esp4.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068
  1. #define pr_fmt(fmt) "IPsec: " fmt
  2. #include <crypto/aead.h>
  3. #include <crypto/authenc.h>
  4. #include <linux/err.h>
  5. #include <linux/module.h>
  6. #include <net/ip.h>
  7. #include <net/xfrm.h>
  8. #include <net/esp.h>
  9. #include <linux/scatterlist.h>
  10. #include <linux/kernel.h>
  11. #include <linux/pfkeyv2.h>
  12. #include <linux/rtnetlink.h>
  13. #include <linux/slab.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/in6.h>
  16. #include <net/icmp.h>
  17. #include <net/protocol.h>
  18. #include <net/udp.h>
  19. #include <linux/highmem.h>
  20. struct esp_skb_cb {
  21. struct xfrm_skb_cb xfrm;
  22. void *tmp;
  23. };
  24. struct esp_output_extra {
  25. __be32 seqhi;
  26. u32 esphoff;
  27. };
  28. #define ESP_SKB_CB(__skb) ((struct esp_skb_cb *)&((__skb)->cb[0]))
  29. static u32 esp4_get_mtu(struct xfrm_state *x, int mtu);
  30. /*
  31. * Allocate an AEAD request structure with extra space for SG and IV.
  32. *
  33. * For alignment considerations the IV is placed at the front, followed
  34. * by the request and finally the SG list.
  35. *
  36. * TODO: Use spare space in skb for this where possible.
  37. */
  38. static void *esp_alloc_tmp(struct crypto_aead *aead, int nfrags, int extralen)
  39. {
  40. unsigned int len;
  41. len = extralen;
  42. len += crypto_aead_ivsize(aead);
  43. if (len) {
  44. len += crypto_aead_alignmask(aead) &
  45. ~(crypto_tfm_ctx_alignment() - 1);
  46. len = ALIGN(len, crypto_tfm_ctx_alignment());
  47. }
  48. len += sizeof(struct aead_request) + crypto_aead_reqsize(aead);
  49. len = ALIGN(len, __alignof__(struct scatterlist));
  50. len += sizeof(struct scatterlist) * nfrags;
  51. return kmalloc(len, GFP_ATOMIC);
  52. }
  53. static inline void *esp_tmp_extra(void *tmp)
  54. {
  55. return PTR_ALIGN(tmp, __alignof__(struct esp_output_extra));
  56. }
  57. static inline u8 *esp_tmp_iv(struct crypto_aead *aead, void *tmp, int extralen)
  58. {
  59. return crypto_aead_ivsize(aead) ?
  60. PTR_ALIGN((u8 *)tmp + extralen,
  61. crypto_aead_alignmask(aead) + 1) : tmp + extralen;
  62. }
  63. static inline struct aead_request *esp_tmp_req(struct crypto_aead *aead, u8 *iv)
  64. {
  65. struct aead_request *req;
  66. req = (void *)PTR_ALIGN(iv + crypto_aead_ivsize(aead),
  67. crypto_tfm_ctx_alignment());
  68. aead_request_set_tfm(req, aead);
  69. return req;
  70. }
  71. static inline struct scatterlist *esp_req_sg(struct crypto_aead *aead,
  72. struct aead_request *req)
  73. {
  74. return (void *)ALIGN((unsigned long)(req + 1) +
  75. crypto_aead_reqsize(aead),
  76. __alignof__(struct scatterlist));
  77. }
  78. static void esp_ssg_unref(struct xfrm_state *x, void *tmp)
  79. {
  80. struct esp_output_extra *extra = esp_tmp_extra(tmp);
  81. struct crypto_aead *aead = x->data;
  82. int extralen = 0;
  83. u8 *iv;
  84. struct aead_request *req;
  85. struct scatterlist *sg;
  86. if (x->props.flags & XFRM_STATE_ESN)
  87. extralen += sizeof(*extra);
  88. extra = esp_tmp_extra(tmp);
  89. iv = esp_tmp_iv(aead, tmp, extralen);
  90. req = esp_tmp_req(aead, iv);
  91. /* Unref skb_frag_pages in the src scatterlist if necessary.
  92. * Skip the first sg which comes from skb->data.
  93. */
  94. if (req->src != req->dst)
  95. for (sg = sg_next(req->src); sg; sg = sg_next(sg))
  96. put_page(sg_page(sg));
  97. }
  98. static void esp_output_done(struct crypto_async_request *base, int err)
  99. {
  100. struct sk_buff *skb = base->data;
  101. struct xfrm_offload *xo = xfrm_offload(skb);
  102. void *tmp;
  103. struct xfrm_state *x;
  104. if (xo && (xo->flags & XFRM_DEV_RESUME))
  105. x = skb->sp->xvec[skb->sp->len - 1];
  106. else
  107. x = skb_dst(skb)->xfrm;
  108. tmp = ESP_SKB_CB(skb)->tmp;
  109. esp_ssg_unref(x, tmp);
  110. kfree(tmp);
  111. if (xo && (xo->flags & XFRM_DEV_RESUME)) {
  112. if (err) {
  113. XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR);
  114. kfree_skb(skb);
  115. return;
  116. }
  117. skb_push(skb, skb->data - skb_mac_header(skb));
  118. secpath_reset(skb);
  119. xfrm_dev_resume(skb);
  120. } else {
  121. xfrm_output_resume(skb, err);
  122. }
  123. }
  124. /* Move ESP header back into place. */
  125. static void esp_restore_header(struct sk_buff *skb, unsigned int offset)
  126. {
  127. struct ip_esp_hdr *esph = (void *)(skb->data + offset);
  128. void *tmp = ESP_SKB_CB(skb)->tmp;
  129. __be32 *seqhi = esp_tmp_extra(tmp);
  130. esph->seq_no = esph->spi;
  131. esph->spi = *seqhi;
  132. }
  133. static void esp_output_restore_header(struct sk_buff *skb)
  134. {
  135. void *tmp = ESP_SKB_CB(skb)->tmp;
  136. struct esp_output_extra *extra = esp_tmp_extra(tmp);
  137. esp_restore_header(skb, skb_transport_offset(skb) + extra->esphoff -
  138. sizeof(__be32));
  139. }
  140. static struct ip_esp_hdr *esp_output_set_extra(struct sk_buff *skb,
  141. struct xfrm_state *x,
  142. struct ip_esp_hdr *esph,
  143. struct esp_output_extra *extra)
  144. {
  145. /* For ESN we move the header forward by 4 bytes to
  146. * accomodate the high bits. We will move it back after
  147. * encryption.
  148. */
  149. if ((x->props.flags & XFRM_STATE_ESN)) {
  150. __u32 seqhi;
  151. struct xfrm_offload *xo = xfrm_offload(skb);
  152. if (xo)
  153. seqhi = xo->seq.hi;
  154. else
  155. seqhi = XFRM_SKB_CB(skb)->seq.output.hi;
  156. extra->esphoff = (unsigned char *)esph -
  157. skb_transport_header(skb);
  158. esph = (struct ip_esp_hdr *)((unsigned char *)esph - 4);
  159. extra->seqhi = esph->spi;
  160. esph->seq_no = htonl(seqhi);
  161. }
  162. esph->spi = x->id.spi;
  163. return esph;
  164. }
  165. static void esp_output_done_esn(struct crypto_async_request *base, int err)
  166. {
  167. struct sk_buff *skb = base->data;
  168. esp_output_restore_header(skb);
  169. esp_output_done(base, err);
  170. }
  171. static void esp_output_fill_trailer(u8 *tail, int tfclen, int plen, __u8 proto)
  172. {
  173. /* Fill padding... */
  174. if (tfclen) {
  175. memset(tail, 0, tfclen);
  176. tail += tfclen;
  177. }
  178. do {
  179. int i;
  180. for (i = 0; i < plen - 2; i++)
  181. tail[i] = i + 1;
  182. } while (0);
  183. tail[plen - 2] = plen - 2;
  184. tail[plen - 1] = proto;
  185. }
  186. static int esp_output_udp_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp)
  187. {
  188. int encap_type;
  189. struct udphdr *uh;
  190. __be32 *udpdata32;
  191. __be16 sport, dport;
  192. struct xfrm_encap_tmpl *encap = x->encap;
  193. struct ip_esp_hdr *esph = esp->esph;
  194. unsigned int len;
  195. spin_lock_bh(&x->lock);
  196. sport = encap->encap_sport;
  197. dport = encap->encap_dport;
  198. encap_type = encap->encap_type;
  199. spin_unlock_bh(&x->lock);
  200. len = skb->len + esp->tailen - skb_transport_offset(skb);
  201. if (len + sizeof(struct iphdr) >= IP_MAX_MTU)
  202. return -EMSGSIZE;
  203. uh = (struct udphdr *)esph;
  204. uh->source = sport;
  205. uh->dest = dport;
  206. uh->len = htons(len);
  207. uh->check = 0;
  208. switch (encap_type) {
  209. default:
  210. case UDP_ENCAP_ESPINUDP:
  211. esph = (struct ip_esp_hdr *)(uh + 1);
  212. break;
  213. case UDP_ENCAP_ESPINUDP_NON_IKE:
  214. udpdata32 = (__be32 *)(uh + 1);
  215. udpdata32[0] = udpdata32[1] = 0;
  216. esph = (struct ip_esp_hdr *)(udpdata32 + 2);
  217. break;
  218. }
  219. *skb_mac_header(skb) = IPPROTO_UDP;
  220. esp->esph = esph;
  221. return 0;
  222. }
  223. int esp_output_head(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp)
  224. {
  225. u8 *tail;
  226. int nfrags;
  227. int esph_offset;
  228. struct page *page;
  229. struct sk_buff *trailer;
  230. int tailen = esp->tailen;
  231. /* this is non-NULL only with UDP Encapsulation */
  232. if (x->encap) {
  233. int err = esp_output_udp_encap(x, skb, esp);
  234. if (err < 0)
  235. return err;
  236. }
  237. if (!skb_cloned(skb)) {
  238. if (tailen <= skb_tailroom(skb)) {
  239. nfrags = 1;
  240. trailer = skb;
  241. tail = skb_tail_pointer(trailer);
  242. goto skip_cow;
  243. } else if ((skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)
  244. && !skb_has_frag_list(skb)) {
  245. int allocsize;
  246. struct sock *sk = skb->sk;
  247. struct page_frag *pfrag = &x->xfrag;
  248. esp->inplace = false;
  249. allocsize = ALIGN(tailen, L1_CACHE_BYTES);
  250. spin_lock_bh(&x->lock);
  251. if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) {
  252. spin_unlock_bh(&x->lock);
  253. goto cow;
  254. }
  255. page = pfrag->page;
  256. get_page(page);
  257. tail = page_address(page) + pfrag->offset;
  258. esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto);
  259. nfrags = skb_shinfo(skb)->nr_frags;
  260. __skb_fill_page_desc(skb, nfrags, page, pfrag->offset,
  261. tailen);
  262. skb_shinfo(skb)->nr_frags = ++nfrags;
  263. pfrag->offset = pfrag->offset + allocsize;
  264. spin_unlock_bh(&x->lock);
  265. nfrags++;
  266. skb->len += tailen;
  267. skb->data_len += tailen;
  268. skb->truesize += tailen;
  269. if (sk && sk_fullsock(sk))
  270. refcount_add(tailen, &sk->sk_wmem_alloc);
  271. goto out;
  272. }
  273. }
  274. cow:
  275. esph_offset = (unsigned char *)esp->esph - skb_transport_header(skb);
  276. nfrags = skb_cow_data(skb, tailen, &trailer);
  277. if (nfrags < 0)
  278. goto out;
  279. tail = skb_tail_pointer(trailer);
  280. esp->esph = (struct ip_esp_hdr *)(skb_transport_header(skb) + esph_offset);
  281. skip_cow:
  282. esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto);
  283. pskb_put(skb, trailer, tailen);
  284. out:
  285. return nfrags;
  286. }
  287. EXPORT_SYMBOL_GPL(esp_output_head);
  288. int esp_output_tail(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp)
  289. {
  290. u8 *iv;
  291. int alen;
  292. void *tmp;
  293. int ivlen;
  294. int assoclen;
  295. int extralen;
  296. struct page *page;
  297. struct ip_esp_hdr *esph;
  298. struct crypto_aead *aead;
  299. struct aead_request *req;
  300. struct scatterlist *sg, *dsg;
  301. struct esp_output_extra *extra;
  302. int err = -ENOMEM;
  303. assoclen = sizeof(struct ip_esp_hdr);
  304. extralen = 0;
  305. if (x->props.flags & XFRM_STATE_ESN) {
  306. extralen += sizeof(*extra);
  307. assoclen += sizeof(__be32);
  308. }
  309. aead = x->data;
  310. alen = crypto_aead_authsize(aead);
  311. ivlen = crypto_aead_ivsize(aead);
  312. tmp = esp_alloc_tmp(aead, esp->nfrags + 2, extralen);
  313. if (!tmp)
  314. goto error;
  315. extra = esp_tmp_extra(tmp);
  316. iv = esp_tmp_iv(aead, tmp, extralen);
  317. req = esp_tmp_req(aead, iv);
  318. sg = esp_req_sg(aead, req);
  319. if (esp->inplace)
  320. dsg = sg;
  321. else
  322. dsg = &sg[esp->nfrags];
  323. esph = esp_output_set_extra(skb, x, esp->esph, extra);
  324. esp->esph = esph;
  325. sg_init_table(sg, esp->nfrags);
  326. err = skb_to_sgvec(skb, sg,
  327. (unsigned char *)esph - skb->data,
  328. assoclen + ivlen + esp->clen + alen);
  329. if (unlikely(err < 0))
  330. goto error_free;
  331. if (!esp->inplace) {
  332. int allocsize;
  333. struct page_frag *pfrag = &x->xfrag;
  334. allocsize = ALIGN(skb->data_len, L1_CACHE_BYTES);
  335. spin_lock_bh(&x->lock);
  336. if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) {
  337. spin_unlock_bh(&x->lock);
  338. goto error_free;
  339. }
  340. skb_shinfo(skb)->nr_frags = 1;
  341. page = pfrag->page;
  342. get_page(page);
  343. /* replace page frags in skb with new page */
  344. __skb_fill_page_desc(skb, 0, page, pfrag->offset, skb->data_len);
  345. pfrag->offset = pfrag->offset + allocsize;
  346. spin_unlock_bh(&x->lock);
  347. sg_init_table(dsg, skb_shinfo(skb)->nr_frags + 1);
  348. err = skb_to_sgvec(skb, dsg,
  349. (unsigned char *)esph - skb->data,
  350. assoclen + ivlen + esp->clen + alen);
  351. if (unlikely(err < 0))
  352. goto error_free;
  353. }
  354. if ((x->props.flags & XFRM_STATE_ESN))
  355. aead_request_set_callback(req, 0, esp_output_done_esn, skb);
  356. else
  357. aead_request_set_callback(req, 0, esp_output_done, skb);
  358. aead_request_set_crypt(req, sg, dsg, ivlen + esp->clen, iv);
  359. aead_request_set_ad(req, assoclen);
  360. memset(iv, 0, ivlen);
  361. memcpy(iv + ivlen - min(ivlen, 8), (u8 *)&esp->seqno + 8 - min(ivlen, 8),
  362. min(ivlen, 8));
  363. ESP_SKB_CB(skb)->tmp = tmp;
  364. err = crypto_aead_encrypt(req);
  365. switch (err) {
  366. case -EINPROGRESS:
  367. goto error;
  368. case -ENOSPC:
  369. err = NET_XMIT_DROP;
  370. break;
  371. case 0:
  372. if ((x->props.flags & XFRM_STATE_ESN))
  373. esp_output_restore_header(skb);
  374. }
  375. if (sg != dsg)
  376. esp_ssg_unref(x, tmp);
  377. error_free:
  378. kfree(tmp);
  379. error:
  380. return err;
  381. }
  382. EXPORT_SYMBOL_GPL(esp_output_tail);
  383. static int esp_output(struct xfrm_state *x, struct sk_buff *skb)
  384. {
  385. int alen;
  386. int blksize;
  387. struct ip_esp_hdr *esph;
  388. struct crypto_aead *aead;
  389. struct esp_info esp;
  390. esp.inplace = true;
  391. esp.proto = *skb_mac_header(skb);
  392. *skb_mac_header(skb) = IPPROTO_ESP;
  393. /* skb is pure payload to encrypt */
  394. aead = x->data;
  395. alen = crypto_aead_authsize(aead);
  396. esp.tfclen = 0;
  397. if (x->tfcpad) {
  398. struct xfrm_dst *dst = (struct xfrm_dst *)skb_dst(skb);
  399. u32 padto;
  400. padto = min(x->tfcpad, esp4_get_mtu(x, dst->child_mtu_cached));
  401. if (skb->len < padto)
  402. esp.tfclen = padto - skb->len;
  403. }
  404. blksize = ALIGN(crypto_aead_blocksize(aead), 4);
  405. esp.clen = ALIGN(skb->len + 2 + esp.tfclen, blksize);
  406. esp.plen = esp.clen - skb->len - esp.tfclen;
  407. esp.tailen = esp.tfclen + esp.plen + alen;
  408. esp.esph = ip_esp_hdr(skb);
  409. esp.nfrags = esp_output_head(x, skb, &esp);
  410. if (esp.nfrags < 0)
  411. return esp.nfrags;
  412. esph = esp.esph;
  413. esph->spi = x->id.spi;
  414. esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low);
  415. esp.seqno = cpu_to_be64(XFRM_SKB_CB(skb)->seq.output.low +
  416. ((u64)XFRM_SKB_CB(skb)->seq.output.hi << 32));
  417. skb_push(skb, -skb_network_offset(skb));
  418. return esp_output_tail(x, skb, &esp);
  419. }
  420. static inline int esp_remove_trailer(struct sk_buff *skb)
  421. {
  422. struct xfrm_state *x = xfrm_input_state(skb);
  423. struct xfrm_offload *xo = xfrm_offload(skb);
  424. struct crypto_aead *aead = x->data;
  425. int alen, hlen, elen;
  426. int padlen, trimlen;
  427. __wsum csumdiff;
  428. u8 nexthdr[2];
  429. int ret;
  430. alen = crypto_aead_authsize(aead);
  431. hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead);
  432. elen = skb->len - hlen;
  433. if (xo && (xo->flags & XFRM_ESP_NO_TRAILER)) {
  434. ret = xo->proto;
  435. goto out;
  436. }
  437. if (skb_copy_bits(skb, skb->len - alen - 2, nexthdr, 2))
  438. BUG();
  439. ret = -EINVAL;
  440. padlen = nexthdr[0];
  441. if (padlen + 2 + alen >= elen) {
  442. net_dbg_ratelimited("ipsec esp packet is garbage padlen=%d, elen=%d\n",
  443. padlen + 2, elen - alen);
  444. goto out;
  445. }
  446. trimlen = alen + padlen + 2;
  447. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  448. csumdiff = skb_checksum(skb, skb->len - trimlen, trimlen, 0);
  449. skb->csum = csum_block_sub(skb->csum, csumdiff,
  450. skb->len - trimlen);
  451. }
  452. pskb_trim(skb, skb->len - trimlen);
  453. ret = nexthdr[1];
  454. out:
  455. return ret;
  456. }
  457. int esp_input_done2(struct sk_buff *skb, int err)
  458. {
  459. const struct iphdr *iph;
  460. struct xfrm_state *x = xfrm_input_state(skb);
  461. struct xfrm_offload *xo = xfrm_offload(skb);
  462. struct crypto_aead *aead = x->data;
  463. int hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead);
  464. int ihl;
  465. if (!xo || (xo && !(xo->flags & CRYPTO_DONE)))
  466. kfree(ESP_SKB_CB(skb)->tmp);
  467. if (unlikely(err))
  468. goto out;
  469. err = esp_remove_trailer(skb);
  470. if (unlikely(err < 0))
  471. goto out;
  472. iph = ip_hdr(skb);
  473. ihl = iph->ihl * 4;
  474. if (x->encap) {
  475. struct xfrm_encap_tmpl *encap = x->encap;
  476. struct udphdr *uh = (void *)(skb_network_header(skb) + ihl);
  477. /*
  478. * 1) if the NAT-T peer's IP or port changed then
  479. * advertize the change to the keying daemon.
  480. * This is an inbound SA, so just compare
  481. * SRC ports.
  482. */
  483. if (iph->saddr != x->props.saddr.a4 ||
  484. uh->source != encap->encap_sport) {
  485. xfrm_address_t ipaddr;
  486. ipaddr.a4 = iph->saddr;
  487. km_new_mapping(x, &ipaddr, uh->source);
  488. /* XXX: perhaps add an extra
  489. * policy check here, to see
  490. * if we should allow or
  491. * reject a packet from a
  492. * different source
  493. * address/port.
  494. */
  495. }
  496. /*
  497. * 2) ignore UDP/TCP checksums in case
  498. * of NAT-T in Transport Mode, or
  499. * perform other post-processing fixes
  500. * as per draft-ietf-ipsec-udp-encaps-06,
  501. * section 3.1.2
  502. */
  503. if (x->props.mode == XFRM_MODE_TRANSPORT)
  504. skb->ip_summed = CHECKSUM_UNNECESSARY;
  505. }
  506. skb_pull_rcsum(skb, hlen);
  507. if (x->props.mode == XFRM_MODE_TUNNEL)
  508. skb_reset_transport_header(skb);
  509. else
  510. skb_set_transport_header(skb, -ihl);
  511. /* RFC4303: Drop dummy packets without any error */
  512. if (err == IPPROTO_NONE)
  513. err = -EINVAL;
  514. out:
  515. return err;
  516. }
  517. EXPORT_SYMBOL_GPL(esp_input_done2);
  518. static void esp_input_done(struct crypto_async_request *base, int err)
  519. {
  520. struct sk_buff *skb = base->data;
  521. xfrm_input_resume(skb, esp_input_done2(skb, err));
  522. }
  523. static void esp_input_restore_header(struct sk_buff *skb)
  524. {
  525. esp_restore_header(skb, 0);
  526. __skb_pull(skb, 4);
  527. }
  528. static void esp_input_set_header(struct sk_buff *skb, __be32 *seqhi)
  529. {
  530. struct xfrm_state *x = xfrm_input_state(skb);
  531. struct ip_esp_hdr *esph;
  532. /* For ESN we move the header forward by 4 bytes to
  533. * accomodate the high bits. We will move it back after
  534. * decryption.
  535. */
  536. if ((x->props.flags & XFRM_STATE_ESN)) {
  537. esph = skb_push(skb, 4);
  538. *seqhi = esph->spi;
  539. esph->spi = esph->seq_no;
  540. esph->seq_no = XFRM_SKB_CB(skb)->seq.input.hi;
  541. }
  542. }
  543. static void esp_input_done_esn(struct crypto_async_request *base, int err)
  544. {
  545. struct sk_buff *skb = base->data;
  546. esp_input_restore_header(skb);
  547. esp_input_done(base, err);
  548. }
  549. /*
  550. * Note: detecting truncated vs. non-truncated authentication data is very
  551. * expensive, so we only support truncated data, which is the recommended
  552. * and common case.
  553. */
  554. static int esp_input(struct xfrm_state *x, struct sk_buff *skb)
  555. {
  556. struct ip_esp_hdr *esph;
  557. struct crypto_aead *aead = x->data;
  558. struct aead_request *req;
  559. struct sk_buff *trailer;
  560. int ivlen = crypto_aead_ivsize(aead);
  561. int elen = skb->len - sizeof(*esph) - ivlen;
  562. int nfrags;
  563. int assoclen;
  564. int seqhilen;
  565. __be32 *seqhi;
  566. void *tmp;
  567. u8 *iv;
  568. struct scatterlist *sg;
  569. int err = -EINVAL;
  570. if (!pskb_may_pull(skb, sizeof(*esph) + ivlen))
  571. goto out;
  572. if (elen <= 0)
  573. goto out;
  574. assoclen = sizeof(*esph);
  575. seqhilen = 0;
  576. if (x->props.flags & XFRM_STATE_ESN) {
  577. seqhilen += sizeof(__be32);
  578. assoclen += seqhilen;
  579. }
  580. if (!skb_cloned(skb)) {
  581. if (!skb_is_nonlinear(skb)) {
  582. nfrags = 1;
  583. goto skip_cow;
  584. } else if (!skb_has_frag_list(skb)) {
  585. nfrags = skb_shinfo(skb)->nr_frags;
  586. nfrags++;
  587. goto skip_cow;
  588. }
  589. }
  590. err = skb_cow_data(skb, 0, &trailer);
  591. if (err < 0)
  592. goto out;
  593. nfrags = err;
  594. skip_cow:
  595. err = -ENOMEM;
  596. tmp = esp_alloc_tmp(aead, nfrags, seqhilen);
  597. if (!tmp)
  598. goto out;
  599. ESP_SKB_CB(skb)->tmp = tmp;
  600. seqhi = esp_tmp_extra(tmp);
  601. iv = esp_tmp_iv(aead, tmp, seqhilen);
  602. req = esp_tmp_req(aead, iv);
  603. sg = esp_req_sg(aead, req);
  604. esp_input_set_header(skb, seqhi);
  605. sg_init_table(sg, nfrags);
  606. err = skb_to_sgvec(skb, sg, 0, skb->len);
  607. if (unlikely(err < 0)) {
  608. kfree(tmp);
  609. goto out;
  610. }
  611. skb->ip_summed = CHECKSUM_NONE;
  612. if ((x->props.flags & XFRM_STATE_ESN))
  613. aead_request_set_callback(req, 0, esp_input_done_esn, skb);
  614. else
  615. aead_request_set_callback(req, 0, esp_input_done, skb);
  616. aead_request_set_crypt(req, sg, sg, elen + ivlen, iv);
  617. aead_request_set_ad(req, assoclen);
  618. err = crypto_aead_decrypt(req);
  619. if (err == -EINPROGRESS)
  620. goto out;
  621. if ((x->props.flags & XFRM_STATE_ESN))
  622. esp_input_restore_header(skb);
  623. err = esp_input_done2(skb, err);
  624. out:
  625. return err;
  626. }
  627. static u32 esp4_get_mtu(struct xfrm_state *x, int mtu)
  628. {
  629. struct crypto_aead *aead = x->data;
  630. u32 blksize = ALIGN(crypto_aead_blocksize(aead), 4);
  631. unsigned int net_adj;
  632. switch (x->props.mode) {
  633. case XFRM_MODE_TRANSPORT:
  634. case XFRM_MODE_BEET:
  635. net_adj = sizeof(struct iphdr);
  636. break;
  637. case XFRM_MODE_TUNNEL:
  638. net_adj = 0;
  639. break;
  640. default:
  641. BUG();
  642. }
  643. return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
  644. net_adj) & ~(blksize - 1)) + net_adj - 2;
  645. }
  646. static int esp4_err(struct sk_buff *skb, u32 info)
  647. {
  648. struct net *net = dev_net(skb->dev);
  649. const struct iphdr *iph = (const struct iphdr *)skb->data;
  650. struct ip_esp_hdr *esph = (struct ip_esp_hdr *)(skb->data+(iph->ihl<<2));
  651. struct xfrm_state *x;
  652. switch (icmp_hdr(skb)->type) {
  653. case ICMP_DEST_UNREACH:
  654. if (icmp_hdr(skb)->code != ICMP_FRAG_NEEDED)
  655. return 0;
  656. case ICMP_REDIRECT:
  657. break;
  658. default:
  659. return 0;
  660. }
  661. x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr,
  662. esph->spi, IPPROTO_ESP, AF_INET);
  663. if (!x)
  664. return 0;
  665. if (icmp_hdr(skb)->type == ICMP_DEST_UNREACH)
  666. ipv4_update_pmtu(skb, net, info, 0, 0, IPPROTO_ESP, 0);
  667. else
  668. ipv4_redirect(skb, net, 0, 0, IPPROTO_ESP, 0);
  669. xfrm_state_put(x);
  670. return 0;
  671. }
  672. static void esp_destroy(struct xfrm_state *x)
  673. {
  674. struct crypto_aead *aead = x->data;
  675. if (!aead)
  676. return;
  677. crypto_free_aead(aead);
  678. }
  679. static int esp_init_aead(struct xfrm_state *x)
  680. {
  681. char aead_name[CRYPTO_MAX_ALG_NAME];
  682. struct crypto_aead *aead;
  683. int err;
  684. err = -ENAMETOOLONG;
  685. if (snprintf(aead_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
  686. x->geniv, x->aead->alg_name) >= CRYPTO_MAX_ALG_NAME)
  687. goto error;
  688. aead = crypto_alloc_aead(aead_name, 0, 0);
  689. err = PTR_ERR(aead);
  690. if (IS_ERR(aead))
  691. goto error;
  692. x->data = aead;
  693. err = crypto_aead_setkey(aead, x->aead->alg_key,
  694. (x->aead->alg_key_len + 7) / 8);
  695. if (err)
  696. goto error;
  697. err = crypto_aead_setauthsize(aead, x->aead->alg_icv_len / 8);
  698. if (err)
  699. goto error;
  700. error:
  701. return err;
  702. }
  703. static int esp_init_authenc(struct xfrm_state *x)
  704. {
  705. struct crypto_aead *aead;
  706. struct crypto_authenc_key_param *param;
  707. struct rtattr *rta;
  708. char *key;
  709. char *p;
  710. char authenc_name[CRYPTO_MAX_ALG_NAME];
  711. unsigned int keylen;
  712. int err;
  713. err = -EINVAL;
  714. if (!x->ealg)
  715. goto error;
  716. err = -ENAMETOOLONG;
  717. if ((x->props.flags & XFRM_STATE_ESN)) {
  718. if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME,
  719. "%s%sauthencesn(%s,%s)%s",
  720. x->geniv ?: "", x->geniv ? "(" : "",
  721. x->aalg ? x->aalg->alg_name : "digest_null",
  722. x->ealg->alg_name,
  723. x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME)
  724. goto error;
  725. } else {
  726. if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME,
  727. "%s%sauthenc(%s,%s)%s",
  728. x->geniv ?: "", x->geniv ? "(" : "",
  729. x->aalg ? x->aalg->alg_name : "digest_null",
  730. x->ealg->alg_name,
  731. x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME)
  732. goto error;
  733. }
  734. aead = crypto_alloc_aead(authenc_name, 0, 0);
  735. err = PTR_ERR(aead);
  736. if (IS_ERR(aead))
  737. goto error;
  738. x->data = aead;
  739. keylen = (x->aalg ? (x->aalg->alg_key_len + 7) / 8 : 0) +
  740. (x->ealg->alg_key_len + 7) / 8 + RTA_SPACE(sizeof(*param));
  741. err = -ENOMEM;
  742. key = kmalloc(keylen, GFP_KERNEL);
  743. if (!key)
  744. goto error;
  745. p = key;
  746. rta = (void *)p;
  747. rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
  748. rta->rta_len = RTA_LENGTH(sizeof(*param));
  749. param = RTA_DATA(rta);
  750. p += RTA_SPACE(sizeof(*param));
  751. if (x->aalg) {
  752. struct xfrm_algo_desc *aalg_desc;
  753. memcpy(p, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8);
  754. p += (x->aalg->alg_key_len + 7) / 8;
  755. aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  756. BUG_ON(!aalg_desc);
  757. err = -EINVAL;
  758. if (aalg_desc->uinfo.auth.icv_fullbits / 8 !=
  759. crypto_aead_authsize(aead)) {
  760. pr_info("ESP: %s digestsize %u != %hu\n",
  761. x->aalg->alg_name,
  762. crypto_aead_authsize(aead),
  763. aalg_desc->uinfo.auth.icv_fullbits / 8);
  764. goto free_key;
  765. }
  766. err = crypto_aead_setauthsize(
  767. aead, x->aalg->alg_trunc_len / 8);
  768. if (err)
  769. goto free_key;
  770. }
  771. param->enckeylen = cpu_to_be32((x->ealg->alg_key_len + 7) / 8);
  772. memcpy(p, x->ealg->alg_key, (x->ealg->alg_key_len + 7) / 8);
  773. err = crypto_aead_setkey(aead, key, keylen);
  774. free_key:
  775. kfree(key);
  776. error:
  777. return err;
  778. }
  779. static int esp_init_state(struct xfrm_state *x)
  780. {
  781. struct crypto_aead *aead;
  782. u32 align;
  783. int err;
  784. x->data = NULL;
  785. if (x->aead)
  786. err = esp_init_aead(x);
  787. else
  788. err = esp_init_authenc(x);
  789. if (err)
  790. goto error;
  791. aead = x->data;
  792. x->props.header_len = sizeof(struct ip_esp_hdr) +
  793. crypto_aead_ivsize(aead);
  794. if (x->props.mode == XFRM_MODE_TUNNEL)
  795. x->props.header_len += sizeof(struct iphdr);
  796. else if (x->props.mode == XFRM_MODE_BEET && x->sel.family != AF_INET6)
  797. x->props.header_len += IPV4_BEET_PHMAXLEN;
  798. if (x->encap) {
  799. struct xfrm_encap_tmpl *encap = x->encap;
  800. switch (encap->encap_type) {
  801. default:
  802. err = -EINVAL;
  803. goto error;
  804. case UDP_ENCAP_ESPINUDP:
  805. x->props.header_len += sizeof(struct udphdr);
  806. break;
  807. case UDP_ENCAP_ESPINUDP_NON_IKE:
  808. x->props.header_len += sizeof(struct udphdr) + 2 * sizeof(u32);
  809. break;
  810. }
  811. }
  812. align = ALIGN(crypto_aead_blocksize(aead), 4);
  813. x->props.trailer_len = align + 1 + crypto_aead_authsize(aead);
  814. error:
  815. return err;
  816. }
  817. static int esp4_rcv_cb(struct sk_buff *skb, int err)
  818. {
  819. return 0;
  820. }
  821. static const struct xfrm_type esp_type =
  822. {
  823. .description = "ESP4",
  824. .owner = THIS_MODULE,
  825. .proto = IPPROTO_ESP,
  826. .flags = XFRM_TYPE_REPLAY_PROT,
  827. .init_state = esp_init_state,
  828. .destructor = esp_destroy,
  829. .get_mtu = esp4_get_mtu,
  830. .input = esp_input,
  831. .output = esp_output,
  832. };
  833. static struct xfrm4_protocol esp4_protocol = {
  834. .handler = xfrm4_rcv,
  835. .input_handler = xfrm_input,
  836. .cb_handler = esp4_rcv_cb,
  837. .err_handler = esp4_err,
  838. .priority = 0,
  839. };
  840. static int __init esp4_init(void)
  841. {
  842. if (xfrm_register_type(&esp_type, AF_INET) < 0) {
  843. pr_info("%s: can't add xfrm type\n", __func__);
  844. return -EAGAIN;
  845. }
  846. if (xfrm4_protocol_register(&esp4_protocol, IPPROTO_ESP) < 0) {
  847. pr_info("%s: can't add protocol\n", __func__);
  848. xfrm_unregister_type(&esp_type, AF_INET);
  849. return -EAGAIN;
  850. }
  851. return 0;
  852. }
  853. static void __exit esp4_fini(void)
  854. {
  855. if (xfrm4_protocol_deregister(&esp4_protocol, IPPROTO_ESP) < 0)
  856. pr_info("%s: can't remove protocol\n", __func__);
  857. if (xfrm_unregister_type(&esp_type, AF_INET) < 0)
  858. pr_info("%s: can't remove xfrm type\n", __func__);
  859. }
  860. module_init(esp4_init);
  861. module_exit(esp4_fini);
  862. MODULE_LICENSE("GPL");
  863. MODULE_ALIAS_XFRM_TYPE(AF_INET, XFRM_PROTO_ESP);