. static int sfp_init(void)
  1596. {
  1597. poll_jiffies = msecs_to_jiffies(100);
  1598. return platform_driver_register(&sfp_driver);
  1599. }
  1600. module_init(sfp_init);
  1601. static void sfp_exit(void)
  1602. {
  1603. platform_driver_unregister(&sfp_driver);
  1604. }
  1605. module_exit(sfp_exit);
  1606. MODULE_ALIAS("platform:sfp");
  1607. MODULE_AUTHOR("Russell King");
  1608. MODULE_LICENSE("GPL v2");