delayed-inode.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2011 Fujitsu. All rights reserved.
  4. * Written by Miao Xie <miaox@cn.fujitsu.com>
  5. */
  6. #include <linux/slab.h>
  7. #include <linux/iversion.h>
  8. #include <linux/sched/mm.h>
  9. #include "delayed-inode.h"
  10. #include "disk-io.h"
  11. #include "transaction.h"
  12. #include "ctree.h"
  13. #include "qgroup.h"
  14. #define BTRFS_DELAYED_WRITEBACK 512
  15. #define BTRFS_DELAYED_BACKGROUND 128
  16. #define BTRFS_DELAYED_BATCH 16
  17. static struct kmem_cache *delayed_node_cache;
  18. int __init btrfs_delayed_inode_init(void)
  19. {
  20. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  21. sizeof(struct btrfs_delayed_node),
  22. 0,
  23. SLAB_MEM_SPREAD,
  24. NULL);
  25. if (!delayed_node_cache)
  26. return -ENOMEM;
  27. return 0;
  28. }
  29. void __cold btrfs_delayed_inode_exit(void)
  30. {
  31. kmem_cache_destroy(delayed_node_cache);
  32. }
  33. static inline void btrfs_init_delayed_node(
  34. struct btrfs_delayed_node *delayed_node,
  35. struct btrfs_root *root, u64 inode_id)
  36. {
  37. delayed_node->root = root;
  38. delayed_node->inode_id = inode_id;
  39. refcount_set(&delayed_node->refs, 0);
  40. delayed_node->ins_root = RB_ROOT;
  41. delayed_node->del_root = RB_ROOT;
  42. mutex_init(&delayed_node->mutex);
  43. INIT_LIST_HEAD(&delayed_node->n_list);
  44. INIT_LIST_HEAD(&delayed_node->p_list);
  45. }
  46. static inline int btrfs_is_continuous_delayed_item(
  47. struct btrfs_delayed_item *item1,
  48. struct btrfs_delayed_item *item2)
  49. {
  50. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  51. item1->key.objectid == item2->key.objectid &&
  52. item1->key.type == item2->key.type &&
  53. item1->key.offset + 1 == item2->key.offset)
  54. return 1;
  55. return 0;
  56. }
  57. static struct btrfs_delayed_node *btrfs_get_delayed_node(
  58. struct btrfs_inode *btrfs_inode)
  59. {
  60. struct btrfs_root *root = btrfs_inode->root;
  61. u64 ino = btrfs_ino(btrfs_inode);
  62. struct btrfs_delayed_node *node;
  63. node = READ_ONCE(btrfs_inode->delayed_node);
  64. if (node) {
  65. refcount_inc(&node->refs);
  66. return node;
  67. }
  68. spin_lock(&root->inode_lock);
  69. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  70. if (node) {
  71. if (btrfs_inode->delayed_node) {
  72. refcount_inc(&node->refs); /* can be accessed */
  73. BUG_ON(btrfs_inode->delayed_node != node);
  74. spin_unlock(&root->inode_lock);
  75. return node;
  76. }
  77. /*
  78. * It's possible that we're racing into the middle of removing
  79. * this node from the radix tree. In this case, the refcount
  80. * was zero and it should never go back to one. Just return
  81. * NULL like it was never in the radix at all; our release
  82. * function is in the process of removing it.
  83. *
  84. * Some implementations of refcount_inc refuse to bump the
  85. * refcount once it has hit zero. If we don't do this dance
  86. * here, refcount_inc() may decide to just WARN_ONCE() instead
  87. * of actually bumping the refcount.
  88. *
  89. * If this node is properly in the radix, we want to bump the
  90. * refcount twice, once for the inode and once for this get
  91. * operation.
  92. */
  93. if (refcount_inc_not_zero(&node->refs)) {
  94. refcount_inc(&node->refs);
  95. btrfs_inode->delayed_node = node;
  96. } else {
  97. node = NULL;
  98. }
  99. spin_unlock(&root->inode_lock);
  100. return node;
  101. }
  102. spin_unlock(&root->inode_lock);
  103. return NULL;
  104. }
  105. /* Will return either the node or PTR_ERR(-ENOMEM) */
  106. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  107. struct btrfs_inode *btrfs_inode)
  108. {
  109. struct btrfs_delayed_node *node;
  110. struct btrfs_root *root = btrfs_inode->root;
  111. u64 ino = btrfs_ino(btrfs_inode);
  112. int ret;
  113. again:
  114. node = btrfs_get_delayed_node(btrfs_inode);
  115. if (node)
  116. return node;
  117. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  118. if (!node)
  119. return ERR_PTR(-ENOMEM);
  120. btrfs_init_delayed_node(node, root, ino);
  121. /* cached in the btrfs inode and can be accessed */
  122. refcount_set(&node->refs, 2);
  123. ret = radix_tree_preload(GFP_NOFS);
  124. if (ret) {
  125. kmem_cache_free(delayed_node_cache, node);
  126. return ERR_PTR(ret);
  127. }
  128. spin_lock(&root->inode_lock);
  129. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  130. if (ret == -EEXIST) {
  131. spin_unlock(&root->inode_lock);
  132. kmem_cache_free(delayed_node_cache, node);
  133. radix_tree_preload_end();
  134. goto again;
  135. }
  136. btrfs_inode->delayed_node = node;
  137. spin_unlock(&root->inode_lock);
  138. radix_tree_preload_end();
  139. return node;
  140. }
  141. /*
  142. * Call it when holding delayed_node->mutex
  143. *
  144. * If mod = 1, add this node into the prepared list.
  145. */
  146. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  147. struct btrfs_delayed_node *node,
  148. int mod)
  149. {
  150. spin_lock(&root->lock);
  151. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  152. if (!list_empty(&node->p_list))
  153. list_move_tail(&node->p_list, &root->prepare_list);
  154. else if (mod)
  155. list_add_tail(&node->p_list, &root->prepare_list);
  156. } else {
  157. list_add_tail(&node->n_list, &root->node_list);
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. refcount_inc(&node->refs); /* inserted into list */
  160. root->nodes++;
  161. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  162. }
  163. spin_unlock(&root->lock);
  164. }
  165. /* Call it when holding delayed_node->mutex */
  166. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  167. struct btrfs_delayed_node *node)
  168. {
  169. spin_lock(&root->lock);
  170. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  171. root->nodes--;
  172. refcount_dec(&node->refs); /* not in the list */
  173. list_del_init(&node->n_list);
  174. if (!list_empty(&node->p_list))
  175. list_del_init(&node->p_list);
  176. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  177. }
  178. spin_unlock(&root->lock);
  179. }
  180. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  181. struct btrfs_delayed_root *delayed_root)
  182. {
  183. struct list_head *p;
  184. struct btrfs_delayed_node *node = NULL;
  185. spin_lock(&delayed_root->lock);
  186. if (list_empty(&delayed_root->node_list))
  187. goto out;
  188. p = delayed_root->node_list.next;
  189. node = list_entry(p, struct btrfs_delayed_node, n_list);
  190. refcount_inc(&node->refs);
  191. out:
  192. spin_unlock(&delayed_root->lock);
  193. return node;
  194. }
  195. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  196. struct btrfs_delayed_node *node)
  197. {
  198. struct btrfs_delayed_root *delayed_root;
  199. struct list_head *p;
  200. struct btrfs_delayed_node *next = NULL;
  201. delayed_root = node->root->fs_info->delayed_root;
  202. spin_lock(&delayed_root->lock);
  203. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  204. /* not in the list */
  205. if (list_empty(&delayed_root->node_list))
  206. goto out;
  207. p = delayed_root->node_list.next;
  208. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  209. goto out;
  210. else
  211. p = node->n_list.next;
  212. next = list_entry(p, struct btrfs_delayed_node, n_list);
  213. refcount_inc(&next->refs);
  214. out:
  215. spin_unlock(&delayed_root->lock);
  216. return next;
  217. }
  218. static void __btrfs_release_delayed_node(
  219. struct btrfs_delayed_node *delayed_node,
  220. int mod)
  221. {
  222. struct btrfs_delayed_root *delayed_root;
  223. if (!delayed_node)
  224. return;
  225. delayed_root = delayed_node->root->fs_info->delayed_root;
  226. mutex_lock(&delayed_node->mutex);
  227. if (delayed_node->count)
  228. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  229. else
  230. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  231. mutex_unlock(&delayed_node->mutex);
  232. if (refcount_dec_and_test(&delayed_node->refs)) {
  233. struct btrfs_root *root = delayed_node->root;
  234. spin_lock(&root->inode_lock);
  235. /*
  236. * Once our refcount goes to zero, nobody is allowed to bump it
  237. * back up. We can delete it now.
  238. */
  239. ASSERT(refcount_read(&delayed_node->refs) == 0);
  240. radix_tree_delete(&root->delayed_nodes_tree,
  241. delayed_node->inode_id);
  242. spin_unlock(&root->inode_lock);
  243. kmem_cache_free(delayed_node_cache, delayed_node);
  244. }
  245. }
  246. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  247. {
  248. __btrfs_release_delayed_node(node, 0);
  249. }
  250. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  251. struct btrfs_delayed_root *delayed_root)
  252. {
  253. struct list_head *p;
  254. struct btrfs_delayed_node *node = NULL;
  255. spin_lock(&delayed_root->lock);
  256. if (list_empty(&delayed_root->prepare_list))
  257. goto out;
  258. p = delayed_root->prepare_list.next;
  259. list_del_init(p);
  260. node = list_entry(p, struct btrfs_delayed_node, p_list);
  261. refcount_inc(&node->refs);
  262. out:
  263. spin_unlock(&delayed_root->lock);
  264. return node;
  265. }
  266. static inline void btrfs_release_prepared_delayed_node(
  267. struct btrfs_delayed_node *node)
  268. {
  269. __btrfs_release_delayed_node(node, 1);
  270. }
  271. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  272. {
  273. struct btrfs_delayed_item *item;
  274. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  275. if (item) {
  276. item->data_len = data_len;
  277. item->ins_or_del = 0;
  278. item->bytes_reserved = 0;
  279. item->delayed_node = NULL;
  280. refcount_set(&item->refs, 1);
  281. }
  282. return item;
  283. }
  284. /*
  285. * __btrfs_lookup_delayed_item - look up the delayed item by key
  286. * @delayed_node: pointer to the delayed node
  287. * @key: the key to look up
  288. * @prev: used to store the prev item if the right item isn't found
  289. * @next: used to store the next item if the right item isn't found
  290. *
  291. * Note: if we don't find the right item, we will return the prev item and
  292. * the next item.
  293. */
  294. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  295. struct rb_root *root,
  296. struct btrfs_key *key,
  297. struct btrfs_delayed_item **prev,
  298. struct btrfs_delayed_item **next)
  299. {
  300. struct rb_node *node, *prev_node = NULL;
  301. struct btrfs_delayed_item *delayed_item = NULL;
  302. int ret = 0;
  303. node = root->rb_node;
  304. while (node) {
  305. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  306. rb_node);
  307. prev_node = node;
  308. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  309. if (ret < 0)
  310. node = node->rb_right;
  311. else if (ret > 0)
  312. node = node->rb_left;
  313. else
  314. return delayed_item;
  315. }
  316. if (prev) {
  317. if (!prev_node)
  318. *prev = NULL;
  319. else if (ret < 0)
  320. *prev = delayed_item;
  321. else if ((node = rb_prev(prev_node)) != NULL) {
  322. *prev = rb_entry(node, struct btrfs_delayed_item,
  323. rb_node);
  324. } else
  325. *prev = NULL;
  326. }
  327. if (next) {
  328. if (!prev_node)
  329. *next = NULL;
  330. else if (ret > 0)
  331. *next = delayed_item;
  332. else if ((node = rb_next(prev_node)) != NULL) {
  333. *next = rb_entry(node, struct btrfs_delayed_item,
  334. rb_node);
  335. } else
  336. *next = NULL;
  337. }
  338. return NULL;
  339. }
  340. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  341. struct btrfs_delayed_node *delayed_node,
  342. struct btrfs_key *key)
  343. {
  344. return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  345. NULL, NULL);
  346. }
  347. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  348. struct btrfs_delayed_item *ins,
  349. int action)
  350. {
  351. struct rb_node **p, *node;
  352. struct rb_node *parent_node = NULL;
  353. struct rb_root *root;
  354. struct btrfs_delayed_item *item;
  355. int cmp;
  356. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  357. root = &delayed_node->ins_root;
  358. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  359. root = &delayed_node->del_root;
  360. else
  361. BUG();
  362. p = &root->rb_node;
  363. node = &ins->rb_node;
  364. while (*p) {
  365. parent_node = *p;
  366. item = rb_entry(parent_node, struct btrfs_delayed_item,
  367. rb_node);
  368. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  369. if (cmp < 0)
  370. p = &(*p)->rb_right;
  371. else if (cmp > 0)
  372. p = &(*p)->rb_left;
  373. else
  374. return -EEXIST;
  375. }
  376. rb_link_node(node, parent_node, p);
  377. rb_insert_color(node, root);
  378. ins->delayed_node = delayed_node;
  379. ins->ins_or_del = action;
  380. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  381. action == BTRFS_DELAYED_INSERTION_ITEM &&
  382. ins->key.offset >= delayed_node->index_cnt)
  383. delayed_node->index_cnt = ins->key.offset + 1;
  384. delayed_node->count++;
  385. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  386. return 0;
  387. }
  388. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  389. struct btrfs_delayed_item *item)
  390. {
  391. return __btrfs_add_delayed_item(node, item,
  392. BTRFS_DELAYED_INSERTION_ITEM);
  393. }
  394. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  395. struct btrfs_delayed_item *item)
  396. {
  397. return __btrfs_add_delayed_item(node, item,
  398. BTRFS_DELAYED_DELETION_ITEM);
  399. }
  400. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  401. {
  402. int seq = atomic_inc_return(&delayed_root->items_seq);
  403. /* atomic_dec_return implies a barrier */
  404. if ((atomic_dec_return(&delayed_root->items) <
  405. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
  406. cond_wake_up_nomb(&delayed_root->wait);
  407. }
  408. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  409. {
  410. struct rb_root *root;
  411. struct btrfs_delayed_root *delayed_root;
  412. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  413. BUG_ON(!delayed_root);
  414. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  415. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  416. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  417. root = &delayed_item->delayed_node->ins_root;
  418. else
  419. root = &delayed_item->delayed_node->del_root;
  420. rb_erase(&delayed_item->rb_node, root);
  421. delayed_item->delayed_node->count--;
  422. finish_one_item(delayed_root);
  423. }
  424. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  425. {
  426. if (item) {
  427. __btrfs_remove_delayed_item(item);
  428. if (refcount_dec_and_test(&item->refs))
  429. kfree(item);
  430. }
  431. }
  432. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  433. struct btrfs_delayed_node *delayed_node)
  434. {
  435. struct rb_node *p;
  436. struct btrfs_delayed_item *item = NULL;
  437. p = rb_first(&delayed_node->ins_root);
  438. if (p)
  439. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  440. return item;
  441. }
  442. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  443. struct btrfs_delayed_node *delayed_node)
  444. {
  445. struct rb_node *p;
  446. struct btrfs_delayed_item *item = NULL;
  447. p = rb_first(&delayed_node->del_root);
  448. if (p)
  449. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  450. return item;
  451. }
  452. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  453. struct btrfs_delayed_item *item)
  454. {
  455. struct rb_node *p;
  456. struct btrfs_delayed_item *next = NULL;
  457. p = rb_next(&item->rb_node);
  458. if (p)
  459. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  460. return next;
  461. }
  462. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  463. struct btrfs_root *root,
  464. struct btrfs_delayed_item *item)
  465. {
  466. struct btrfs_block_rsv *src_rsv;
  467. struct btrfs_block_rsv *dst_rsv;
  468. struct btrfs_fs_info *fs_info = root->fs_info;
  469. u64 num_bytes;
  470. int ret;
  471. if (!trans->bytes_reserved)
  472. return 0;
  473. src_rsv = trans->block_rsv;
  474. dst_rsv = &fs_info->delayed_block_rsv;
  475. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  476. /*
  477. * Here we migrate space rsv from transaction rsv, since have already
  478. * reserved space when starting a transaction. So no need to reserve
  479. * qgroup space here.
  480. */
  481. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  482. if (!ret) {
  483. trace_btrfs_space_reservation(fs_info, "delayed_item",
  484. item->key.objectid,
  485. num_bytes, 1);
  486. item->bytes_reserved = num_bytes;
  487. }
  488. return ret;
  489. }
  490. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  491. struct btrfs_delayed_item *item)
  492. {
  493. struct btrfs_block_rsv *rsv;
  494. struct btrfs_fs_info *fs_info = root->fs_info;
  495. if (!item->bytes_reserved)
  496. return;
  497. rsv = &fs_info->delayed_block_rsv;
  498. /*
  499. * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
  500. * to release/reserve qgroup space.
  501. */
  502. trace_btrfs_space_reservation(fs_info, "delayed_item",
  503. item->key.objectid, item->bytes_reserved,
  504. 0);
  505. btrfs_block_rsv_release(fs_info, rsv,
  506. item->bytes_reserved);
  507. }
  508. static int btrfs_delayed_inode_reserve_metadata(
  509. struct btrfs_trans_handle *trans,
  510. struct btrfs_root *root,
  511. struct btrfs_inode *inode,
  512. struct btrfs_delayed_node *node)
  513. {
  514. struct btrfs_fs_info *fs_info = root->fs_info;
  515. struct btrfs_block_rsv *src_rsv;
  516. struct btrfs_block_rsv *dst_rsv;
  517. u64 num_bytes;
  518. int ret;
  519. src_rsv = trans->block_rsv;
  520. dst_rsv = &fs_info->delayed_block_rsv;
  521. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  522. /*
  523. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  524. * which doesn't reserve space for speed. This is a problem since we
  525. * still need to reserve space for this update, so try to reserve the
  526. * space.
  527. *
  528. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  529. * we always reserve enough to update the inode item.
  530. */
  531. if (!src_rsv || (!trans->bytes_reserved &&
  532. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  533. ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
  534. if (ret < 0)
  535. return ret;
  536. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  537. BTRFS_RESERVE_NO_FLUSH);
  538. /*
  539. * Since we're under a transaction reserve_metadata_bytes could
  540. * try to commit the transaction which will make it return
  541. * EAGAIN to make us stop the transaction we have, so return
  542. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  543. */
  544. if (ret == -EAGAIN) {
  545. ret = -ENOSPC;
  546. btrfs_qgroup_free_meta_prealloc(root, num_bytes);
  547. }
  548. if (!ret) {
  549. node->bytes_reserved = num_bytes;
  550. trace_btrfs_space_reservation(fs_info,
  551. "delayed_inode",
  552. btrfs_ino(inode),
  553. num_bytes, 1);
  554. } else {
  555. btrfs_qgroup_free_meta_prealloc(root, num_bytes);
  556. }
  557. return ret;
  558. }
  559. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  560. if (!ret) {
  561. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  562. btrfs_ino(inode), num_bytes, 1);
  563. node->bytes_reserved = num_bytes;
  564. }
  565. return ret;
  566. }
  567. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  568. struct btrfs_delayed_node *node,
  569. bool qgroup_free)
  570. {
  571. struct btrfs_block_rsv *rsv;
  572. if (!node->bytes_reserved)
  573. return;
  574. rsv = &fs_info->delayed_block_rsv;
  575. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  576. node->inode_id, node->bytes_reserved, 0);
  577. btrfs_block_rsv_release(fs_info, rsv,
  578. node->bytes_reserved);
  579. if (qgroup_free)
  580. btrfs_qgroup_free_meta_prealloc(node->root,
  581. node->bytes_reserved);
  582. else
  583. btrfs_qgroup_convert_reserved_meta(node->root,
  584. node->bytes_reserved);
  585. node->bytes_reserved = 0;
  586. }
  587. /*
  588. * This helper will insert some continuous items into the same leaf according
  589. * to the free space of the leaf.
  590. */
  591. static int btrfs_batch_insert_items(struct btrfs_root *root,
  592. struct btrfs_path *path,
  593. struct btrfs_delayed_item *item)
  594. {
  595. struct btrfs_fs_info *fs_info = root->fs_info;
  596. struct btrfs_delayed_item *curr, *next;
  597. int free_space;
  598. int total_data_size = 0, total_size = 0;
  599. struct extent_buffer *leaf;
  600. char *data_ptr;
  601. struct btrfs_key *keys;
  602. u32 *data_size;
  603. struct list_head head;
  604. int slot;
  605. int nitems;
  606. int i;
  607. int ret = 0;
  608. BUG_ON(!path->nodes[0]);
  609. leaf = path->nodes[0];
  610. free_space = btrfs_leaf_free_space(fs_info, leaf);
  611. INIT_LIST_HEAD(&head);
  612. next = item;
  613. nitems = 0;
  614. /*
  615. * count the number of the continuous items that we can insert in batch
  616. */
  617. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  618. free_space) {
  619. total_data_size += next->data_len;
  620. total_size += next->data_len + sizeof(struct btrfs_item);
  621. list_add_tail(&next->tree_list, &head);
  622. nitems++;
  623. curr = next;
  624. next = __btrfs_next_delayed_item(curr);
  625. if (!next)
  626. break;
  627. if (!btrfs_is_continuous_delayed_item(curr, next))
  628. break;
  629. }
  630. if (!nitems) {
  631. ret = 0;
  632. goto out;
  633. }
  634. /*
  635. * we need allocate some memory space, but it might cause the task
  636. * to sleep, so we set all locked nodes in the path to blocking locks
  637. * first.
  638. */
  639. btrfs_set_path_blocking(path);
  640. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  641. if (!keys) {
  642. ret = -ENOMEM;
  643. goto out;
  644. }
  645. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  646. if (!data_size) {
  647. ret = -ENOMEM;
  648. goto error;
  649. }
  650. /* get keys of all the delayed items */
  651. i = 0;
  652. list_for_each_entry(next, &head, tree_list) {
  653. keys[i] = next->key;
  654. data_size[i] = next->data_len;
  655. i++;
  656. }
  657. /* reset all the locked nodes in the patch to spinning locks. */
  658. btrfs_clear_path_blocking(path, NULL, 0);
  659. /* insert the keys of the items */
  660. setup_items_for_insert(root, path, keys, data_size,
  661. total_data_size, total_size, nitems);
  662. /* insert the dir index items */
  663. slot = path->slots[0];
  664. list_for_each_entry_safe(curr, next, &head, tree_list) {
  665. data_ptr = btrfs_item_ptr(leaf, slot, char);
  666. write_extent_buffer(leaf, &curr->data,
  667. (unsigned long)data_ptr,
  668. curr->data_len);
  669. slot++;
  670. btrfs_delayed_item_release_metadata(root, curr);
  671. list_del(&curr->tree_list);
  672. btrfs_release_delayed_item(curr);
  673. }
  674. error:
  675. kfree(data_size);
  676. kfree(keys);
  677. out:
  678. return ret;
  679. }
  680. /*
  681. * This helper can just do simple insertion that needn't extend item for new
  682. * data, such as directory name index insertion, inode insertion.
  683. */
  684. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  685. struct btrfs_root *root,
  686. struct btrfs_path *path,
  687. struct btrfs_delayed_item *delayed_item)
  688. {
  689. struct extent_buffer *leaf;
  690. unsigned int nofs_flag;
  691. char *ptr;
  692. int ret;
  693. nofs_flag = memalloc_nofs_save();
  694. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  695. delayed_item->data_len);
  696. memalloc_nofs_restore(nofs_flag);
  697. if (ret < 0 && ret != -EEXIST)
  698. return ret;
  699. leaf = path->nodes[0];
  700. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  701. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  702. delayed_item->data_len);
  703. btrfs_mark_buffer_dirty(leaf);
  704. btrfs_delayed_item_release_metadata(root, delayed_item);
  705. return 0;
  706. }
  707. /*
  708. * we insert an item first, then if there are some continuous items, we try
  709. * to insert those items into the same leaf.
  710. */
  711. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  712. struct btrfs_path *path,
  713. struct btrfs_root *root,
  714. struct btrfs_delayed_node *node)
  715. {
  716. struct btrfs_delayed_item *curr, *prev;
  717. int ret = 0;
  718. do_again:
  719. mutex_lock(&node->mutex);
  720. curr = __btrfs_first_delayed_insertion_item(node);
  721. if (!curr)
  722. goto insert_end;
  723. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  724. if (ret < 0) {
  725. btrfs_release_path(path);
  726. goto insert_end;
  727. }
  728. prev = curr;
  729. curr = __btrfs_next_delayed_item(prev);
  730. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  731. /* insert the continuous items into the same leaf */
  732. path->slots[0]++;
  733. btrfs_batch_insert_items(root, path, curr);
  734. }
  735. btrfs_release_delayed_item(prev);
  736. btrfs_mark_buffer_dirty(path->nodes[0]);
  737. btrfs_release_path(path);
  738. mutex_unlock(&node->mutex);
  739. goto do_again;
  740. insert_end:
  741. mutex_unlock(&node->mutex);
  742. return ret;
  743. }
  744. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  745. struct btrfs_root *root,
  746. struct btrfs_path *path,
  747. struct btrfs_delayed_item *item)
  748. {
  749. struct btrfs_delayed_item *curr, *next;
  750. struct extent_buffer *leaf;
  751. struct btrfs_key key;
  752. struct list_head head;
  753. int nitems, i, last_item;
  754. int ret = 0;
  755. BUG_ON(!path->nodes[0]);
  756. leaf = path->nodes[0];
  757. i = path->slots[0];
  758. last_item = btrfs_header_nritems(leaf) - 1;
  759. if (i > last_item)
  760. return -ENOENT; /* FIXME: Is errno suitable? */
  761. next = item;
  762. INIT_LIST_HEAD(&head);
  763. btrfs_item_key_to_cpu(leaf, &key, i);
  764. nitems = 0;
  765. /*
  766. * count the number of the dir index items that we can delete in batch
  767. */
  768. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  769. list_add_tail(&next->tree_list, &head);
  770. nitems++;
  771. curr = next;
  772. next = __btrfs_next_delayed_item(curr);
  773. if (!next)
  774. break;
  775. if (!btrfs_is_continuous_delayed_item(curr, next))
  776. break;
  777. i++;
  778. if (i > last_item)
  779. break;
  780. btrfs_item_key_to_cpu(leaf, &key, i);
  781. }
  782. if (!nitems)
  783. return 0;
  784. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  785. if (ret)
  786. goto out;
  787. list_for_each_entry_safe(curr, next, &head, tree_list) {
  788. btrfs_delayed_item_release_metadata(root, curr);
  789. list_del(&curr->tree_list);
  790. btrfs_release_delayed_item(curr);
  791. }
  792. out:
  793. return ret;
  794. }
  795. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  796. struct btrfs_path *path,
  797. struct btrfs_root *root,
  798. struct btrfs_delayed_node *node)
  799. {
  800. struct btrfs_delayed_item *curr, *prev;
  801. unsigned int nofs_flag;
  802. int ret = 0;
  803. do_again:
  804. mutex_lock(&node->mutex);
  805. curr = __btrfs_first_delayed_deletion_item(node);
  806. if (!curr)
  807. goto delete_fail;
  808. nofs_flag = memalloc_nofs_save();
  809. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  810. memalloc_nofs_restore(nofs_flag);
  811. if (ret < 0)
  812. goto delete_fail;
  813. else if (ret > 0) {
  814. /*
  815. * can't find the item which the node points to, so this node
  816. * is invalid, just drop it.
  817. */
  818. prev = curr;
  819. curr = __btrfs_next_delayed_item(prev);
  820. btrfs_release_delayed_item(prev);
  821. ret = 0;
  822. btrfs_release_path(path);
  823. if (curr) {
  824. mutex_unlock(&node->mutex);
  825. goto do_again;
  826. } else
  827. goto delete_fail;
  828. }
  829. btrfs_batch_delete_items(trans, root, path, curr);
  830. btrfs_release_path(path);
  831. mutex_unlock(&node->mutex);
  832. goto do_again;
  833. delete_fail:
  834. btrfs_release_path(path);
  835. mutex_unlock(&node->mutex);
  836. return ret;
  837. }
  838. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  839. {
  840. struct btrfs_delayed_root *delayed_root;
  841. if (delayed_node &&
  842. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  843. BUG_ON(!delayed_node->root);
  844. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  845. delayed_node->count--;
  846. delayed_root = delayed_node->root->fs_info->delayed_root;
  847. finish_one_item(delayed_root);
  848. }
  849. }
  850. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  851. {
  852. struct btrfs_delayed_root *delayed_root;
  853. ASSERT(delayed_node->root);
  854. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  855. delayed_node->count--;
  856. delayed_root = delayed_node->root->fs_info->delayed_root;
  857. finish_one_item(delayed_root);
  858. }
  859. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  860. struct btrfs_root *root,
  861. struct btrfs_path *path,
  862. struct btrfs_delayed_node *node)
  863. {
  864. struct btrfs_fs_info *fs_info = root->fs_info;
  865. struct btrfs_key key;
  866. struct btrfs_inode_item *inode_item;
  867. struct extent_buffer *leaf;
  868. unsigned int nofs_flag;
  869. int mod;
  870. int ret;
  871. key.objectid = node->inode_id;
  872. key.type = BTRFS_INODE_ITEM_KEY;
  873. key.offset = 0;
  874. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  875. mod = -1;
  876. else
  877. mod = 1;
  878. nofs_flag = memalloc_nofs_save();
  879. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  880. memalloc_nofs_restore(nofs_flag);
  881. if (ret > 0) {
  882. btrfs_release_path(path);
  883. return -ENOENT;
  884. } else if (ret < 0) {
  885. return ret;
  886. }
  887. leaf = path->nodes[0];
  888. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  889. struct btrfs_inode_item);
  890. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  891. sizeof(struct btrfs_inode_item));
  892. btrfs_mark_buffer_dirty(leaf);
  893. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  894. goto no_iref;
  895. path->slots[0]++;
  896. if (path->slots[0] >= btrfs_header_nritems(leaf))
  897. goto search;
  898. again:
  899. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  900. if (key.objectid != node->inode_id)
  901. goto out;
  902. if (key.type != BTRFS_INODE_REF_KEY &&
  903. key.type != BTRFS_INODE_EXTREF_KEY)
  904. goto out;
  905. /*
  906. * Delayed iref deletion is for the inode who has only one link,
  907. * so there is only one iref. The case that several irefs are
  908. * in the same item doesn't exist.
  909. */
  910. btrfs_del_item(trans, root, path);
  911. out:
  912. btrfs_release_delayed_iref(node);
  913. no_iref:
  914. btrfs_release_path(path);
  915. err_out:
  916. btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
  917. btrfs_release_delayed_inode(node);
  918. return ret;
  919. search:
  920. btrfs_release_path(path);
  921. key.type = BTRFS_INODE_EXTREF_KEY;
  922. key.offset = -1;
  923. nofs_flag = memalloc_nofs_save();
  924. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  925. memalloc_nofs_restore(nofs_flag);
  926. if (ret < 0)
  927. goto err_out;
  928. ASSERT(ret);
  929. ret = 0;
  930. leaf = path->nodes[0];
  931. path->slots[0]--;
  932. goto again;
  933. }
  934. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  935. struct btrfs_root *root,
  936. struct btrfs_path *path,
  937. struct btrfs_delayed_node *node)
  938. {
  939. int ret;
  940. mutex_lock(&node->mutex);
  941. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  942. mutex_unlock(&node->mutex);
  943. return 0;
  944. }
  945. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  946. mutex_unlock(&node->mutex);
  947. return ret;
  948. }
  949. static inline int
  950. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  951. struct btrfs_path *path,
  952. struct btrfs_delayed_node *node)
  953. {
  954. int ret;
  955. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  956. if (ret)
  957. return ret;
  958. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  959. if (ret)
  960. return ret;
  961. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  962. return ret;
  963. }
  964. /*
  965. * Called when committing the transaction.
  966. * Returns 0 on success.
  967. * Returns < 0 on error and returns with an aborted transaction with any
  968. * outstanding delayed items cleaned up.
  969. */
  970. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
  971. {
  972. struct btrfs_fs_info *fs_info = trans->fs_info;
  973. struct btrfs_delayed_root *delayed_root;
  974. struct btrfs_delayed_node *curr_node, *prev_node;
  975. struct btrfs_path *path;
  976. struct btrfs_block_rsv *block_rsv;
  977. int ret = 0;
  978. bool count = (nr > 0);
  979. if (trans->aborted)
  980. return -EIO;
  981. path = btrfs_alloc_path();
  982. if (!path)
  983. return -ENOMEM;
  984. path->leave_spinning = 1;
  985. block_rsv = trans->block_rsv;
  986. trans->block_rsv = &fs_info->delayed_block_rsv;
  987. delayed_root = fs_info->delayed_root;
  988. curr_node = btrfs_first_delayed_node(delayed_root);
  989. while (curr_node && (!count || (count && nr--))) {
  990. ret = __btrfs_commit_inode_delayed_items(trans, path,
  991. curr_node);
  992. if (ret) {
  993. btrfs_release_delayed_node(curr_node);
  994. curr_node = NULL;
  995. btrfs_abort_transaction(trans, ret);
  996. break;
  997. }
  998. prev_node = curr_node;
  999. curr_node = btrfs_next_delayed_node(curr_node);
  1000. btrfs_release_delayed_node(prev_node);
  1001. }
  1002. if (curr_node)
  1003. btrfs_release_delayed_node(curr_node);
  1004. btrfs_free_path(path);
  1005. trans->block_rsv = block_rsv;
  1006. return ret;
  1007. }
  1008. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
  1009. {
  1010. return __btrfs_run_delayed_items(trans, -1);
  1011. }
  1012. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
  1013. {
  1014. return __btrfs_run_delayed_items(trans, nr);
  1015. }
  1016. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1017. struct btrfs_inode *inode)
  1018. {
  1019. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1020. struct btrfs_path *path;
  1021. struct btrfs_block_rsv *block_rsv;
  1022. int ret;
  1023. if (!delayed_node)
  1024. return 0;
  1025. mutex_lock(&delayed_node->mutex);
  1026. if (!delayed_node->count) {
  1027. mutex_unlock(&delayed_node->mutex);
  1028. btrfs_release_delayed_node(delayed_node);
  1029. return 0;
  1030. }
  1031. mutex_unlock(&delayed_node->mutex);
  1032. path = btrfs_alloc_path();
  1033. if (!path) {
  1034. btrfs_release_delayed_node(delayed_node);
  1035. return -ENOMEM;
  1036. }
  1037. path->leave_spinning = 1;
  1038. block_rsv = trans->block_rsv;
  1039. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1040. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1041. btrfs_release_delayed_node(delayed_node);
  1042. btrfs_free_path(path);
  1043. trans->block_rsv = block_rsv;
  1044. return ret;
  1045. }
  1046. int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
  1047. {
  1048. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1049. struct btrfs_trans_handle *trans;
  1050. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1051. struct btrfs_path *path;
  1052. struct btrfs_block_rsv *block_rsv;
  1053. int ret;
  1054. if (!delayed_node)
  1055. return 0;
  1056. mutex_lock(&delayed_node->mutex);
  1057. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1058. mutex_unlock(&delayed_node->mutex);
  1059. btrfs_release_delayed_node(delayed_node);
  1060. return 0;
  1061. }
  1062. mutex_unlock(&delayed_node->mutex);
  1063. trans = btrfs_join_transaction(delayed_node->root);
  1064. if (IS_ERR(trans)) {
  1065. ret = PTR_ERR(trans);
  1066. goto out;
  1067. }
  1068. path = btrfs_alloc_path();
  1069. if (!path) {
  1070. ret = -ENOMEM;
  1071. goto trans_out;
  1072. }
  1073. path->leave_spinning = 1;
  1074. block_rsv = trans->block_rsv;
  1075. trans->block_rsv = &fs_info->delayed_block_rsv;
  1076. mutex_lock(&delayed_node->mutex);
  1077. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1078. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1079. path, delayed_node);
  1080. else
  1081. ret = 0;
  1082. mutex_unlock(&delayed_node->mutex);
  1083. btrfs_free_path(path);
  1084. trans->block_rsv = block_rsv;
  1085. trans_out:
  1086. btrfs_end_transaction(trans);
  1087. btrfs_btree_balance_dirty(fs_info);
  1088. out:
  1089. btrfs_release_delayed_node(delayed_node);
  1090. return ret;
  1091. }
  1092. void btrfs_remove_delayed_node(struct btrfs_inode *inode)
  1093. {
  1094. struct btrfs_delayed_node *delayed_node;
  1095. delayed_node = READ_ONCE(inode->delayed_node);
  1096. if (!delayed_node)
  1097. return;
  1098. inode->delayed_node = NULL;
  1099. btrfs_release_delayed_node(delayed_node);
  1100. }
  1101. struct btrfs_async_delayed_work {
  1102. struct btrfs_delayed_root *delayed_root;
  1103. int nr;
  1104. struct btrfs_work work;
  1105. };
  1106. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1107. {
  1108. struct btrfs_async_delayed_work *async_work;
  1109. struct btrfs_delayed_root *delayed_root;
  1110. struct btrfs_trans_handle *trans;
  1111. struct btrfs_path *path;
  1112. struct btrfs_delayed_node *delayed_node = NULL;
  1113. struct btrfs_root *root;
  1114. struct btrfs_block_rsv *block_rsv;
  1115. int total_done = 0;
  1116. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1117. delayed_root = async_work->delayed_root;
  1118. path = btrfs_alloc_path();
  1119. if (!path)
  1120. goto out;
  1121. do {
  1122. if (atomic_read(&delayed_root->items) <
  1123. BTRFS_DELAYED_BACKGROUND / 2)
  1124. break;
  1125. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1126. if (!delayed_node)
  1127. break;
  1128. path->leave_spinning = 1;
  1129. root = delayed_node->root;
  1130. trans = btrfs_join_transaction(root);
  1131. if (IS_ERR(trans)) {
  1132. btrfs_release_path(path);
  1133. btrfs_release_prepared_delayed_node(delayed_node);
  1134. total_done++;
  1135. continue;
  1136. }
  1137. block_rsv = trans->block_rsv;
  1138. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1139. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1140. trans->block_rsv = block_rsv;
  1141. btrfs_end_transaction(trans);
  1142. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1143. btrfs_release_path(path);
  1144. btrfs_release_prepared_delayed_node(delayed_node);
  1145. total_done++;
  1146. } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
  1147. || total_done < async_work->nr);
  1148. btrfs_free_path(path);
  1149. out:
  1150. wake_up(&delayed_root->wait);
  1151. kfree(async_work);
  1152. }
  1153. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1154. struct btrfs_fs_info *fs_info, int nr)
  1155. {
  1156. struct btrfs_async_delayed_work *async_work;
  1157. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1158. if (!async_work)
  1159. return -ENOMEM;
  1160. async_work->delayed_root = delayed_root;
  1161. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1162. btrfs_async_run_delayed_root, NULL, NULL);
  1163. async_work->nr = nr;
  1164. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1165. return 0;
  1166. }
  1167. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1168. {
  1169. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1170. }
  1171. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1172. {
  1173. int val = atomic_read(&delayed_root->items_seq);
  1174. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1175. return 1;
  1176. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1177. return 1;
  1178. return 0;
  1179. }
  1180. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1181. {
  1182. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1183. if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
  1184. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1185. return;
  1186. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1187. int seq;
  1188. int ret;
  1189. seq = atomic_read(&delayed_root->items_seq);
  1190. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1191. if (ret)
  1192. return;
  1193. wait_event_interruptible(delayed_root->wait,
  1194. could_end_wait(delayed_root, seq));
  1195. return;
  1196. }
  1197. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1198. }
  1199. /* Will return 0 or -ENOMEM */
  1200. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1201. const char *name, int name_len,
  1202. struct btrfs_inode *dir,
  1203. struct btrfs_disk_key *disk_key, u8 type,
  1204. u64 index)
  1205. {
  1206. struct btrfs_delayed_node *delayed_node;
  1207. struct btrfs_delayed_item *delayed_item;
  1208. struct btrfs_dir_item *dir_item;
  1209. int ret;
  1210. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1211. if (IS_ERR(delayed_node))
  1212. return PTR_ERR(delayed_node);
  1213. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1214. if (!delayed_item) {
  1215. ret = -ENOMEM;
  1216. goto release_node;
  1217. }
  1218. delayed_item->key.objectid = btrfs_ino(dir);
  1219. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1220. delayed_item->key.offset = index;
  1221. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1222. dir_item->location = *disk_key;
  1223. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1224. btrfs_set_stack_dir_data_len(dir_item, 0);
  1225. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1226. btrfs_set_stack_dir_type(dir_item, type);
  1227. memcpy((char *)(dir_item + 1), name, name_len);
  1228. ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
  1229. /*
  1230. * we have reserved enough space when we start a new transaction,
  1231. * so reserving metadata failure is impossible
  1232. */
  1233. BUG_ON(ret);
  1234. mutex_lock(&delayed_node->mutex);
  1235. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1236. if (unlikely(ret)) {
  1237. btrfs_err(trans->fs_info,
  1238. "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1239. name_len, name, delayed_node->root->objectid,
  1240. delayed_node->inode_id, ret);
  1241. BUG();
  1242. }
  1243. mutex_unlock(&delayed_node->mutex);
  1244. release_node:
  1245. btrfs_release_delayed_node(delayed_node);
  1246. return ret;
  1247. }
  1248. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1249. struct btrfs_delayed_node *node,
  1250. struct btrfs_key *key)
  1251. {
  1252. struct btrfs_delayed_item *item;
  1253. mutex_lock(&node->mutex);
  1254. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1255. if (!item) {
  1256. mutex_unlock(&node->mutex);
  1257. return 1;
  1258. }
  1259. btrfs_delayed_item_release_metadata(node->root, item);
  1260. btrfs_release_delayed_item(item);
  1261. mutex_unlock(&node->mutex);
  1262. return 0;
  1263. }
  1264. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1265. struct btrfs_inode *dir, u64 index)
  1266. {
  1267. struct btrfs_delayed_node *node;
  1268. struct btrfs_delayed_item *item;
  1269. struct btrfs_key item_key;
  1270. int ret;
  1271. node = btrfs_get_or_create_delayed_node(dir);
  1272. if (IS_ERR(node))
  1273. return PTR_ERR(node);
  1274. item_key.objectid = btrfs_ino(dir);
  1275. item_key.type = BTRFS_DIR_INDEX_KEY;
  1276. item_key.offset = index;
  1277. ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
  1278. &item_key);
  1279. if (!ret)
  1280. goto end;
  1281. item = btrfs_alloc_delayed_item(0);
  1282. if (!item) {
  1283. ret = -ENOMEM;
  1284. goto end;
  1285. }
  1286. item->key = item_key;
  1287. ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
  1288. /*
  1289. * we have reserved enough space when we start a new transaction,
  1290. * so reserving metadata failure is impossible.
  1291. */
  1292. BUG_ON(ret);
  1293. mutex_lock(&node->mutex);
  1294. ret = __btrfs_add_delayed_deletion_item(node, item);
  1295. if (unlikely(ret)) {
  1296. btrfs_err(trans->fs_info,
  1297. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1298. index, node->root->objectid, node->inode_id, ret);
  1299. BUG();
  1300. }
  1301. mutex_unlock(&node->mutex);
  1302. end:
  1303. btrfs_release_delayed_node(node);
  1304. return ret;
  1305. }
  1306. int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
  1307. {
  1308. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1309. if (!delayed_node)
  1310. return -ENOENT;
  1311. /*
  1312. * Since we have held i_mutex of this directory, it is impossible that
  1313. * a new directory index is added into the delayed node and index_cnt
  1314. * is updated now. So we needn't lock the delayed node.
  1315. */
  1316. if (!delayed_node->index_cnt) {
  1317. btrfs_release_delayed_node(delayed_node);
  1318. return -EINVAL;
  1319. }
  1320. inode->index_cnt = delayed_node->index_cnt;
  1321. btrfs_release_delayed_node(delayed_node);
  1322. return 0;
  1323. }
  1324. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1325. struct list_head *ins_list,
  1326. struct list_head *del_list)
  1327. {
  1328. struct btrfs_delayed_node *delayed_node;
  1329. struct btrfs_delayed_item *item;
  1330. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1331. if (!delayed_node)
  1332. return false;
  1333. /*
  1334. * We can only do one readdir with delayed items at a time because of
  1335. * item->readdir_list.
  1336. */
  1337. inode_unlock_shared(inode);
  1338. inode_lock(inode);
  1339. mutex_lock(&delayed_node->mutex);
  1340. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1341. while (item) {
  1342. refcount_inc(&item->refs);
  1343. list_add_tail(&item->readdir_list, ins_list);
  1344. item = __btrfs_next_delayed_item(item);
  1345. }
  1346. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1347. while (item) {
  1348. refcount_inc(&item->refs);
  1349. list_add_tail(&item->readdir_list, del_list);
  1350. item = __btrfs_next_delayed_item(item);
  1351. }
  1352. mutex_unlock(&delayed_node->mutex);
  1353. /*
  1354. * This delayed node is still cached in the btrfs inode, so refs
  1355. * must be > 1 now, and we needn't check it is going to be freed
  1356. * or not.
  1357. *
  1358. * Besides that, this function is used to read dir, we do not
  1359. * insert/delete delayed items in this period. So we also needn't
  1360. * requeue or dequeue this delayed node.
  1361. */
  1362. refcount_dec(&delayed_node->refs);
  1363. return true;
  1364. }
  1365. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1366. struct list_head *ins_list,
  1367. struct list_head *del_list)
  1368. {
  1369. struct btrfs_delayed_item *curr, *next;
  1370. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1371. list_del(&curr->readdir_list);
  1372. if (refcount_dec_and_test(&curr->refs))
  1373. kfree(curr);
  1374. }
  1375. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1376. list_del(&curr->readdir_list);
  1377. if (refcount_dec_and_test(&curr->refs))
  1378. kfree(curr);
  1379. }
  1380. /*
  1381. * The VFS is going to do up_read(), so we need to downgrade back to a
  1382. * read lock.
  1383. */
  1384. downgrade_write(&inode->i_rwsem);
  1385. }
  1386. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1387. u64 index)
  1388. {
  1389. struct btrfs_delayed_item *curr;
  1390. int ret = 0;
  1391. list_for_each_entry(curr, del_list, readdir_list) {
  1392. if (curr->key.offset > index)
  1393. break;
  1394. if (curr->key.offset == index) {
  1395. ret = 1;
  1396. break;
  1397. }
  1398. }
  1399. return ret;
  1400. }
  1401. /*
  1402. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1403. *
  1404. */
  1405. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1406. struct list_head *ins_list)
  1407. {
  1408. struct btrfs_dir_item *di;
  1409. struct btrfs_delayed_item *curr, *next;
  1410. struct btrfs_key location;
  1411. char *name;
  1412. int name_len;
  1413. int over = 0;
  1414. unsigned char d_type;
  1415. if (list_empty(ins_list))
  1416. return 0;
  1417. /*
  1418. * Changing the data of the delayed item is impossible. So
  1419. * we needn't lock them. And we have held i_mutex of the
  1420. * directory, nobody can delete any directory indexes now.
  1421. */
  1422. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1423. list_del(&curr->readdir_list);
  1424. if (curr->key.offset < ctx->pos) {
  1425. if (refcount_dec_and_test(&curr->refs))
  1426. kfree(curr);
  1427. continue;
  1428. }
  1429. ctx->pos = curr->key.offset;
  1430. di = (struct btrfs_dir_item *)curr->data;
  1431. name = (char *)(di + 1);
  1432. name_len = btrfs_stack_dir_name_len(di);
  1433. d_type = btrfs_filetype_table[di->type];
  1434. btrfs_disk_key_to_cpu(&location, &di->location);
  1435. over = !dir_emit(ctx, name, name_len,
  1436. location.objectid, d_type);
  1437. if (refcount_dec_and_test(&curr->refs))
  1438. kfree(curr);
  1439. if (over)
  1440. return 1;
  1441. ctx->pos++;
  1442. }
  1443. return 0;
  1444. }
  1445. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1446. struct btrfs_inode_item *inode_item,
  1447. struct inode *inode)
  1448. {
  1449. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1450. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1451. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1452. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1453. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1454. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1455. btrfs_set_stack_inode_generation(inode_item,
  1456. BTRFS_I(inode)->generation);
  1457. btrfs_set_stack_inode_sequence(inode_item,
  1458. inode_peek_iversion(inode));
  1459. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1460. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1461. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1462. btrfs_set_stack_inode_block_group(inode_item, 0);
  1463. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1464. inode->i_atime.tv_sec);
  1465. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1466. inode->i_atime.tv_nsec);
  1467. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1468. inode->i_mtime.tv_sec);
  1469. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1470. inode->i_mtime.tv_nsec);
  1471. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1472. inode->i_ctime.tv_sec);
  1473. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1474. inode->i_ctime.tv_nsec);
  1475. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1476. BTRFS_I(inode)->i_otime.tv_sec);
  1477. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1478. BTRFS_I(inode)->i_otime.tv_nsec);
  1479. }
  1480. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1481. {
  1482. struct btrfs_delayed_node *delayed_node;
  1483. struct btrfs_inode_item *inode_item;
  1484. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1485. if (!delayed_node)
  1486. return -ENOENT;
  1487. mutex_lock(&delayed_node->mutex);
  1488. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1489. mutex_unlock(&delayed_node->mutex);
  1490. btrfs_release_delayed_node(delayed_node);
  1491. return -ENOENT;
  1492. }
  1493. inode_item = &delayed_node->inode_item;
  1494. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1495. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1496. btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
  1497. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1498. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1499. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1500. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1501. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1502. inode_set_iversion_queried(inode,
  1503. btrfs_stack_inode_sequence(inode_item));
  1504. inode->i_rdev = 0;
  1505. *rdev = btrfs_stack_inode_rdev(inode_item);
  1506. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1507. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1508. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1509. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1510. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1511. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1512. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1513. BTRFS_I(inode)->i_otime.tv_sec =
  1514. btrfs_stack_timespec_sec(&inode_item->otime);
  1515. BTRFS_I(inode)->i_otime.tv_nsec =
  1516. btrfs_stack_timespec_nsec(&inode_item->otime);
  1517. inode->i_generation = BTRFS_I(inode)->generation;
  1518. BTRFS_I(inode)->index_cnt = (u64)-1;
  1519. mutex_unlock(&delayed_node->mutex);
  1520. btrfs_release_delayed_node(delayed_node);
  1521. return 0;
  1522. }
  1523. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1524. struct btrfs_root *root, struct inode *inode)
  1525. {
  1526. struct btrfs_delayed_node *delayed_node;
  1527. int ret = 0;
  1528. delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
  1529. if (IS_ERR(delayed_node))
  1530. return PTR_ERR(delayed_node);
  1531. mutex_lock(&delayed_node->mutex);
  1532. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1533. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1534. goto release_node;
  1535. }
  1536. ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
  1537. delayed_node);
  1538. if (ret)
  1539. goto release_node;
  1540. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1541. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1542. delayed_node->count++;
  1543. atomic_inc(&root->fs_info->delayed_root->items);
  1544. release_node:
  1545. mutex_unlock(&delayed_node->mutex);
  1546. btrfs_release_delayed_node(delayed_node);
  1547. return ret;
  1548. }
  1549. int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
  1550. {
  1551. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1552. struct btrfs_delayed_node *delayed_node;
  1553. /*
  1554. * we don't do delayed inode updates during log recovery because it
  1555. * leads to enospc problems. This means we also can't do
  1556. * delayed inode refs
  1557. */
  1558. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1559. return -EAGAIN;
  1560. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1561. if (IS_ERR(delayed_node))
  1562. return PTR_ERR(delayed_node);
  1563. /*
  1564. * We don't reserve space for inode ref deletion is because:
  1565. * - We ONLY do async inode ref deletion for the inode who has only
  1566. * one link(i_nlink == 1), it means there is only one inode ref.
  1567. * And in most case, the inode ref and the inode item are in the
  1568. * same leaf, and we will deal with them at the same time.
  1569. * Since we are sure we will reserve the space for the inode item,
  1570. * it is unnecessary to reserve space for inode ref deletion.
  1571. * - If the inode ref and the inode item are not in the same leaf,
  1572. * We also needn't worry about enospc problem, because we reserve
  1573. * much more space for the inode update than it needs.
  1574. * - At the worst, we can steal some space from the global reservation.
  1575. * It is very rare.
  1576. */
  1577. mutex_lock(&delayed_node->mutex);
  1578. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1579. goto release_node;
  1580. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1581. delayed_node->count++;
  1582. atomic_inc(&fs_info->delayed_root->items);
  1583. release_node:
  1584. mutex_unlock(&delayed_node->mutex);
  1585. btrfs_release_delayed_node(delayed_node);
  1586. return 0;
  1587. }
  1588. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1589. {
  1590. struct btrfs_root *root = delayed_node->root;
  1591. struct btrfs_fs_info *fs_info = root->fs_info;
  1592. struct btrfs_delayed_item *curr_item, *prev_item;
  1593. mutex_lock(&delayed_node->mutex);
  1594. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1595. while (curr_item) {
  1596. btrfs_delayed_item_release_metadata(root, curr_item);
  1597. prev_item = curr_item;
  1598. curr_item = __btrfs_next_delayed_item(prev_item);
  1599. btrfs_release_delayed_item(prev_item);
  1600. }
  1601. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1602. while (curr_item) {
  1603. btrfs_delayed_item_release_metadata(root, curr_item);
  1604. prev_item = curr_item;
  1605. curr_item = __btrfs_next_delayed_item(prev_item);
  1606. btrfs_release_delayed_item(prev_item);
  1607. }
  1608. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1609. btrfs_release_delayed_iref(delayed_node);
  1610. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1611. btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
  1612. btrfs_release_delayed_inode(delayed_node);
  1613. }
  1614. mutex_unlock(&delayed_node->mutex);
  1615. }
  1616. void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
  1617. {
  1618. struct btrfs_delayed_node *delayed_node;
  1619. delayed_node = btrfs_get_delayed_node(inode);
  1620. if (!delayed_node)
  1621. return;
  1622. __btrfs_kill_delayed_node(delayed_node);
  1623. btrfs_release_delayed_node(delayed_node);
  1624. }
  1625. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1626. {
  1627. u64 inode_id = 0;
  1628. struct btrfs_delayed_node *delayed_nodes[8];
  1629. int i, n;
  1630. while (1) {
  1631. spin_lock(&root->inode_lock);
  1632. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1633. (void **)delayed_nodes, inode_id,
  1634. ARRAY_SIZE(delayed_nodes));
  1635. if (!n) {
  1636. spin_unlock(&root->inode_lock);
  1637. break;
  1638. }
  1639. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1640. for (i = 0; i < n; i++) {
  1641. /*
  1642. * Don't increase refs in case the node is dead and
  1643. * about to be removed from the tree in the loop below
  1644. */
  1645. if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
  1646. delayed_nodes[i] = NULL;
  1647. }
  1648. spin_unlock(&root->inode_lock);
  1649. for (i = 0; i < n; i++) {
  1650. if (!delayed_nodes[i])
  1651. continue;
  1652. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1653. btrfs_release_delayed_node(delayed_nodes[i]);
  1654. }
  1655. }
  1656. }
  1657. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1658. {
  1659. struct btrfs_delayed_node *curr_node, *prev_node;
  1660. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1661. while (curr_node) {
  1662. __btrfs_kill_delayed_node(curr_node);
  1663. prev_node = curr_node;
  1664. curr_node = btrfs_next_delayed_node(curr_node);
  1665. btrfs_release_delayed_node(prev_node);
  1666. }
  1667. }