xfs_aops.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4. * Copyright (c) 2016-2018 Christoph Hellwig.
  5. * All Rights Reserved.
  6. */
  7. #include "xfs.h"
  8. #include "xfs_shared.h"
  9. #include "xfs_format.h"
  10. #include "xfs_log_format.h"
  11. #include "xfs_trans_resv.h"
  12. #include "xfs_mount.h"
  13. #include "xfs_inode.h"
  14. #include "xfs_trans.h"
  15. #include "xfs_inode_item.h"
  16. #include "xfs_alloc.h"
  17. #include "xfs_error.h"
  18. #include "xfs_iomap.h"
  19. #include "xfs_trace.h"
  20. #include "xfs_bmap.h"
  21. #include "xfs_bmap_util.h"
  22. #include "xfs_bmap_btree.h"
  23. #include "xfs_reflink.h"
  24. #include <linux/writeback.h>
  25. /*
  26. * structure owned by writepages passed to individual writepage calls
  27. */
  28. struct xfs_writepage_ctx {
  29. struct xfs_bmbt_irec imap;
  30. unsigned int io_type;
  31. unsigned int cow_seq;
  32. struct xfs_ioend *ioend;
  33. };
  34. struct block_device *
  35. xfs_find_bdev_for_inode(
  36. struct inode *inode)
  37. {
  38. struct xfs_inode *ip = XFS_I(inode);
  39. struct xfs_mount *mp = ip->i_mount;
  40. if (XFS_IS_REALTIME_INODE(ip))
  41. return mp->m_rtdev_targp->bt_bdev;
  42. else
  43. return mp->m_ddev_targp->bt_bdev;
  44. }
  45. struct dax_device *
  46. xfs_find_daxdev_for_inode(
  47. struct inode *inode)
  48. {
  49. struct xfs_inode *ip = XFS_I(inode);
  50. struct xfs_mount *mp = ip->i_mount;
  51. if (XFS_IS_REALTIME_INODE(ip))
  52. return mp->m_rtdev_targp->bt_daxdev;
  53. else
  54. return mp->m_ddev_targp->bt_daxdev;
  55. }
  56. static void
  57. xfs_finish_page_writeback(
  58. struct inode *inode,
  59. struct bio_vec *bvec,
  60. int error)
  61. {
  62. struct iomap_page *iop = to_iomap_page(bvec->bv_page);
  63. if (error) {
  64. SetPageError(bvec->bv_page);
  65. mapping_set_error(inode->i_mapping, -EIO);
  66. }
  67. ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
  68. ASSERT(!iop || atomic_read(&iop->write_count) > 0);
  69. if (!iop || atomic_dec_and_test(&iop->write_count))
  70. end_page_writeback(bvec->bv_page);
  71. }
  72. /*
  73. * We're now finished for good with this ioend structure. Update the page
  74. * state, release holds on bios, and finally free up memory. Do not use the
  75. * ioend after this.
  76. */
  77. STATIC void
  78. xfs_destroy_ioend(
  79. struct xfs_ioend *ioend,
  80. int error)
  81. {
  82. struct inode *inode = ioend->io_inode;
  83. struct bio *bio = &ioend->io_inline_bio;
  84. struct bio *last = ioend->io_bio, *next;
  85. u64 start = bio->bi_iter.bi_sector;
  86. bool quiet = bio_flagged(bio, BIO_QUIET);
  87. for (bio = &ioend->io_inline_bio; bio; bio = next) {
  88. struct bio_vec *bvec;
  89. int i;
  90. /*
  91. * For the last bio, bi_private points to the ioend, so we
  92. * need to explicitly end the iteration here.
  93. */
  94. if (bio == last)
  95. next = NULL;
  96. else
  97. next = bio->bi_private;
  98. /* walk each page on bio, ending page IO on them */
  99. bio_for_each_segment_all(bvec, bio, i)
  100. xfs_finish_page_writeback(inode, bvec, error);
  101. bio_put(bio);
  102. }
  103. if (unlikely(error && !quiet)) {
  104. xfs_err_ratelimited(XFS_I(inode)->i_mount,
  105. "writeback error on sector %llu", start);
  106. }
  107. }
  108. /*
  109. * Fast and loose check if this write could update the on-disk inode size.
  110. */
  111. static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
  112. {
  113. return ioend->io_offset + ioend->io_size >
  114. XFS_I(ioend->io_inode)->i_d.di_size;
  115. }
  116. STATIC int
  117. xfs_setfilesize_trans_alloc(
  118. struct xfs_ioend *ioend)
  119. {
  120. struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
  121. struct xfs_trans *tp;
  122. int error;
  123. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
  124. XFS_TRANS_NOFS, &tp);
  125. if (error)
  126. return error;
  127. ioend->io_append_trans = tp;
  128. /*
  129. * We may pass freeze protection with a transaction. So tell lockdep
  130. * we released it.
  131. */
  132. __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
  133. /*
  134. * We hand off the transaction to the completion thread now, so
  135. * clear the flag here.
  136. */
  137. current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
  138. return 0;
  139. }
  140. /*
  141. * Update on-disk file size now that data has been written to disk.
  142. */
  143. STATIC int
  144. __xfs_setfilesize(
  145. struct xfs_inode *ip,
  146. struct xfs_trans *tp,
  147. xfs_off_t offset,
  148. size_t size)
  149. {
  150. xfs_fsize_t isize;
  151. xfs_ilock(ip, XFS_ILOCK_EXCL);
  152. isize = xfs_new_eof(ip, offset + size);
  153. if (!isize) {
  154. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  155. xfs_trans_cancel(tp);
  156. return 0;
  157. }
  158. trace_xfs_setfilesize(ip, offset, size);
  159. ip->i_d.di_size = isize;
  160. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  161. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  162. return xfs_trans_commit(tp);
  163. }
  164. int
  165. xfs_setfilesize(
  166. struct xfs_inode *ip,
  167. xfs_off_t offset,
  168. size_t size)
  169. {
  170. struct xfs_mount *mp = ip->i_mount;
  171. struct xfs_trans *tp;
  172. int error;
  173. error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
  174. if (error)
  175. return error;
  176. return __xfs_setfilesize(ip, tp, offset, size);
  177. }
  178. STATIC int
  179. xfs_setfilesize_ioend(
  180. struct xfs_ioend *ioend,
  181. int error)
  182. {
  183. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  184. struct xfs_trans *tp = ioend->io_append_trans;
  185. /*
  186. * The transaction may have been allocated in the I/O submission thread,
  187. * thus we need to mark ourselves as being in a transaction manually.
  188. * Similarly for freeze protection.
  189. */
  190. current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
  191. __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
  192. /* we abort the update if there was an IO error */
  193. if (error) {
  194. xfs_trans_cancel(tp);
  195. return error;
  196. }
  197. return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
  198. }
  199. /*
  200. * IO write completion.
  201. */
  202. STATIC void
  203. xfs_end_io(
  204. struct work_struct *work)
  205. {
  206. struct xfs_ioend *ioend =
  207. container_of(work, struct xfs_ioend, io_work);
  208. struct xfs_inode *ip = XFS_I(ioend->io_inode);
  209. xfs_off_t offset = ioend->io_offset;
  210. size_t size = ioend->io_size;
  211. int error;
  212. /*
  213. * Just clean up the in-memory strutures if the fs has been shut down.
  214. */
  215. if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  216. error = -EIO;
  217. goto done;
  218. }
  219. /*
  220. * Clean up any COW blocks on an I/O error.
  221. */
  222. error = blk_status_to_errno(ioend->io_bio->bi_status);
  223. if (unlikely(error)) {
  224. switch (ioend->io_type) {
  225. case XFS_IO_COW:
  226. xfs_reflink_cancel_cow_range(ip, offset, size, true);
  227. break;
  228. }
  229. goto done;
  230. }
  231. /*
  232. * Success: commit the COW or unwritten blocks if needed.
  233. */
  234. switch (ioend->io_type) {
  235. case XFS_IO_COW:
  236. error = xfs_reflink_end_cow(ip, offset, size);
  237. break;
  238. case XFS_IO_UNWRITTEN:
  239. /* writeback should never update isize */
  240. error = xfs_iomap_write_unwritten(ip, offset, size, false);
  241. break;
  242. default:
  243. ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
  244. break;
  245. }
  246. done:
  247. if (ioend->io_append_trans)
  248. error = xfs_setfilesize_ioend(ioend, error);
  249. xfs_destroy_ioend(ioend, error);
  250. }
  251. STATIC void
  252. xfs_end_bio(
  253. struct bio *bio)
  254. {
  255. struct xfs_ioend *ioend = bio->bi_private;
  256. struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
  257. if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
  258. queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
  259. else if (ioend->io_append_trans)
  260. queue_work(mp->m_data_workqueue, &ioend->io_work);
  261. else
  262. xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
  263. }
  264. STATIC int
  265. xfs_map_blocks(
  266. struct xfs_writepage_ctx *wpc,
  267. struct inode *inode,
  268. loff_t offset)
  269. {
  270. struct xfs_inode *ip = XFS_I(inode);
  271. struct xfs_mount *mp = ip->i_mount;
  272. ssize_t count = i_blocksize(inode);
  273. xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb;
  274. xfs_fileoff_t cow_fsb = NULLFILEOFF;
  275. struct xfs_bmbt_irec imap;
  276. int whichfork = XFS_DATA_FORK;
  277. struct xfs_iext_cursor icur;
  278. bool imap_valid;
  279. int error = 0;
  280. /*
  281. * We have to make sure the cached mapping is within EOF to protect
  282. * against eofblocks trimming on file release leaving us with a stale
  283. * mapping. Otherwise, a page for a subsequent file extending buffered
  284. * write could get picked up by this writeback cycle and written to the
  285. * wrong blocks.
  286. *
  287. * Note that what we really want here is a generic mapping invalidation
  288. * mechanism to protect us from arbitrary extent modifying contexts, not
  289. * just eofblocks.
  290. */
  291. xfs_trim_extent_eof(&wpc->imap, ip);
  292. /*
  293. * COW fork blocks can overlap data fork blocks even if the blocks
  294. * aren't shared. COW I/O always takes precedent, so we must always
  295. * check for overlap on reflink inodes unless the mapping is already a
  296. * COW one, or the COW fork hasn't changed from the last time we looked
  297. * at it.
  298. *
  299. * It's safe to check the COW fork if_seq here without the ILOCK because
  300. * we've indirectly protected against concurrent updates: writeback has
  301. * the page locked, which prevents concurrent invalidations by reflink
  302. * and directio and prevents concurrent buffered writes to the same
  303. * page. Changes to if_seq always happen under i_lock, which protects
  304. * against concurrent updates and provides a memory barrier on the way
  305. * out that ensures that we always see the current value.
  306. */
  307. imap_valid = offset_fsb >= wpc->imap.br_startoff &&
  308. offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount;
  309. if (imap_valid &&
  310. (!xfs_inode_has_cow_data(ip) ||
  311. wpc->io_type == XFS_IO_COW ||
  312. wpc->cow_seq == READ_ONCE(ip->i_cowfp->if_seq)))
  313. return 0;
  314. if (XFS_FORCED_SHUTDOWN(mp))
  315. return -EIO;
  316. /*
  317. * If we don't have a valid map, now it's time to get a new one for this
  318. * offset. This will convert delayed allocations (including COW ones)
  319. * into real extents. If we return without a valid map, it means we
  320. * landed in a hole and we skip the block.
  321. */
  322. xfs_ilock(ip, XFS_ILOCK_SHARED);
  323. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  324. (ip->i_df.if_flags & XFS_IFEXTENTS));
  325. ASSERT(offset <= mp->m_super->s_maxbytes);
  326. if (offset > mp->m_super->s_maxbytes - count)
  327. count = mp->m_super->s_maxbytes - offset;
  328. end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
  329. /*
  330. * Check if this is offset is covered by a COW extents, and if yes use
  331. * it directly instead of looking up anything in the data fork.
  332. */
  333. if (xfs_inode_has_cow_data(ip) &&
  334. xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
  335. cow_fsb = imap.br_startoff;
  336. if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
  337. wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
  338. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  339. /*
  340. * Truncate can race with writeback since writeback doesn't
  341. * take the iolock and truncate decreases the file size before
  342. * it starts truncating the pages between new_size and old_size.
  343. * Therefore, we can end up in the situation where writeback
  344. * gets a CoW fork mapping but the truncate makes the mapping
  345. * invalid and we end up in here trying to get a new mapping.
  346. * bail out here so that we simply never get a valid mapping
  347. * and so we drop the write altogether. The page truncation
  348. * will kill the contents anyway.
  349. */
  350. if (offset > i_size_read(inode)) {
  351. wpc->io_type = XFS_IO_HOLE;
  352. return 0;
  353. }
  354. whichfork = XFS_COW_FORK;
  355. wpc->io_type = XFS_IO_COW;
  356. goto allocate_blocks;
  357. }
  358. /*
  359. * Map valid and no COW extent in the way? We're done.
  360. */
  361. if (imap_valid) {
  362. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  363. return 0;
  364. }
  365. /*
  366. * If we don't have a valid map, now it's time to get a new one for this
  367. * offset. This will convert delayed allocations (including COW ones)
  368. * into real extents.
  369. */
  370. if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
  371. imap.br_startoff = end_fsb; /* fake a hole past EOF */
  372. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  373. if (imap.br_startoff > offset_fsb) {
  374. /* landed in a hole or beyond EOF */
  375. imap.br_blockcount = imap.br_startoff - offset_fsb;
  376. imap.br_startoff = offset_fsb;
  377. imap.br_startblock = HOLESTARTBLOCK;
  378. wpc->io_type = XFS_IO_HOLE;
  379. } else {
  380. /*
  381. * Truncate to the next COW extent if there is one. This is the
  382. * only opportunity to do this because we can skip COW fork
  383. * lookups for the subsequent blocks in the mapping; however,
  384. * the requirement to treat the COW range separately remains.
  385. */
  386. if (cow_fsb != NULLFILEOFF &&
  387. cow_fsb < imap.br_startoff + imap.br_blockcount)
  388. imap.br_blockcount = cow_fsb - imap.br_startoff;
  389. if (isnullstartblock(imap.br_startblock)) {
  390. /* got a delalloc extent */
  391. wpc->io_type = XFS_IO_DELALLOC;
  392. goto allocate_blocks;
  393. }
  394. if (imap.br_state == XFS_EXT_UNWRITTEN)
  395. wpc->io_type = XFS_IO_UNWRITTEN;
  396. else
  397. wpc->io_type = XFS_IO_OVERWRITE;
  398. }
  399. wpc->imap = imap;
  400. xfs_trim_extent_eof(&wpc->imap, ip);
  401. trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
  402. return 0;
  403. allocate_blocks:
  404. error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap,
  405. &wpc->cow_seq);
  406. if (error)
  407. return error;
  408. ASSERT(whichfork == XFS_COW_FORK || cow_fsb == NULLFILEOFF ||
  409. imap.br_startoff + imap.br_blockcount <= cow_fsb);
  410. wpc->imap = imap;
  411. xfs_trim_extent_eof(&wpc->imap, ip);
  412. trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
  413. return 0;
  414. }
  415. /*
  416. * Submit the bio for an ioend. We are passed an ioend with a bio attached to
  417. * it, and we submit that bio. The ioend may be used for multiple bio
  418. * submissions, so we only want to allocate an append transaction for the ioend
  419. * once. In the case of multiple bio submission, each bio will take an IO
  420. * reference to the ioend to ensure that the ioend completion is only done once
  421. * all bios have been submitted and the ioend is really done.
  422. *
  423. * If @fail is non-zero, it means that we have a situation where some part of
  424. * the submission process has failed after we have marked paged for writeback
  425. * and unlocked them. In this situation, we need to fail the bio and ioend
  426. * rather than submit it to IO. This typically only happens on a filesystem
  427. * shutdown.
  428. */
  429. STATIC int
  430. xfs_submit_ioend(
  431. struct writeback_control *wbc,
  432. struct xfs_ioend *ioend,
  433. int status)
  434. {
  435. /* Convert CoW extents to regular */
  436. if (!status && ioend->io_type == XFS_IO_COW) {
  437. /*
  438. * Yuk. This can do memory allocation, but is not a
  439. * transactional operation so everything is done in GFP_KERNEL
  440. * context. That can deadlock, because we hold pages in
  441. * writeback state and GFP_KERNEL allocations can block on them.
  442. * Hence we must operate in nofs conditions here.
  443. */
  444. unsigned nofs_flag;
  445. nofs_flag = memalloc_nofs_save();
  446. status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
  447. ioend->io_offset, ioend->io_size);
  448. memalloc_nofs_restore(nofs_flag);
  449. }
  450. /* Reserve log space if we might write beyond the on-disk inode size. */
  451. if (!status &&
  452. ioend->io_type != XFS_IO_UNWRITTEN &&
  453. xfs_ioend_is_append(ioend) &&
  454. !ioend->io_append_trans)
  455. status = xfs_setfilesize_trans_alloc(ioend);
  456. ioend->io_bio->bi_private = ioend;
  457. ioend->io_bio->bi_end_io = xfs_end_bio;
  458. ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
  459. /*
  460. * If we are failing the IO now, just mark the ioend with an
  461. * error and finish it. This will run IO completion immediately
  462. * as there is only one reference to the ioend at this point in
  463. * time.
  464. */
  465. if (status) {
  466. ioend->io_bio->bi_status = errno_to_blk_status(status);
  467. bio_endio(ioend->io_bio);
  468. return status;
  469. }
  470. ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
  471. submit_bio(ioend->io_bio);
  472. return 0;
  473. }
  474. static struct xfs_ioend *
  475. xfs_alloc_ioend(
  476. struct inode *inode,
  477. unsigned int type,
  478. xfs_off_t offset,
  479. struct block_device *bdev,
  480. sector_t sector)
  481. {
  482. struct xfs_ioend *ioend;
  483. struct bio *bio;
  484. bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
  485. bio_set_dev(bio, bdev);
  486. bio->bi_iter.bi_sector = sector;
  487. ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
  488. INIT_LIST_HEAD(&ioend->io_list);
  489. ioend->io_type = type;
  490. ioend->io_inode = inode;
  491. ioend->io_size = 0;
  492. ioend->io_offset = offset;
  493. INIT_WORK(&ioend->io_work, xfs_end_io);
  494. ioend->io_append_trans = NULL;
  495. ioend->io_bio = bio;
  496. return ioend;
  497. }
  498. /*
  499. * Allocate a new bio, and chain the old bio to the new one.
  500. *
  501. * Note that we have to do perform the chaining in this unintuitive order
  502. * so that the bi_private linkage is set up in the right direction for the
  503. * traversal in xfs_destroy_ioend().
  504. */
  505. static void
  506. xfs_chain_bio(
  507. struct xfs_ioend *ioend,
  508. struct writeback_control *wbc,
  509. struct block_device *bdev,
  510. sector_t sector)
  511. {
  512. struct bio *new;
  513. new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
  514. bio_set_dev(new, bdev);
  515. new->bi_iter.bi_sector = sector;
  516. bio_chain(ioend->io_bio, new);
  517. bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
  518. ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
  519. ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
  520. submit_bio(ioend->io_bio);
  521. ioend->io_bio = new;
  522. }
  523. /*
  524. * Test to see if we have an existing ioend structure that we could append to
  525. * first, otherwise finish off the current ioend and start another.
  526. */
  527. STATIC void
  528. xfs_add_to_ioend(
  529. struct inode *inode,
  530. xfs_off_t offset,
  531. struct page *page,
  532. struct iomap_page *iop,
  533. struct xfs_writepage_ctx *wpc,
  534. struct writeback_control *wbc,
  535. struct list_head *iolist)
  536. {
  537. struct xfs_inode *ip = XFS_I(inode);
  538. struct xfs_mount *mp = ip->i_mount;
  539. struct block_device *bdev = xfs_find_bdev_for_inode(inode);
  540. unsigned len = i_blocksize(inode);
  541. unsigned poff = offset & (PAGE_SIZE - 1);
  542. sector_t sector;
  543. sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
  544. ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
  545. if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
  546. sector != bio_end_sector(wpc->ioend->io_bio) ||
  547. offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
  548. if (wpc->ioend)
  549. list_add(&wpc->ioend->io_list, iolist);
  550. wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset,
  551. bdev, sector);
  552. }
  553. if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) {
  554. if (iop)
  555. atomic_inc(&iop->write_count);
  556. if (bio_full(wpc->ioend->io_bio))
  557. xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
  558. __bio_add_page(wpc->ioend->io_bio, page, len, poff);
  559. }
  560. wpc->ioend->io_size += len;
  561. }
  562. STATIC void
  563. xfs_vm_invalidatepage(
  564. struct page *page,
  565. unsigned int offset,
  566. unsigned int length)
  567. {
  568. trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
  569. iomap_invalidatepage(page, offset, length);
  570. }
  571. /*
  572. * If the page has delalloc blocks on it, we need to punch them out before we
  573. * invalidate the page. If we don't, we leave a stale delalloc mapping on the
  574. * inode that can trip up a later direct I/O read operation on the same region.
  575. *
  576. * We prevent this by truncating away the delalloc regions on the page. Because
  577. * they are delalloc, we can do this without needing a transaction. Indeed - if
  578. * we get ENOSPC errors, we have to be able to do this truncation without a
  579. * transaction as there is no space left for block reservation (typically why we
  580. * see a ENOSPC in writeback).
  581. */
  582. STATIC void
  583. xfs_aops_discard_page(
  584. struct page *page)
  585. {
  586. struct inode *inode = page->mapping->host;
  587. struct xfs_inode *ip = XFS_I(inode);
  588. struct xfs_mount *mp = ip->i_mount;
  589. loff_t offset = page_offset(page);
  590. xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset);
  591. int error;
  592. if (XFS_FORCED_SHUTDOWN(mp))
  593. goto out_invalidate;
  594. xfs_alert(mp,
  595. "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
  596. page, ip->i_ino, offset);
  597. error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
  598. PAGE_SIZE / i_blocksize(inode));
  599. if (error && !XFS_FORCED_SHUTDOWN(mp))
  600. xfs_alert(mp, "page discard unable to remove delalloc mapping.");
  601. out_invalidate:
  602. xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
  603. }
  604. /*
  605. * We implement an immediate ioend submission policy here to avoid needing to
  606. * chain multiple ioends and hence nest mempool allocations which can violate
  607. * forward progress guarantees we need to provide. The current ioend we are
  608. * adding blocks to is cached on the writepage context, and if the new block
  609. * does not append to the cached ioend it will create a new ioend and cache that
  610. * instead.
  611. *
  612. * If a new ioend is created and cached, the old ioend is returned and queued
  613. * locally for submission once the entire page is processed or an error has been
  614. * detected. While ioends are submitted immediately after they are completed,
  615. * batching optimisations are provided by higher level block plugging.
  616. *
  617. * At the end of a writeback pass, there will be a cached ioend remaining on the
  618. * writepage context that the caller will need to submit.
  619. */
  620. static int
  621. xfs_writepage_map(
  622. struct xfs_writepage_ctx *wpc,
  623. struct writeback_control *wbc,
  624. struct inode *inode,
  625. struct page *page,
  626. uint64_t end_offset)
  627. {
  628. LIST_HEAD(submit_list);
  629. struct iomap_page *iop = to_iomap_page(page);
  630. unsigned len = i_blocksize(inode);
  631. struct xfs_ioend *ioend, *next;
  632. uint64_t file_offset; /* file offset of page */
  633. int error = 0, count = 0, i;
  634. ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
  635. ASSERT(!iop || atomic_read(&iop->write_count) == 0);
  636. /*
  637. * Walk through the page to find areas to write back. If we run off the
  638. * end of the current map or find the current map invalid, grab a new
  639. * one.
  640. */
  641. for (i = 0, file_offset = page_offset(page);
  642. i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
  643. i++, file_offset += len) {
  644. if (iop && !test_bit(i, iop->uptodate))
  645. continue;
  646. error = xfs_map_blocks(wpc, inode, file_offset);
  647. if (error)
  648. break;
  649. if (wpc->io_type == XFS_IO_HOLE)
  650. continue;
  651. xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
  652. &submit_list);
  653. count++;
  654. }
  655. ASSERT(wpc->ioend || list_empty(&submit_list));
  656. ASSERT(PageLocked(page));
  657. ASSERT(!PageWriteback(page));
  658. /*
  659. * On error, we have to fail the ioend here because we may have set
  660. * pages under writeback, we have to make sure we run IO completion to
  661. * mark the error state of the IO appropriately, so we can't cancel the
  662. * ioend directly here. That means we have to mark this page as under
  663. * writeback if we included any blocks from it in the ioend chain so
  664. * that completion treats it correctly.
  665. *
  666. * If we didn't include the page in the ioend, the on error we can
  667. * simply discard and unlock it as there are no other users of the page
  668. * now. The caller will still need to trigger submission of outstanding
  669. * ioends on the writepage context so they are treated correctly on
  670. * error.
  671. */
  672. if (unlikely(error)) {
  673. if (!count) {
  674. xfs_aops_discard_page(page);
  675. ClearPageUptodate(page);
  676. unlock_page(page);
  677. goto done;
  678. }
  679. /*
  680. * If the page was not fully cleaned, we need to ensure that the
  681. * higher layers come back to it correctly. That means we need
  682. * to keep the page dirty, and for WB_SYNC_ALL writeback we need
  683. * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
  684. * so another attempt to write this page in this writeback sweep
  685. * will be made.
  686. */
  687. set_page_writeback_keepwrite(page);
  688. } else {
  689. clear_page_dirty_for_io(page);
  690. set_page_writeback(page);
  691. }
  692. unlock_page(page);
  693. /*
  694. * Preserve the original error if there was one, otherwise catch
  695. * submission errors here and propagate into subsequent ioend
  696. * submissions.
  697. */
  698. list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
  699. int error2;
  700. list_del_init(&ioend->io_list);
  701. error2 = xfs_submit_ioend(wbc, ioend, error);
  702. if (error2 && !error)
  703. error = error2;
  704. }
  705. /*
  706. * We can end up here with no error and nothing to write only if we race
  707. * with a partial page truncate on a sub-page block sized filesystem.
  708. */
  709. if (!count)
  710. end_page_writeback(page);
  711. done:
  712. mapping_set_error(page->mapping, error);
  713. return error;
  714. }
  715. /*
  716. * Write out a dirty page.
  717. *
  718. * For delalloc space on the page we need to allocate space and flush it.
  719. * For unwritten space on the page we need to start the conversion to
  720. * regular allocated space.
  721. */
  722. STATIC int
  723. xfs_do_writepage(
  724. struct page *page,
  725. struct writeback_control *wbc,
  726. void *data)
  727. {
  728. struct xfs_writepage_ctx *wpc = data;
  729. struct inode *inode = page->mapping->host;
  730. loff_t offset;
  731. uint64_t end_offset;
  732. pgoff_t end_index;
  733. trace_xfs_writepage(inode, page, 0, 0);
  734. /*
  735. * Refuse to write the page out if we are called from reclaim context.
  736. *
  737. * This avoids stack overflows when called from deeply used stacks in
  738. * random callers for direct reclaim or memcg reclaim. We explicitly
  739. * allow reclaim from kswapd as the stack usage there is relatively low.
  740. *
  741. * This should never happen except in the case of a VM regression so
  742. * warn about it.
  743. */
  744. if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
  745. PF_MEMALLOC))
  746. goto redirty;
  747. /*
  748. * Given that we do not allow direct reclaim to call us, we should
  749. * never be called while in a filesystem transaction.
  750. */
  751. if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
  752. goto redirty;
  753. /*
  754. * Is this page beyond the end of the file?
  755. *
  756. * The page index is less than the end_index, adjust the end_offset
  757. * to the highest offset that this page should represent.
  758. * -----------------------------------------------------
  759. * | file mapping | <EOF> |
  760. * -----------------------------------------------------
  761. * | Page ... | Page N-2 | Page N-1 | Page N | |
  762. * ^--------------------------------^----------|--------
  763. * | desired writeback range | see else |
  764. * ---------------------------------^------------------|
  765. */
  766. offset = i_size_read(inode);
  767. end_index = offset >> PAGE_SHIFT;
  768. if (page->index < end_index)
  769. end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
  770. else {
  771. /*
  772. * Check whether the page to write out is beyond or straddles
  773. * i_size or not.
  774. * -------------------------------------------------------
  775. * | file mapping | <EOF> |
  776. * -------------------------------------------------------
  777. * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
  778. * ^--------------------------------^-----------|---------
  779. * | | Straddles |
  780. * ---------------------------------^-----------|--------|
  781. */
  782. unsigned offset_into_page = offset & (PAGE_SIZE - 1);
  783. /*
  784. * Skip the page if it is fully outside i_size, e.g. due to a
  785. * truncate operation that is in progress. We must redirty the
  786. * page so that reclaim stops reclaiming it. Otherwise
  787. * xfs_vm_releasepage() is called on it and gets confused.
  788. *
  789. * Note that the end_index is unsigned long, it would overflow
  790. * if the given offset is greater than 16TB on 32-bit system
  791. * and if we do check the page is fully outside i_size or not
  792. * via "if (page->index >= end_index + 1)" as "end_index + 1"
  793. * will be evaluated to 0. Hence this page will be redirtied
  794. * and be written out repeatedly which would result in an
  795. * infinite loop, the user program that perform this operation
  796. * will hang. Instead, we can verify this situation by checking
  797. * if the page to write is totally beyond the i_size or if it's
  798. * offset is just equal to the EOF.
  799. */
  800. if (page->index > end_index ||
  801. (page->index == end_index && offset_into_page == 0))
  802. goto redirty;
  803. /*
  804. * The page straddles i_size. It must be zeroed out on each
  805. * and every writepage invocation because it may be mmapped.
  806. * "A file is mapped in multiples of the page size. For a file
  807. * that is not a multiple of the page size, the remaining
  808. * memory is zeroed when mapped, and writes to that region are
  809. * not written out to the file."
  810. */
  811. zero_user_segment(page, offset_into_page, PAGE_SIZE);
  812. /* Adjust the end_offset to the end of file */
  813. end_offset = offset;
  814. }
  815. return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
  816. redirty:
  817. redirty_page_for_writepage(wbc, page);
  818. unlock_page(page);
  819. return 0;
  820. }
  821. STATIC int
  822. xfs_vm_writepage(
  823. struct page *page,
  824. struct writeback_control *wbc)
  825. {
  826. struct xfs_writepage_ctx wpc = {
  827. .io_type = XFS_IO_INVALID,
  828. };
  829. int ret;
  830. ret = xfs_do_writepage(page, wbc, &wpc);
  831. if (wpc.ioend)
  832. ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
  833. return ret;
  834. }
  835. STATIC int
  836. xfs_vm_writepages(
  837. struct address_space *mapping,
  838. struct writeback_control *wbc)
  839. {
  840. struct xfs_writepage_ctx wpc = {
  841. .io_type = XFS_IO_INVALID,
  842. };
  843. int ret;
  844. xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
  845. ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
  846. if (wpc.ioend)
  847. ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
  848. return ret;
  849. }
  850. STATIC int
  851. xfs_dax_writepages(
  852. struct address_space *mapping,
  853. struct writeback_control *wbc)
  854. {
  855. xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
  856. return dax_writeback_mapping_range(mapping,
  857. xfs_find_bdev_for_inode(mapping->host), wbc);
  858. }
  859. STATIC int
  860. xfs_vm_releasepage(
  861. struct page *page,
  862. gfp_t gfp_mask)
  863. {
  864. trace_xfs_releasepage(page->mapping->host, page, 0, 0);
  865. return iomap_releasepage(page, gfp_mask);
  866. }
  867. STATIC sector_t
  868. xfs_vm_bmap(
  869. struct address_space *mapping,
  870. sector_t block)
  871. {
  872. struct xfs_inode *ip = XFS_I(mapping->host);
  873. trace_xfs_vm_bmap(ip);
  874. /*
  875. * The swap code (ab-)uses ->bmap to get a block mapping and then
  876. * bypasses the file system for actual I/O. We really can't allow
  877. * that on reflinks inodes, so we have to skip out here. And yes,
  878. * 0 is the magic code for a bmap error.
  879. *
  880. * Since we don't pass back blockdev info, we can't return bmap
  881. * information for rt files either.
  882. */
  883. if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
  884. return 0;
  885. return iomap_bmap(mapping, block, &xfs_iomap_ops);
  886. }
  887. STATIC int
  888. xfs_vm_readpage(
  889. struct file *unused,
  890. struct page *page)
  891. {
  892. trace_xfs_vm_readpage(page->mapping->host, 1);
  893. return iomap_readpage(page, &xfs_iomap_ops);
  894. }
  895. STATIC int
  896. xfs_vm_readpages(
  897. struct file *unused,
  898. struct address_space *mapping,
  899. struct list_head *pages,
  900. unsigned nr_pages)
  901. {
  902. trace_xfs_vm_readpages(mapping->host, nr_pages);
  903. return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
  904. }
  905. static int
  906. xfs_iomap_swapfile_activate(
  907. struct swap_info_struct *sis,
  908. struct file *swap_file,
  909. sector_t *span)
  910. {
  911. sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
  912. return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
  913. }
  914. const struct address_space_operations xfs_address_space_operations = {
  915. .readpage = xfs_vm_readpage,
  916. .readpages = xfs_vm_readpages,
  917. .writepage = xfs_vm_writepage,
  918. .writepages = xfs_vm_writepages,
  919. .set_page_dirty = iomap_set_page_dirty,
  920. .releasepage = xfs_vm_releasepage,
  921. .invalidatepage = xfs_vm_invalidatepage,
  922. .bmap = xfs_vm_bmap,
  923. .direct_IO = noop_direct_IO,
  924. .migratepage = iomap_migrate_page,
  925. .is_partially_uptodate = iomap_is_partially_uptodate,
  926. .error_remove_page = generic_error_remove_page,
  927. .swap_activate = xfs_iomap_swapfile_activate,
  928. };
  929. const struct address_space_operations xfs_dax_aops = {
  930. .writepages = xfs_dax_writepages,
  931. .direct_IO = noop_direct_IO,
  932. .set_page_dirty = noop_set_page_dirty,
  933. .invalidatepage = noop_invalidatepage,
  934. .swap_activate = xfs_iomap_swapfile_activate,
  935. };