tcp_output.c 109 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. #include <linux/static_key.h>
  41. #include <trace/events/tcp.h>
  42. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  43. int push_one, gfp_t gfp);
  44. /* Account for new data that has been sent to the network. */
  45. static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  46. {
  47. struct inet_connection_sock *icsk = inet_csk(sk);
  48. struct tcp_sock *tp = tcp_sk(sk);
  49. unsigned int prior_packets = tp->packets_out;
  50. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  51. __skb_unlink(skb, &sk->sk_write_queue);
  52. tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  53. if (tp->highest_sack == NULL)
  54. tp->highest_sack = skb;
  55. tp->packets_out += tcp_skb_pcount(skb);
  56. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  57. tcp_rearm_rto(sk);
  58. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  59. tcp_skb_pcount(skb));
  60. }
  61. /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  62. * window scaling factor due to loss of precision.
  63. * If window has been shrunk, what should we make? It is not clear at all.
  64. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  65. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  66. * invalid. OK, let's make this for now:
  67. */
  68. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  69. {
  70. const struct tcp_sock *tp = tcp_sk(sk);
  71. if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  72. (tp->rx_opt.wscale_ok &&
  73. ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  74. return tp->snd_nxt;
  75. else
  76. return tcp_wnd_end(tp);
  77. }
  78. /* Calculate mss to advertise in SYN segment.
  79. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  80. *
  81. * 1. It is independent of path mtu.
  82. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  83. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  84. * attached devices, because some buggy hosts are confused by
  85. * large MSS.
  86. * 4. We do not make 3, we advertise MSS, calculated from first
  87. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  88. * This may be overridden via information stored in routing table.
  89. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  90. * probably even Jumbo".
  91. */
  92. static __u16 tcp_advertise_mss(struct sock *sk)
  93. {
  94. struct tcp_sock *tp = tcp_sk(sk);
  95. const struct dst_entry *dst = __sk_dst_get(sk);
  96. int mss = tp->advmss;
  97. if (dst) {
  98. unsigned int metric = dst_metric_advmss(dst);
  99. if (metric < mss) {
  100. mss = metric;
  101. tp->advmss = mss;
  102. }
  103. }
  104. return (__u16)mss;
  105. }
  106. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  107. * This is the first part of cwnd validation mechanism.
  108. */
  109. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  110. {
  111. struct tcp_sock *tp = tcp_sk(sk);
  112. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  113. u32 cwnd = tp->snd_cwnd;
  114. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  115. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  116. restart_cwnd = min(restart_cwnd, cwnd);
  117. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  118. cwnd >>= 1;
  119. tp->snd_cwnd = max(cwnd, restart_cwnd);
  120. tp->snd_cwnd_stamp = tcp_jiffies32;
  121. tp->snd_cwnd_used = 0;
  122. }
  123. /* Congestion state accounting after a packet has been sent. */
  124. static void tcp_event_data_sent(struct tcp_sock *tp,
  125. struct sock *sk)
  126. {
  127. struct inet_connection_sock *icsk = inet_csk(sk);
  128. const u32 now = tcp_jiffies32;
  129. if (tcp_packets_in_flight(tp) == 0)
  130. tcp_ca_event(sk, CA_EVENT_TX_START);
  131. tp->lsndtime = now;
  132. /* If it is a reply for ato after last received
  133. * packet, enter pingpong mode.
  134. */
  135. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  136. icsk->icsk_ack.pingpong = 1;
  137. }
  138. /* Account for an ACK we sent. */
  139. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
  140. u32 rcv_nxt)
  141. {
  142. struct tcp_sock *tp = tcp_sk(sk);
  143. if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
  144. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
  145. tp->compressed_ack - TCP_FASTRETRANS_THRESH);
  146. tp->compressed_ack = TCP_FASTRETRANS_THRESH;
  147. if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
  148. __sock_put(sk);
  149. }
  150. if (unlikely(rcv_nxt != tp->rcv_nxt))
  151. return; /* Special ACK sent by DCTCP to reflect ECN */
  152. tcp_dec_quickack_mode(sk, pkts);
  153. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  154. }
  155. /* Determine a window scaling and initial window to offer.
  156. * Based on the assumption that the given amount of space
  157. * will be offered. Store the results in the tp structure.
  158. * NOTE: for smooth operation initial space offering should
  159. * be a multiple of mss if possible. We assume here that mss >= 1.
  160. * This MUST be enforced by all callers.
  161. */
  162. void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
  163. __u32 *rcv_wnd, __u32 *window_clamp,
  164. int wscale_ok, __u8 *rcv_wscale,
  165. __u32 init_rcv_wnd)
  166. {
  167. unsigned int space = (__space < 0 ? 0 : __space);
  168. /* If no clamp set the clamp to the max possible scaled window */
  169. if (*window_clamp == 0)
  170. (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
  171. space = min(*window_clamp, space);
  172. /* Quantize space offering to a multiple of mss if possible. */
  173. if (space > mss)
  174. space = rounddown(space, mss);
  175. /* NOTE: offering an initial window larger than 32767
  176. * will break some buggy TCP stacks. If the admin tells us
  177. * it is likely we could be speaking with such a buggy stack
  178. * we will truncate our initial window offering to 32K-1
  179. * unless the remote has sent us a window scaling option,
  180. * which we interpret as a sign the remote TCP is not
  181. * misinterpreting the window field as a signed quantity.
  182. */
  183. if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  184. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  185. else
  186. (*rcv_wnd) = min_t(u32, space, U16_MAX);
  187. if (init_rcv_wnd)
  188. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  189. (*rcv_wscale) = 0;
  190. if (wscale_ok) {
  191. /* Set window scaling on max possible window */
  192. space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  193. space = max_t(u32, space, sysctl_rmem_max);
  194. space = min_t(u32, space, *window_clamp);
  195. while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
  196. space >>= 1;
  197. (*rcv_wscale)++;
  198. }
  199. }
  200. /* Set the clamp no higher than max representable value */
  201. (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
  202. }
  203. EXPORT_SYMBOL(tcp_select_initial_window);
  204. /* Chose a new window to advertise, update state in tcp_sock for the
  205. * socket, and return result with RFC1323 scaling applied. The return
  206. * value can be stuffed directly into th->window for an outgoing
  207. * frame.
  208. */
  209. static u16 tcp_select_window(struct sock *sk)
  210. {
  211. struct tcp_sock *tp = tcp_sk(sk);
  212. u32 old_win = tp->rcv_wnd;
  213. u32 cur_win = tcp_receive_window(tp);
  214. u32 new_win = __tcp_select_window(sk);
  215. /* Never shrink the offered window */
  216. if (new_win < cur_win) {
  217. /* Danger Will Robinson!
  218. * Don't update rcv_wup/rcv_wnd here or else
  219. * we will not be able to advertise a zero
  220. * window in time. --DaveM
  221. *
  222. * Relax Will Robinson.
  223. */
  224. if (new_win == 0)
  225. NET_INC_STATS(sock_net(sk),
  226. LINUX_MIB_TCPWANTZEROWINDOWADV);
  227. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  228. }
  229. tp->rcv_wnd = new_win;
  230. tp->rcv_wup = tp->rcv_nxt;
  231. /* Make sure we do not exceed the maximum possible
  232. * scaled window.
  233. */
  234. if (!tp->rx_opt.rcv_wscale &&
  235. sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  236. new_win = min(new_win, MAX_TCP_WINDOW);
  237. else
  238. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  239. /* RFC1323 scaling applied */
  240. new_win >>= tp->rx_opt.rcv_wscale;
  241. /* If we advertise zero window, disable fast path. */
  242. if (new_win == 0) {
  243. tp->pred_flags = 0;
  244. if (old_win)
  245. NET_INC_STATS(sock_net(sk),
  246. LINUX_MIB_TCPTOZEROWINDOWADV);
  247. } else if (old_win == 0) {
  248. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  249. }
  250. return new_win;
  251. }
  252. /* Packet ECN state for a SYN-ACK */
  253. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  254. {
  255. const struct tcp_sock *tp = tcp_sk(sk);
  256. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  257. if (!(tp->ecn_flags & TCP_ECN_OK))
  258. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  259. else if (tcp_ca_needs_ecn(sk) ||
  260. tcp_bpf_ca_needs_ecn(sk))
  261. INET_ECN_xmit(sk);
  262. }
  263. /* Packet ECN state for a SYN. */
  264. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  265. {
  266. struct tcp_sock *tp = tcp_sk(sk);
  267. bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
  268. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  269. tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
  270. if (!use_ecn) {
  271. const struct dst_entry *dst = __sk_dst_get(sk);
  272. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  273. use_ecn = true;
  274. }
  275. tp->ecn_flags = 0;
  276. if (use_ecn) {
  277. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  278. tp->ecn_flags = TCP_ECN_OK;
  279. if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
  280. INET_ECN_xmit(sk);
  281. }
  282. }
  283. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  284. {
  285. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  286. /* tp->ecn_flags are cleared at a later point in time when
  287. * SYN ACK is ultimatively being received.
  288. */
  289. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  290. }
  291. static void
  292. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  293. {
  294. if (inet_rsk(req)->ecn_ok)
  295. th->ece = 1;
  296. }
  297. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  298. * be sent.
  299. */
  300. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  301. struct tcphdr *th, int tcp_header_len)
  302. {
  303. struct tcp_sock *tp = tcp_sk(sk);
  304. if (tp->ecn_flags & TCP_ECN_OK) {
  305. /* Not-retransmitted data segment: set ECT and inject CWR. */
  306. if (skb->len != tcp_header_len &&
  307. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  308. INET_ECN_xmit(sk);
  309. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  310. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  311. th->cwr = 1;
  312. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  313. }
  314. } else if (!tcp_ca_needs_ecn(sk)) {
  315. /* ACK or retransmitted segment: clear ECT|CE */
  316. INET_ECN_dontxmit(sk);
  317. }
  318. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  319. th->ece = 1;
  320. }
  321. }
  322. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  323. * auto increment end seqno.
  324. */
  325. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  326. {
  327. skb->ip_summed = CHECKSUM_PARTIAL;
  328. TCP_SKB_CB(skb)->tcp_flags = flags;
  329. TCP_SKB_CB(skb)->sacked = 0;
  330. tcp_skb_pcount_set(skb, 1);
  331. TCP_SKB_CB(skb)->seq = seq;
  332. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  333. seq++;
  334. TCP_SKB_CB(skb)->end_seq = seq;
  335. }
  336. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  337. {
  338. return tp->snd_una != tp->snd_up;
  339. }
  340. #define OPTION_SACK_ADVERTISE (1 << 0)
  341. #define OPTION_TS (1 << 1)
  342. #define OPTION_MD5 (1 << 2)
  343. #define OPTION_WSCALE (1 << 3)
  344. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  345. #define OPTION_SMC (1 << 9)
  346. static void smc_options_write(__be32 *ptr, u16 *options)
  347. {
  348. #if IS_ENABLED(CONFIG_SMC)
  349. if (static_branch_unlikely(&tcp_have_smc)) {
  350. if (unlikely(OPTION_SMC & *options)) {
  351. *ptr++ = htonl((TCPOPT_NOP << 24) |
  352. (TCPOPT_NOP << 16) |
  353. (TCPOPT_EXP << 8) |
  354. (TCPOLEN_EXP_SMC_BASE));
  355. *ptr++ = htonl(TCPOPT_SMC_MAGIC);
  356. }
  357. }
  358. #endif
  359. }
  360. struct tcp_out_options {
  361. u16 options; /* bit field of OPTION_* */
  362. u16 mss; /* 0 to disable */
  363. u8 ws; /* window scale, 0 to disable */
  364. u8 num_sack_blocks; /* number of SACK blocks to include */
  365. u8 hash_size; /* bytes in hash_location */
  366. __u8 *hash_location; /* temporary pointer, overloaded */
  367. __u32 tsval, tsecr; /* need to include OPTION_TS */
  368. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  369. };
  370. /* Write previously computed TCP options to the packet.
  371. *
  372. * Beware: Something in the Internet is very sensitive to the ordering of
  373. * TCP options, we learned this through the hard way, so be careful here.
  374. * Luckily we can at least blame others for their non-compliance but from
  375. * inter-operability perspective it seems that we're somewhat stuck with
  376. * the ordering which we have been using if we want to keep working with
  377. * those broken things (not that it currently hurts anybody as there isn't
  378. * particular reason why the ordering would need to be changed).
  379. *
  380. * At least SACK_PERM as the first option is known to lead to a disaster
  381. * (but it may well be that other scenarios fail similarly).
  382. */
  383. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  384. struct tcp_out_options *opts)
  385. {
  386. u16 options = opts->options; /* mungable copy */
  387. if (unlikely(OPTION_MD5 & options)) {
  388. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  389. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  390. /* overload cookie hash location */
  391. opts->hash_location = (__u8 *)ptr;
  392. ptr += 4;
  393. }
  394. if (unlikely(opts->mss)) {
  395. *ptr++ = htonl((TCPOPT_MSS << 24) |
  396. (TCPOLEN_MSS << 16) |
  397. opts->mss);
  398. }
  399. if (likely(OPTION_TS & options)) {
  400. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  401. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  402. (TCPOLEN_SACK_PERM << 16) |
  403. (TCPOPT_TIMESTAMP << 8) |
  404. TCPOLEN_TIMESTAMP);
  405. options &= ~OPTION_SACK_ADVERTISE;
  406. } else {
  407. *ptr++ = htonl((TCPOPT_NOP << 24) |
  408. (TCPOPT_NOP << 16) |
  409. (TCPOPT_TIMESTAMP << 8) |
  410. TCPOLEN_TIMESTAMP);
  411. }
  412. *ptr++ = htonl(opts->tsval);
  413. *ptr++ = htonl(opts->tsecr);
  414. }
  415. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  416. *ptr++ = htonl((TCPOPT_NOP << 24) |
  417. (TCPOPT_NOP << 16) |
  418. (TCPOPT_SACK_PERM << 8) |
  419. TCPOLEN_SACK_PERM);
  420. }
  421. if (unlikely(OPTION_WSCALE & options)) {
  422. *ptr++ = htonl((TCPOPT_NOP << 24) |
  423. (TCPOPT_WINDOW << 16) |
  424. (TCPOLEN_WINDOW << 8) |
  425. opts->ws);
  426. }
  427. if (unlikely(opts->num_sack_blocks)) {
  428. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  429. tp->duplicate_sack : tp->selective_acks;
  430. int this_sack;
  431. *ptr++ = htonl((TCPOPT_NOP << 24) |
  432. (TCPOPT_NOP << 16) |
  433. (TCPOPT_SACK << 8) |
  434. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  435. TCPOLEN_SACK_PERBLOCK)));
  436. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  437. ++this_sack) {
  438. *ptr++ = htonl(sp[this_sack].start_seq);
  439. *ptr++ = htonl(sp[this_sack].end_seq);
  440. }
  441. tp->rx_opt.dsack = 0;
  442. }
  443. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  444. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  445. u8 *p = (u8 *)ptr;
  446. u32 len; /* Fast Open option length */
  447. if (foc->exp) {
  448. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  449. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  450. TCPOPT_FASTOPEN_MAGIC);
  451. p += TCPOLEN_EXP_FASTOPEN_BASE;
  452. } else {
  453. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  454. *p++ = TCPOPT_FASTOPEN;
  455. *p++ = len;
  456. }
  457. memcpy(p, foc->val, foc->len);
  458. if ((len & 3) == 2) {
  459. p[foc->len] = TCPOPT_NOP;
  460. p[foc->len + 1] = TCPOPT_NOP;
  461. }
  462. ptr += (len + 3) >> 2;
  463. }
  464. smc_options_write(ptr, &options);
  465. }
  466. static void smc_set_option(const struct tcp_sock *tp,
  467. struct tcp_out_options *opts,
  468. unsigned int *remaining)
  469. {
  470. #if IS_ENABLED(CONFIG_SMC)
  471. if (static_branch_unlikely(&tcp_have_smc)) {
  472. if (tp->syn_smc) {
  473. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  474. opts->options |= OPTION_SMC;
  475. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  476. }
  477. }
  478. }
  479. #endif
  480. }
  481. static void smc_set_option_cond(const struct tcp_sock *tp,
  482. const struct inet_request_sock *ireq,
  483. struct tcp_out_options *opts,
  484. unsigned int *remaining)
  485. {
  486. #if IS_ENABLED(CONFIG_SMC)
  487. if (static_branch_unlikely(&tcp_have_smc)) {
  488. if (tp->syn_smc && ireq->smc_ok) {
  489. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  490. opts->options |= OPTION_SMC;
  491. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  492. }
  493. }
  494. }
  495. #endif
  496. }
  497. /* Compute TCP options for SYN packets. This is not the final
  498. * network wire format yet.
  499. */
  500. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  501. struct tcp_out_options *opts,
  502. struct tcp_md5sig_key **md5)
  503. {
  504. struct tcp_sock *tp = tcp_sk(sk);
  505. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  506. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  507. *md5 = NULL;
  508. #ifdef CONFIG_TCP_MD5SIG
  509. if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
  510. *md5 = tp->af_specific->md5_lookup(sk, sk);
  511. if (*md5) {
  512. opts->options |= OPTION_MD5;
  513. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  514. }
  515. }
  516. #endif
  517. /* We always get an MSS option. The option bytes which will be seen in
  518. * normal data packets should timestamps be used, must be in the MSS
  519. * advertised. But we subtract them from tp->mss_cache so that
  520. * calculations in tcp_sendmsg are simpler etc. So account for this
  521. * fact here if necessary. If we don't do this correctly, as a
  522. * receiver we won't recognize data packets as being full sized when we
  523. * should, and thus we won't abide by the delayed ACK rules correctly.
  524. * SACKs don't matter, we never delay an ACK when we have any of those
  525. * going out. */
  526. opts->mss = tcp_advertise_mss(sk);
  527. remaining -= TCPOLEN_MSS_ALIGNED;
  528. if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
  529. opts->options |= OPTION_TS;
  530. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  531. opts->tsecr = tp->rx_opt.ts_recent;
  532. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  533. }
  534. if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
  535. opts->ws = tp->rx_opt.rcv_wscale;
  536. opts->options |= OPTION_WSCALE;
  537. remaining -= TCPOLEN_WSCALE_ALIGNED;
  538. }
  539. if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
  540. opts->options |= OPTION_SACK_ADVERTISE;
  541. if (unlikely(!(OPTION_TS & opts->options)))
  542. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  543. }
  544. if (fastopen && fastopen->cookie.len >= 0) {
  545. u32 need = fastopen->cookie.len;
  546. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  547. TCPOLEN_FASTOPEN_BASE;
  548. need = (need + 3) & ~3U; /* Align to 32 bits */
  549. if (remaining >= need) {
  550. opts->options |= OPTION_FAST_OPEN_COOKIE;
  551. opts->fastopen_cookie = &fastopen->cookie;
  552. remaining -= need;
  553. tp->syn_fastopen = 1;
  554. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  555. }
  556. }
  557. smc_set_option(tp, opts, &remaining);
  558. return MAX_TCP_OPTION_SPACE - remaining;
  559. }
  560. /* Set up TCP options for SYN-ACKs. */
  561. static unsigned int tcp_synack_options(const struct sock *sk,
  562. struct request_sock *req,
  563. unsigned int mss, struct sk_buff *skb,
  564. struct tcp_out_options *opts,
  565. const struct tcp_md5sig_key *md5,
  566. struct tcp_fastopen_cookie *foc,
  567. enum tcp_synack_type synack_type)
  568. {
  569. struct inet_request_sock *ireq = inet_rsk(req);
  570. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  571. #ifdef CONFIG_TCP_MD5SIG
  572. if (md5) {
  573. opts->options |= OPTION_MD5;
  574. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  575. /* We can't fit any SACK blocks in a packet with MD5 + TS
  576. * options. There was discussion about disabling SACK
  577. * rather than TS in order to fit in better with old,
  578. * buggy kernels, but that was deemed to be unnecessary.
  579. */
  580. if (synack_type != TCP_SYNACK_COOKIE)
  581. ireq->tstamp_ok &= !ireq->sack_ok;
  582. }
  583. #endif
  584. /* We always send an MSS option. */
  585. opts->mss = mss;
  586. remaining -= TCPOLEN_MSS_ALIGNED;
  587. if (likely(ireq->wscale_ok)) {
  588. opts->ws = ireq->rcv_wscale;
  589. opts->options |= OPTION_WSCALE;
  590. remaining -= TCPOLEN_WSCALE_ALIGNED;
  591. }
  592. if (likely(ireq->tstamp_ok)) {
  593. opts->options |= OPTION_TS;
  594. opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
  595. opts->tsecr = req->ts_recent;
  596. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  597. }
  598. if (likely(ireq->sack_ok)) {
  599. opts->options |= OPTION_SACK_ADVERTISE;
  600. if (unlikely(!ireq->tstamp_ok))
  601. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  602. }
  603. if (foc != NULL && foc->len >= 0) {
  604. u32 need = foc->len;
  605. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  606. TCPOLEN_FASTOPEN_BASE;
  607. need = (need + 3) & ~3U; /* Align to 32 bits */
  608. if (remaining >= need) {
  609. opts->options |= OPTION_FAST_OPEN_COOKIE;
  610. opts->fastopen_cookie = foc;
  611. remaining -= need;
  612. }
  613. }
  614. smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
  615. return MAX_TCP_OPTION_SPACE - remaining;
  616. }
  617. /* Compute TCP options for ESTABLISHED sockets. This is not the
  618. * final wire format yet.
  619. */
  620. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  621. struct tcp_out_options *opts,
  622. struct tcp_md5sig_key **md5)
  623. {
  624. struct tcp_sock *tp = tcp_sk(sk);
  625. unsigned int size = 0;
  626. unsigned int eff_sacks;
  627. opts->options = 0;
  628. *md5 = NULL;
  629. #ifdef CONFIG_TCP_MD5SIG
  630. if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
  631. *md5 = tp->af_specific->md5_lookup(sk, sk);
  632. if (*md5) {
  633. opts->options |= OPTION_MD5;
  634. size += TCPOLEN_MD5SIG_ALIGNED;
  635. }
  636. }
  637. #endif
  638. if (likely(tp->rx_opt.tstamp_ok)) {
  639. opts->options |= OPTION_TS;
  640. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  641. opts->tsecr = tp->rx_opt.ts_recent;
  642. size += TCPOLEN_TSTAMP_ALIGNED;
  643. }
  644. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  645. if (unlikely(eff_sacks)) {
  646. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  647. opts->num_sack_blocks =
  648. min_t(unsigned int, eff_sacks,
  649. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  650. TCPOLEN_SACK_PERBLOCK);
  651. if (likely(opts->num_sack_blocks))
  652. size += TCPOLEN_SACK_BASE_ALIGNED +
  653. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  654. }
  655. return size;
  656. }
  657. /* TCP SMALL QUEUES (TSQ)
  658. *
  659. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  660. * to reduce RTT and bufferbloat.
  661. * We do this using a special skb destructor (tcp_wfree).
  662. *
  663. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  664. * needs to be reallocated in a driver.
  665. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  666. *
  667. * Since transmit from skb destructor is forbidden, we use a tasklet
  668. * to process all sockets that eventually need to send more skbs.
  669. * We use one tasklet per cpu, with its own queue of sockets.
  670. */
  671. struct tsq_tasklet {
  672. struct tasklet_struct tasklet;
  673. struct list_head head; /* queue of tcp sockets */
  674. };
  675. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  676. static void tcp_tsq_write(struct sock *sk)
  677. {
  678. if ((1 << sk->sk_state) &
  679. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  680. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  681. struct tcp_sock *tp = tcp_sk(sk);
  682. if (tp->lost_out > tp->retrans_out &&
  683. tp->snd_cwnd > tcp_packets_in_flight(tp)) {
  684. tcp_mstamp_refresh(tp);
  685. tcp_xmit_retransmit_queue(sk);
  686. }
  687. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  688. 0, GFP_ATOMIC);
  689. }
  690. }
  691. static void tcp_tsq_handler(struct sock *sk)
  692. {
  693. bh_lock_sock(sk);
  694. if (!sock_owned_by_user(sk))
  695. tcp_tsq_write(sk);
  696. else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
  697. sock_hold(sk);
  698. bh_unlock_sock(sk);
  699. }
  700. /*
  701. * One tasklet per cpu tries to send more skbs.
  702. * We run in tasklet context but need to disable irqs when
  703. * transferring tsq->head because tcp_wfree() might
  704. * interrupt us (non NAPI drivers)
  705. */
  706. static void tcp_tasklet_func(unsigned long data)
  707. {
  708. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  709. LIST_HEAD(list);
  710. unsigned long flags;
  711. struct list_head *q, *n;
  712. struct tcp_sock *tp;
  713. struct sock *sk;
  714. local_irq_save(flags);
  715. list_splice_init(&tsq->head, &list);
  716. local_irq_restore(flags);
  717. list_for_each_safe(q, n, &list) {
  718. tp = list_entry(q, struct tcp_sock, tsq_node);
  719. list_del(&tp->tsq_node);
  720. sk = (struct sock *)tp;
  721. smp_mb__before_atomic();
  722. clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
  723. tcp_tsq_handler(sk);
  724. sk_free(sk);
  725. }
  726. }
  727. #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
  728. TCPF_WRITE_TIMER_DEFERRED | \
  729. TCPF_DELACK_TIMER_DEFERRED | \
  730. TCPF_MTU_REDUCED_DEFERRED)
  731. /**
  732. * tcp_release_cb - tcp release_sock() callback
  733. * @sk: socket
  734. *
  735. * called from release_sock() to perform protocol dependent
  736. * actions before socket release.
  737. */
  738. void tcp_release_cb(struct sock *sk)
  739. {
  740. unsigned long flags, nflags;
  741. /* perform an atomic operation only if at least one flag is set */
  742. do {
  743. flags = sk->sk_tsq_flags;
  744. if (!(flags & TCP_DEFERRED_ALL))
  745. return;
  746. nflags = flags & ~TCP_DEFERRED_ALL;
  747. } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
  748. if (flags & TCPF_TSQ_DEFERRED) {
  749. tcp_tsq_write(sk);
  750. __sock_put(sk);
  751. }
  752. /* Here begins the tricky part :
  753. * We are called from release_sock() with :
  754. * 1) BH disabled
  755. * 2) sk_lock.slock spinlock held
  756. * 3) socket owned by us (sk->sk_lock.owned == 1)
  757. *
  758. * But following code is meant to be called from BH handlers,
  759. * so we should keep BH disabled, but early release socket ownership
  760. */
  761. sock_release_ownership(sk);
  762. if (flags & TCPF_WRITE_TIMER_DEFERRED) {
  763. tcp_write_timer_handler(sk);
  764. __sock_put(sk);
  765. }
  766. if (flags & TCPF_DELACK_TIMER_DEFERRED) {
  767. tcp_delack_timer_handler(sk);
  768. __sock_put(sk);
  769. }
  770. if (flags & TCPF_MTU_REDUCED_DEFERRED) {
  771. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  772. __sock_put(sk);
  773. }
  774. }
  775. EXPORT_SYMBOL(tcp_release_cb);
  776. void __init tcp_tasklet_init(void)
  777. {
  778. int i;
  779. for_each_possible_cpu(i) {
  780. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  781. INIT_LIST_HEAD(&tsq->head);
  782. tasklet_init(&tsq->tasklet,
  783. tcp_tasklet_func,
  784. (unsigned long)tsq);
  785. }
  786. }
  787. /*
  788. * Write buffer destructor automatically called from kfree_skb.
  789. * We can't xmit new skbs from this context, as we might already
  790. * hold qdisc lock.
  791. */
  792. void tcp_wfree(struct sk_buff *skb)
  793. {
  794. struct sock *sk = skb->sk;
  795. struct tcp_sock *tp = tcp_sk(sk);
  796. unsigned long flags, nval, oval;
  797. /* Keep one reference on sk_wmem_alloc.
  798. * Will be released by sk_free() from here or tcp_tasklet_func()
  799. */
  800. WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
  801. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  802. * Wait until our queues (qdisc + devices) are drained.
  803. * This gives :
  804. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  805. * - chance for incoming ACK (processed by another cpu maybe)
  806. * to migrate this flow (skb->ooo_okay will be eventually set)
  807. */
  808. if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  809. goto out;
  810. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  811. struct tsq_tasklet *tsq;
  812. bool empty;
  813. if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
  814. goto out;
  815. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
  816. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  817. if (nval != oval)
  818. continue;
  819. /* queue this socket to tasklet queue */
  820. local_irq_save(flags);
  821. tsq = this_cpu_ptr(&tsq_tasklet);
  822. empty = list_empty(&tsq->head);
  823. list_add(&tp->tsq_node, &tsq->head);
  824. if (empty)
  825. tasklet_schedule(&tsq->tasklet);
  826. local_irq_restore(flags);
  827. return;
  828. }
  829. out:
  830. sk_free(sk);
  831. }
  832. /* Note: Called under soft irq.
  833. * We can call TCP stack right away, unless socket is owned by user.
  834. */
  835. enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
  836. {
  837. struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
  838. struct sock *sk = (struct sock *)tp;
  839. tcp_tsq_handler(sk);
  840. sock_put(sk);
  841. return HRTIMER_NORESTART;
  842. }
  843. static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
  844. {
  845. u64 len_ns;
  846. u32 rate;
  847. if (!tcp_needs_internal_pacing(sk))
  848. return;
  849. rate = sk->sk_pacing_rate;
  850. if (!rate || rate == ~0U)
  851. return;
  852. len_ns = (u64)skb->len * NSEC_PER_SEC;
  853. do_div(len_ns, rate);
  854. hrtimer_start(&tcp_sk(sk)->pacing_timer,
  855. ktime_add_ns(ktime_get(), len_ns),
  856. HRTIMER_MODE_ABS_PINNED_SOFT);
  857. sock_hold(sk);
  858. }
  859. static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
  860. {
  861. skb->skb_mstamp = tp->tcp_mstamp;
  862. list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
  863. }
  864. /* This routine actually transmits TCP packets queued in by
  865. * tcp_do_sendmsg(). This is used by both the initial
  866. * transmission and possible later retransmissions.
  867. * All SKB's seen here are completely headerless. It is our
  868. * job to build the TCP header, and pass the packet down to
  869. * IP so it can do the same plus pass the packet off to the
  870. * device.
  871. *
  872. * We are working here with either a clone of the original
  873. * SKB, or a fresh unique copy made by the retransmit engine.
  874. */
  875. static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
  876. int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
  877. {
  878. const struct inet_connection_sock *icsk = inet_csk(sk);
  879. struct inet_sock *inet;
  880. struct tcp_sock *tp;
  881. struct tcp_skb_cb *tcb;
  882. struct tcp_out_options opts;
  883. unsigned int tcp_options_size, tcp_header_size;
  884. struct sk_buff *oskb = NULL;
  885. struct tcp_md5sig_key *md5;
  886. struct tcphdr *th;
  887. int err;
  888. BUG_ON(!skb || !tcp_skb_pcount(skb));
  889. tp = tcp_sk(sk);
  890. if (clone_it) {
  891. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  892. - tp->snd_una;
  893. oskb = skb;
  894. tcp_skb_tsorted_save(oskb) {
  895. if (unlikely(skb_cloned(oskb)))
  896. skb = pskb_copy(oskb, gfp_mask);
  897. else
  898. skb = skb_clone(oskb, gfp_mask);
  899. } tcp_skb_tsorted_restore(oskb);
  900. if (unlikely(!skb))
  901. return -ENOBUFS;
  902. }
  903. skb->skb_mstamp = tp->tcp_mstamp;
  904. inet = inet_sk(sk);
  905. tcb = TCP_SKB_CB(skb);
  906. memset(&opts, 0, sizeof(opts));
  907. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  908. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  909. else
  910. tcp_options_size = tcp_established_options(sk, skb, &opts,
  911. &md5);
  912. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  913. /* if no packet is in qdisc/device queue, then allow XPS to select
  914. * another queue. We can be called from tcp_tsq_handler()
  915. * which holds one reference to sk.
  916. *
  917. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  918. * One way to get this would be to set skb->truesize = 2 on them.
  919. */
  920. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  921. /* If we had to use memory reserve to allocate this skb,
  922. * this might cause drops if packet is looped back :
  923. * Other socket might not have SOCK_MEMALLOC.
  924. * Packets not looped back do not care about pfmemalloc.
  925. */
  926. skb->pfmemalloc = 0;
  927. skb_push(skb, tcp_header_size);
  928. skb_reset_transport_header(skb);
  929. skb_orphan(skb);
  930. skb->sk = sk;
  931. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  932. skb_set_hash_from_sk(skb, sk);
  933. refcount_add(skb->truesize, &sk->sk_wmem_alloc);
  934. skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
  935. /* Build TCP header and checksum it. */
  936. th = (struct tcphdr *)skb->data;
  937. th->source = inet->inet_sport;
  938. th->dest = inet->inet_dport;
  939. th->seq = htonl(tcb->seq);
  940. th->ack_seq = htonl(rcv_nxt);
  941. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  942. tcb->tcp_flags);
  943. th->check = 0;
  944. th->urg_ptr = 0;
  945. /* The urg_mode check is necessary during a below snd_una win probe */
  946. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  947. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  948. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  949. th->urg = 1;
  950. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  951. th->urg_ptr = htons(0xFFFF);
  952. th->urg = 1;
  953. }
  954. }
  955. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  956. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  957. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  958. th->window = htons(tcp_select_window(sk));
  959. tcp_ecn_send(sk, skb, th, tcp_header_size);
  960. } else {
  961. /* RFC1323: The window in SYN & SYN/ACK segments
  962. * is never scaled.
  963. */
  964. th->window = htons(min(tp->rcv_wnd, 65535U));
  965. }
  966. #ifdef CONFIG_TCP_MD5SIG
  967. /* Calculate the MD5 hash, as we have all we need now */
  968. if (md5) {
  969. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  970. tp->af_specific->calc_md5_hash(opts.hash_location,
  971. md5, sk, skb);
  972. }
  973. #endif
  974. icsk->icsk_af_ops->send_check(sk, skb);
  975. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  976. tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
  977. if (skb->len != tcp_header_size) {
  978. tcp_event_data_sent(tp, sk);
  979. tp->data_segs_out += tcp_skb_pcount(skb);
  980. tp->bytes_sent += skb->len - tcp_header_size;
  981. tcp_internal_pacing(sk, skb);
  982. }
  983. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  984. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  985. tcp_skb_pcount(skb));
  986. tp->segs_out += tcp_skb_pcount(skb);
  987. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  988. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  989. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  990. /* Our usage of tstamp should remain private */
  991. skb->tstamp = 0;
  992. /* Cleanup our debris for IP stacks */
  993. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  994. sizeof(struct inet6_skb_parm)));
  995. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  996. if (unlikely(err > 0)) {
  997. tcp_enter_cwr(sk);
  998. err = net_xmit_eval(err);
  999. }
  1000. if (!err && oskb) {
  1001. tcp_update_skb_after_send(tp, oskb);
  1002. tcp_rate_skb_sent(sk, oskb);
  1003. }
  1004. return err;
  1005. }
  1006. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  1007. gfp_t gfp_mask)
  1008. {
  1009. return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
  1010. tcp_sk(sk)->rcv_nxt);
  1011. }
  1012. /* This routine just queues the buffer for sending.
  1013. *
  1014. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  1015. * otherwise socket can stall.
  1016. */
  1017. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  1018. {
  1019. struct tcp_sock *tp = tcp_sk(sk);
  1020. /* Advance write_seq and place onto the write_queue. */
  1021. WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
  1022. __skb_header_release(skb);
  1023. tcp_add_write_queue_tail(sk, skb);
  1024. sk->sk_wmem_queued += skb->truesize;
  1025. sk_mem_charge(sk, skb->truesize);
  1026. }
  1027. /* Initialize TSO segments for a packet. */
  1028. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1029. {
  1030. if (skb->len <= mss_now) {
  1031. /* Avoid the costly divide in the normal
  1032. * non-TSO case.
  1033. */
  1034. tcp_skb_pcount_set(skb, 1);
  1035. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1036. } else {
  1037. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  1038. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  1039. }
  1040. }
  1041. /* Pcount in the middle of the write queue got changed, we need to do various
  1042. * tweaks to fix counters
  1043. */
  1044. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  1045. {
  1046. struct tcp_sock *tp = tcp_sk(sk);
  1047. tp->packets_out -= decr;
  1048. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1049. tp->sacked_out -= decr;
  1050. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1051. tp->retrans_out -= decr;
  1052. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  1053. tp->lost_out -= decr;
  1054. /* Reno case is special. Sigh... */
  1055. if (tcp_is_reno(tp) && decr > 0)
  1056. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  1057. if (tp->lost_skb_hint &&
  1058. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  1059. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1060. tp->lost_cnt_hint -= decr;
  1061. tcp_verify_left_out(tp);
  1062. }
  1063. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  1064. {
  1065. return TCP_SKB_CB(skb)->txstamp_ack ||
  1066. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  1067. }
  1068. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  1069. {
  1070. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1071. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  1072. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  1073. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  1074. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  1075. shinfo->tx_flags &= ~tsflags;
  1076. shinfo2->tx_flags |= tsflags;
  1077. swap(shinfo->tskey, shinfo2->tskey);
  1078. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  1079. TCP_SKB_CB(skb)->txstamp_ack = 0;
  1080. }
  1081. }
  1082. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  1083. {
  1084. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  1085. TCP_SKB_CB(skb)->eor = 0;
  1086. }
  1087. /* Insert buff after skb on the write or rtx queue of sk. */
  1088. static void tcp_insert_write_queue_after(struct sk_buff *skb,
  1089. struct sk_buff *buff,
  1090. struct sock *sk,
  1091. enum tcp_queue tcp_queue)
  1092. {
  1093. if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
  1094. __skb_queue_after(&sk->sk_write_queue, skb, buff);
  1095. else
  1096. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  1097. }
  1098. /* Function to create two new TCP segments. Shrinks the given segment
  1099. * to the specified size and appends a new segment with the rest of the
  1100. * packet to the list. This won't be called frequently, I hope.
  1101. * Remember, these are still headerless SKBs at this point.
  1102. */
  1103. int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1104. struct sk_buff *skb, u32 len,
  1105. unsigned int mss_now, gfp_t gfp)
  1106. {
  1107. struct tcp_sock *tp = tcp_sk(sk);
  1108. struct sk_buff *buff;
  1109. int nsize, old_factor;
  1110. long limit;
  1111. int nlen;
  1112. u8 flags;
  1113. if (WARN_ON(len > skb->len))
  1114. return -EINVAL;
  1115. nsize = skb_headlen(skb) - len;
  1116. if (nsize < 0)
  1117. nsize = 0;
  1118. /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
  1119. * We need some allowance to not penalize applications setting small
  1120. * SO_SNDBUF values.
  1121. * Also allow first and last skb in retransmit queue to be split.
  1122. */
  1123. limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
  1124. if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
  1125. tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
  1126. skb != tcp_rtx_queue_head(sk) &&
  1127. skb != tcp_rtx_queue_tail(sk))) {
  1128. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
  1129. return -ENOMEM;
  1130. }
  1131. if (skb_unclone(skb, gfp))
  1132. return -ENOMEM;
  1133. /* Get a new skb... force flag on. */
  1134. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1135. if (!buff)
  1136. return -ENOMEM; /* We'll just try again later. */
  1137. sk->sk_wmem_queued += buff->truesize;
  1138. sk_mem_charge(sk, buff->truesize);
  1139. nlen = skb->len - len - nsize;
  1140. buff->truesize += nlen;
  1141. skb->truesize -= nlen;
  1142. /* Correct the sequence numbers. */
  1143. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1144. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1145. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1146. /* PSH and FIN should only be set in the second packet. */
  1147. flags = TCP_SKB_CB(skb)->tcp_flags;
  1148. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1149. TCP_SKB_CB(buff)->tcp_flags = flags;
  1150. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1151. tcp_skb_fragment_eor(skb, buff);
  1152. skb_split(skb, buff, len);
  1153. buff->ip_summed = CHECKSUM_PARTIAL;
  1154. buff->tstamp = skb->tstamp;
  1155. tcp_fragment_tstamp(skb, buff);
  1156. old_factor = tcp_skb_pcount(skb);
  1157. /* Fix up tso_factor for both original and new SKB. */
  1158. tcp_set_skb_tso_segs(skb, mss_now);
  1159. tcp_set_skb_tso_segs(buff, mss_now);
  1160. /* Update delivered info for the new segment */
  1161. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1162. /* If this packet has been sent out already, we must
  1163. * adjust the various packet counters.
  1164. */
  1165. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1166. int diff = old_factor - tcp_skb_pcount(skb) -
  1167. tcp_skb_pcount(buff);
  1168. if (diff)
  1169. tcp_adjust_pcount(sk, skb, diff);
  1170. }
  1171. /* Link BUFF into the send queue. */
  1172. __skb_header_release(buff);
  1173. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1174. if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
  1175. list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
  1176. return 0;
  1177. }
  1178. /* This is similar to __pskb_pull_tail(). The difference is that pulled
  1179. * data is not copied, but immediately discarded.
  1180. */
  1181. static int __pskb_trim_head(struct sk_buff *skb, int len)
  1182. {
  1183. struct skb_shared_info *shinfo;
  1184. int i, k, eat;
  1185. eat = min_t(int, len, skb_headlen(skb));
  1186. if (eat) {
  1187. __skb_pull(skb, eat);
  1188. len -= eat;
  1189. if (!len)
  1190. return 0;
  1191. }
  1192. eat = len;
  1193. k = 0;
  1194. shinfo = skb_shinfo(skb);
  1195. for (i = 0; i < shinfo->nr_frags; i++) {
  1196. int size = skb_frag_size(&shinfo->frags[i]);
  1197. if (size <= eat) {
  1198. skb_frag_unref(skb, i);
  1199. eat -= size;
  1200. } else {
  1201. shinfo->frags[k] = shinfo->frags[i];
  1202. if (eat) {
  1203. shinfo->frags[k].page_offset += eat;
  1204. skb_frag_size_sub(&shinfo->frags[k], eat);
  1205. eat = 0;
  1206. }
  1207. k++;
  1208. }
  1209. }
  1210. shinfo->nr_frags = k;
  1211. skb->data_len -= len;
  1212. skb->len = skb->data_len;
  1213. return len;
  1214. }
  1215. /* Remove acked data from a packet in the transmit queue. */
  1216. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1217. {
  1218. u32 delta_truesize;
  1219. if (skb_unclone(skb, GFP_ATOMIC))
  1220. return -ENOMEM;
  1221. delta_truesize = __pskb_trim_head(skb, len);
  1222. TCP_SKB_CB(skb)->seq += len;
  1223. skb->ip_summed = CHECKSUM_PARTIAL;
  1224. if (delta_truesize) {
  1225. skb->truesize -= delta_truesize;
  1226. sk->sk_wmem_queued -= delta_truesize;
  1227. sk_mem_uncharge(sk, delta_truesize);
  1228. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1229. }
  1230. /* Any change of skb->len requires recalculation of tso factor. */
  1231. if (tcp_skb_pcount(skb) > 1)
  1232. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1233. return 0;
  1234. }
  1235. /* Calculate MSS not accounting any TCP options. */
  1236. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1237. {
  1238. const struct tcp_sock *tp = tcp_sk(sk);
  1239. const struct inet_connection_sock *icsk = inet_csk(sk);
  1240. int mss_now;
  1241. /* Calculate base mss without TCP options:
  1242. It is MMS_S - sizeof(tcphdr) of rfc1122
  1243. */
  1244. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1245. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1246. if (icsk->icsk_af_ops->net_frag_header_len) {
  1247. const struct dst_entry *dst = __sk_dst_get(sk);
  1248. if (dst && dst_allfrag(dst))
  1249. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1250. }
  1251. /* Clamp it (mss_clamp does not include tcp options) */
  1252. if (mss_now > tp->rx_opt.mss_clamp)
  1253. mss_now = tp->rx_opt.mss_clamp;
  1254. /* Now subtract optional transport overhead */
  1255. mss_now -= icsk->icsk_ext_hdr_len;
  1256. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1257. mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
  1258. return mss_now;
  1259. }
  1260. /* Calculate MSS. Not accounting for SACKs here. */
  1261. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1262. {
  1263. /* Subtract TCP options size, not including SACKs */
  1264. return __tcp_mtu_to_mss(sk, pmtu) -
  1265. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1266. }
  1267. /* Inverse of above */
  1268. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1269. {
  1270. const struct tcp_sock *tp = tcp_sk(sk);
  1271. const struct inet_connection_sock *icsk = inet_csk(sk);
  1272. int mtu;
  1273. mtu = mss +
  1274. tp->tcp_header_len +
  1275. icsk->icsk_ext_hdr_len +
  1276. icsk->icsk_af_ops->net_header_len;
  1277. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1278. if (icsk->icsk_af_ops->net_frag_header_len) {
  1279. const struct dst_entry *dst = __sk_dst_get(sk);
  1280. if (dst && dst_allfrag(dst))
  1281. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1282. }
  1283. return mtu;
  1284. }
  1285. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1286. /* MTU probing init per socket */
  1287. void tcp_mtup_init(struct sock *sk)
  1288. {
  1289. struct tcp_sock *tp = tcp_sk(sk);
  1290. struct inet_connection_sock *icsk = inet_csk(sk);
  1291. struct net *net = sock_net(sk);
  1292. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1293. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1294. icsk->icsk_af_ops->net_header_len;
  1295. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1296. icsk->icsk_mtup.probe_size = 0;
  1297. if (icsk->icsk_mtup.enabled)
  1298. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1299. }
  1300. EXPORT_SYMBOL(tcp_mtup_init);
  1301. /* This function synchronize snd mss to current pmtu/exthdr set.
  1302. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1303. for TCP options, but includes only bare TCP header.
  1304. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1305. It is minimum of user_mss and mss received with SYN.
  1306. It also does not include TCP options.
  1307. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1308. tp->mss_cache is current effective sending mss, including
  1309. all tcp options except for SACKs. It is evaluated,
  1310. taking into account current pmtu, but never exceeds
  1311. tp->rx_opt.mss_clamp.
  1312. NOTE1. rfc1122 clearly states that advertised MSS
  1313. DOES NOT include either tcp or ip options.
  1314. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1315. are READ ONLY outside this function. --ANK (980731)
  1316. */
  1317. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1318. {
  1319. struct tcp_sock *tp = tcp_sk(sk);
  1320. struct inet_connection_sock *icsk = inet_csk(sk);
  1321. int mss_now;
  1322. if (icsk->icsk_mtup.search_high > pmtu)
  1323. icsk->icsk_mtup.search_high = pmtu;
  1324. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1325. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1326. /* And store cached results */
  1327. icsk->icsk_pmtu_cookie = pmtu;
  1328. if (icsk->icsk_mtup.enabled)
  1329. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1330. tp->mss_cache = mss_now;
  1331. return mss_now;
  1332. }
  1333. EXPORT_SYMBOL(tcp_sync_mss);
  1334. /* Compute the current effective MSS, taking SACKs and IP options,
  1335. * and even PMTU discovery events into account.
  1336. */
  1337. unsigned int tcp_current_mss(struct sock *sk)
  1338. {
  1339. const struct tcp_sock *tp = tcp_sk(sk);
  1340. const struct dst_entry *dst = __sk_dst_get(sk);
  1341. u32 mss_now;
  1342. unsigned int header_len;
  1343. struct tcp_out_options opts;
  1344. struct tcp_md5sig_key *md5;
  1345. mss_now = tp->mss_cache;
  1346. if (dst) {
  1347. u32 mtu = dst_mtu(dst);
  1348. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1349. mss_now = tcp_sync_mss(sk, mtu);
  1350. }
  1351. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1352. sizeof(struct tcphdr);
  1353. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1354. * some common options. If this is an odd packet (because we have SACK
  1355. * blocks etc) then our calculated header_len will be different, and
  1356. * we have to adjust mss_now correspondingly */
  1357. if (header_len != tp->tcp_header_len) {
  1358. int delta = (int) header_len - tp->tcp_header_len;
  1359. mss_now -= delta;
  1360. }
  1361. return mss_now;
  1362. }
  1363. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1364. * As additional protections, we do not touch cwnd in retransmission phases,
  1365. * and if application hit its sndbuf limit recently.
  1366. */
  1367. static void tcp_cwnd_application_limited(struct sock *sk)
  1368. {
  1369. struct tcp_sock *tp = tcp_sk(sk);
  1370. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1371. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1372. /* Limited by application or receiver window. */
  1373. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1374. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1375. if (win_used < tp->snd_cwnd) {
  1376. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1377. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1378. }
  1379. tp->snd_cwnd_used = 0;
  1380. }
  1381. tp->snd_cwnd_stamp = tcp_jiffies32;
  1382. }
  1383. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1384. {
  1385. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1386. struct tcp_sock *tp = tcp_sk(sk);
  1387. /* Track the maximum number of outstanding packets in each
  1388. * window, and remember whether we were cwnd-limited then.
  1389. */
  1390. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1391. tp->packets_out > tp->max_packets_out ||
  1392. is_cwnd_limited) {
  1393. tp->max_packets_out = tp->packets_out;
  1394. tp->max_packets_seq = tp->snd_nxt;
  1395. tp->is_cwnd_limited = is_cwnd_limited;
  1396. }
  1397. if (tcp_is_cwnd_limited(sk)) {
  1398. /* Network is feed fully. */
  1399. tp->snd_cwnd_used = 0;
  1400. tp->snd_cwnd_stamp = tcp_jiffies32;
  1401. } else {
  1402. /* Network starves. */
  1403. if (tp->packets_out > tp->snd_cwnd_used)
  1404. tp->snd_cwnd_used = tp->packets_out;
  1405. if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
  1406. (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
  1407. !ca_ops->cong_control)
  1408. tcp_cwnd_application_limited(sk);
  1409. /* The following conditions together indicate the starvation
  1410. * is caused by insufficient sender buffer:
  1411. * 1) just sent some data (see tcp_write_xmit)
  1412. * 2) not cwnd limited (this else condition)
  1413. * 3) no more data to send (tcp_write_queue_empty())
  1414. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1415. */
  1416. if (tcp_write_queue_empty(sk) && sk->sk_socket &&
  1417. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1418. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1419. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1420. }
  1421. }
  1422. /* Minshall's variant of the Nagle send check. */
  1423. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1424. {
  1425. return after(tp->snd_sml, tp->snd_una) &&
  1426. !after(tp->snd_sml, tp->snd_nxt);
  1427. }
  1428. /* Update snd_sml if this skb is under mss
  1429. * Note that a TSO packet might end with a sub-mss segment
  1430. * The test is really :
  1431. * if ((skb->len % mss) != 0)
  1432. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1433. * But we can avoid doing the divide again given we already have
  1434. * skb_pcount = skb->len / mss_now
  1435. */
  1436. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1437. const struct sk_buff *skb)
  1438. {
  1439. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1440. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1441. }
  1442. /* Return false, if packet can be sent now without violation Nagle's rules:
  1443. * 1. It is full sized. (provided by caller in %partial bool)
  1444. * 2. Or it contains FIN. (already checked by caller)
  1445. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1446. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1447. * With Minshall's modification: all sent small packets are ACKed.
  1448. */
  1449. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1450. int nonagle)
  1451. {
  1452. return partial &&
  1453. ((nonagle & TCP_NAGLE_CORK) ||
  1454. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1455. }
  1456. /* Return how many segs we'd like on a TSO packet,
  1457. * to send one TSO packet per ms
  1458. */
  1459. static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1460. int min_tso_segs)
  1461. {
  1462. u32 bytes, segs;
  1463. bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
  1464. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1465. /* Goal is to send at least one packet per ms,
  1466. * not one big TSO packet every 100 ms.
  1467. * This preserves ACK clocking and is consistent
  1468. * with tcp_tso_should_defer() heuristic.
  1469. */
  1470. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1471. return segs;
  1472. }
  1473. /* Return the number of segments we want in the skb we are transmitting.
  1474. * See if congestion control module wants to decide; otherwise, autosize.
  1475. */
  1476. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1477. {
  1478. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1479. u32 min_tso, tso_segs;
  1480. min_tso = ca_ops->min_tso_segs ?
  1481. ca_ops->min_tso_segs(sk) :
  1482. sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
  1483. tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
  1484. return min_t(u32, tso_segs, sk->sk_gso_max_segs);
  1485. }
  1486. /* Returns the portion of skb which can be sent right away */
  1487. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1488. const struct sk_buff *skb,
  1489. unsigned int mss_now,
  1490. unsigned int max_segs,
  1491. int nonagle)
  1492. {
  1493. const struct tcp_sock *tp = tcp_sk(sk);
  1494. u32 partial, needed, window, max_len;
  1495. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1496. max_len = mss_now * max_segs;
  1497. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1498. return max_len;
  1499. needed = min(skb->len, window);
  1500. if (max_len <= needed)
  1501. return max_len;
  1502. partial = needed % mss_now;
  1503. /* If last segment is not a full MSS, check if Nagle rules allow us
  1504. * to include this last segment in this skb.
  1505. * Otherwise, we'll split the skb at last MSS boundary
  1506. */
  1507. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1508. return needed - partial;
  1509. return needed;
  1510. }
  1511. /* Can at least one segment of SKB be sent right now, according to the
  1512. * congestion window rules? If so, return how many segments are allowed.
  1513. */
  1514. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1515. const struct sk_buff *skb)
  1516. {
  1517. u32 in_flight, cwnd, halfcwnd;
  1518. /* Don't be strict about the congestion window for the final FIN. */
  1519. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1520. tcp_skb_pcount(skb) == 1)
  1521. return 1;
  1522. in_flight = tcp_packets_in_flight(tp);
  1523. cwnd = tp->snd_cwnd;
  1524. if (in_flight >= cwnd)
  1525. return 0;
  1526. /* For better scheduling, ensure we have at least
  1527. * 2 GSO packets in flight.
  1528. */
  1529. halfcwnd = max(cwnd >> 1, 1U);
  1530. return min(halfcwnd, cwnd - in_flight);
  1531. }
  1532. /* Initialize TSO state of a skb.
  1533. * This must be invoked the first time we consider transmitting
  1534. * SKB onto the wire.
  1535. */
  1536. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1537. {
  1538. int tso_segs = tcp_skb_pcount(skb);
  1539. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1540. tcp_set_skb_tso_segs(skb, mss_now);
  1541. tso_segs = tcp_skb_pcount(skb);
  1542. }
  1543. return tso_segs;
  1544. }
  1545. /* Return true if the Nagle test allows this packet to be
  1546. * sent now.
  1547. */
  1548. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1549. unsigned int cur_mss, int nonagle)
  1550. {
  1551. /* Nagle rule does not apply to frames, which sit in the middle of the
  1552. * write_queue (they have no chances to get new data).
  1553. *
  1554. * This is implemented in the callers, where they modify the 'nonagle'
  1555. * argument based upon the location of SKB in the send queue.
  1556. */
  1557. if (nonagle & TCP_NAGLE_PUSH)
  1558. return true;
  1559. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1560. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1561. return true;
  1562. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1563. return true;
  1564. return false;
  1565. }
  1566. /* Does at least the first segment of SKB fit into the send window? */
  1567. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1568. const struct sk_buff *skb,
  1569. unsigned int cur_mss)
  1570. {
  1571. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1572. if (skb->len > cur_mss)
  1573. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1574. return !after(end_seq, tcp_wnd_end(tp));
  1575. }
  1576. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1577. * which is put after SKB on the list. It is very much like
  1578. * tcp_fragment() except that it may make several kinds of assumptions
  1579. * in order to speed up the splitting operation. In particular, we
  1580. * know that all the data is in scatter-gather pages, and that the
  1581. * packet has never been sent out before (and thus is not cloned).
  1582. */
  1583. static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1584. struct sk_buff *skb, unsigned int len,
  1585. unsigned int mss_now, gfp_t gfp)
  1586. {
  1587. struct sk_buff *buff;
  1588. int nlen = skb->len - len;
  1589. u8 flags;
  1590. /* All of a TSO frame must be composed of paged data. */
  1591. if (skb->len != skb->data_len)
  1592. return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
  1593. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1594. if (unlikely(!buff))
  1595. return -ENOMEM;
  1596. sk->sk_wmem_queued += buff->truesize;
  1597. sk_mem_charge(sk, buff->truesize);
  1598. buff->truesize += nlen;
  1599. skb->truesize -= nlen;
  1600. /* Correct the sequence numbers. */
  1601. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1602. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1603. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1604. /* PSH and FIN should only be set in the second packet. */
  1605. flags = TCP_SKB_CB(skb)->tcp_flags;
  1606. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1607. TCP_SKB_CB(buff)->tcp_flags = flags;
  1608. /* This packet was never sent out yet, so no SACK bits. */
  1609. TCP_SKB_CB(buff)->sacked = 0;
  1610. tcp_skb_fragment_eor(skb, buff);
  1611. buff->ip_summed = CHECKSUM_PARTIAL;
  1612. skb_split(skb, buff, len);
  1613. tcp_fragment_tstamp(skb, buff);
  1614. /* Fix up tso_factor for both original and new SKB. */
  1615. tcp_set_skb_tso_segs(skb, mss_now);
  1616. tcp_set_skb_tso_segs(buff, mss_now);
  1617. /* Link BUFF into the send queue. */
  1618. __skb_header_release(buff);
  1619. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1620. return 0;
  1621. }
  1622. /* Try to defer sending, if possible, in order to minimize the amount
  1623. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1624. *
  1625. * This algorithm is from John Heffner.
  1626. */
  1627. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1628. bool *is_cwnd_limited,
  1629. bool *is_rwnd_limited,
  1630. u32 max_segs)
  1631. {
  1632. const struct inet_connection_sock *icsk = inet_csk(sk);
  1633. u32 age, send_win, cong_win, limit, in_flight;
  1634. struct tcp_sock *tp = tcp_sk(sk);
  1635. struct sk_buff *head;
  1636. int win_divisor;
  1637. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1638. goto send_now;
  1639. /* Avoid bursty behavior by allowing defer
  1640. * only if the last write was recent.
  1641. */
  1642. if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
  1643. goto send_now;
  1644. in_flight = tcp_packets_in_flight(tp);
  1645. BUG_ON(tcp_skb_pcount(skb) <= 1);
  1646. BUG_ON(tp->snd_cwnd <= in_flight);
  1647. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1648. /* From in_flight test above, we know that cwnd > in_flight. */
  1649. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1650. limit = min(send_win, cong_win);
  1651. /* If a full-sized TSO skb can be sent, do it. */
  1652. if (limit >= max_segs * tp->mss_cache)
  1653. goto send_now;
  1654. /* Middle in queue won't get any more data, full sendable already? */
  1655. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1656. goto send_now;
  1657. win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
  1658. if (win_divisor) {
  1659. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1660. /* If at least some fraction of a window is available,
  1661. * just use it.
  1662. */
  1663. chunk /= win_divisor;
  1664. if (limit >= chunk)
  1665. goto send_now;
  1666. } else {
  1667. /* Different approach, try not to defer past a single
  1668. * ACK. Receiver should ACK every other full sized
  1669. * frame, so if we have space for more than 3 frames
  1670. * then send now.
  1671. */
  1672. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1673. goto send_now;
  1674. }
  1675. /* TODO : use tsorted_sent_queue ? */
  1676. head = tcp_rtx_queue_head(sk);
  1677. if (!head)
  1678. goto send_now;
  1679. age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
  1680. /* If next ACK is likely to come too late (half srtt), do not defer */
  1681. if (age < (tp->srtt_us >> 4))
  1682. goto send_now;
  1683. /* Ok, it looks like it is advisable to defer.
  1684. * Three cases are tracked :
  1685. * 1) We are cwnd-limited
  1686. * 2) We are rwnd-limited
  1687. * 3) We are application limited.
  1688. */
  1689. if (cong_win < send_win) {
  1690. if (cong_win <= skb->len) {
  1691. *is_cwnd_limited = true;
  1692. return true;
  1693. }
  1694. } else {
  1695. if (send_win <= skb->len) {
  1696. *is_rwnd_limited = true;
  1697. return true;
  1698. }
  1699. }
  1700. /* If this packet won't get more data, do not wait. */
  1701. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1702. goto send_now;
  1703. return true;
  1704. send_now:
  1705. return false;
  1706. }
  1707. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1708. {
  1709. struct inet_connection_sock *icsk = inet_csk(sk);
  1710. struct tcp_sock *tp = tcp_sk(sk);
  1711. struct net *net = sock_net(sk);
  1712. u32 interval;
  1713. s32 delta;
  1714. interval = net->ipv4.sysctl_tcp_probe_interval;
  1715. delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
  1716. if (unlikely(delta >= interval * HZ)) {
  1717. int mss = tcp_current_mss(sk);
  1718. /* Update current search range */
  1719. icsk->icsk_mtup.probe_size = 0;
  1720. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1721. sizeof(struct tcphdr) +
  1722. icsk->icsk_af_ops->net_header_len;
  1723. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1724. /* Update probe time stamp */
  1725. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1726. }
  1727. }
  1728. static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
  1729. {
  1730. struct sk_buff *skb, *next;
  1731. skb = tcp_send_head(sk);
  1732. tcp_for_write_queue_from_safe(skb, next, sk) {
  1733. if (len <= skb->len)
  1734. break;
  1735. if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
  1736. return false;
  1737. len -= skb->len;
  1738. }
  1739. return true;
  1740. }
  1741. /* Create a new MTU probe if we are ready.
  1742. * MTU probe is regularly attempting to increase the path MTU by
  1743. * deliberately sending larger packets. This discovers routing
  1744. * changes resulting in larger path MTUs.
  1745. *
  1746. * Returns 0 if we should wait to probe (no cwnd available),
  1747. * 1 if a probe was sent,
  1748. * -1 otherwise
  1749. */
  1750. static int tcp_mtu_probe(struct sock *sk)
  1751. {
  1752. struct inet_connection_sock *icsk = inet_csk(sk);
  1753. struct tcp_sock *tp = tcp_sk(sk);
  1754. struct sk_buff *skb, *nskb, *next;
  1755. struct net *net = sock_net(sk);
  1756. int probe_size;
  1757. int size_needed;
  1758. int copy, len;
  1759. int mss_now;
  1760. int interval;
  1761. /* Not currently probing/verifying,
  1762. * not in recovery,
  1763. * have enough cwnd, and
  1764. * not SACKing (the variable headers throw things off)
  1765. */
  1766. if (likely(!icsk->icsk_mtup.enabled ||
  1767. icsk->icsk_mtup.probe_size ||
  1768. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1769. tp->snd_cwnd < 11 ||
  1770. tp->rx_opt.num_sacks || tp->rx_opt.dsack))
  1771. return -1;
  1772. /* Use binary search for probe_size between tcp_mss_base,
  1773. * and current mss_clamp. if (search_high - search_low)
  1774. * smaller than a threshold, backoff from probing.
  1775. */
  1776. mss_now = tcp_current_mss(sk);
  1777. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1778. icsk->icsk_mtup.search_low) >> 1);
  1779. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1780. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1781. /* When misfortune happens, we are reprobing actively,
  1782. * and then reprobe timer has expired. We stick with current
  1783. * probing process by not resetting search range to its orignal.
  1784. */
  1785. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1786. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1787. /* Check whether enough time has elaplased for
  1788. * another round of probing.
  1789. */
  1790. tcp_mtu_check_reprobe(sk);
  1791. return -1;
  1792. }
  1793. /* Have enough data in the send queue to probe? */
  1794. if (tp->write_seq - tp->snd_nxt < size_needed)
  1795. return -1;
  1796. if (tp->snd_wnd < size_needed)
  1797. return -1;
  1798. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1799. return 0;
  1800. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1801. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1802. if (!tcp_packets_in_flight(tp))
  1803. return -1;
  1804. else
  1805. return 0;
  1806. }
  1807. if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
  1808. return -1;
  1809. /* We're allowed to probe. Build it now. */
  1810. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1811. if (!nskb)
  1812. return -1;
  1813. sk->sk_wmem_queued += nskb->truesize;
  1814. sk_mem_charge(sk, nskb->truesize);
  1815. skb = tcp_send_head(sk);
  1816. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1817. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1818. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1819. TCP_SKB_CB(nskb)->sacked = 0;
  1820. nskb->csum = 0;
  1821. nskb->ip_summed = CHECKSUM_PARTIAL;
  1822. tcp_insert_write_queue_before(nskb, skb, sk);
  1823. tcp_highest_sack_replace(sk, skb, nskb);
  1824. len = 0;
  1825. tcp_for_write_queue_from_safe(skb, next, sk) {
  1826. copy = min_t(int, skb->len, probe_size - len);
  1827. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1828. if (skb->len <= copy) {
  1829. /* We've eaten all the data from this skb.
  1830. * Throw it away. */
  1831. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1832. /* If this is the last SKB we copy and eor is set
  1833. * we need to propagate it to the new skb.
  1834. */
  1835. TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
  1836. tcp_skb_collapse_tstamp(nskb, skb);
  1837. tcp_unlink_write_queue(skb, sk);
  1838. sk_wmem_free_skb(sk, skb);
  1839. } else {
  1840. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1841. ~(TCPHDR_FIN|TCPHDR_PSH);
  1842. if (!skb_shinfo(skb)->nr_frags) {
  1843. skb_pull(skb, copy);
  1844. } else {
  1845. __pskb_trim_head(skb, copy);
  1846. tcp_set_skb_tso_segs(skb, mss_now);
  1847. }
  1848. TCP_SKB_CB(skb)->seq += copy;
  1849. }
  1850. len += copy;
  1851. if (len >= probe_size)
  1852. break;
  1853. }
  1854. tcp_init_tso_segs(nskb, nskb->len);
  1855. /* We're ready to send. If this fails, the probe will
  1856. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1857. */
  1858. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1859. /* Decrement cwnd here because we are sending
  1860. * effectively two packets. */
  1861. tp->snd_cwnd--;
  1862. tcp_event_new_data_sent(sk, nskb);
  1863. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1864. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1865. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1866. return 1;
  1867. }
  1868. return -1;
  1869. }
  1870. static bool tcp_pacing_check(const struct sock *sk)
  1871. {
  1872. return tcp_needs_internal_pacing(sk) &&
  1873. hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
  1874. }
  1875. /* TCP Small Queues :
  1876. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1877. * (These limits are doubled for retransmits)
  1878. * This allows for :
  1879. * - better RTT estimation and ACK scheduling
  1880. * - faster recovery
  1881. * - high rates
  1882. * Alas, some drivers / subsystems require a fair amount
  1883. * of queued bytes to ensure line rate.
  1884. * One example is wifi aggregation (802.11 AMPDU)
  1885. */
  1886. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1887. unsigned int factor)
  1888. {
  1889. unsigned int limit;
  1890. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
  1891. limit = min_t(u32, limit,
  1892. sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
  1893. limit <<= factor;
  1894. if (refcount_read(&sk->sk_wmem_alloc) > limit) {
  1895. /* Always send skb if rtx queue is empty.
  1896. * No need to wait for TX completion to call us back,
  1897. * after softirq/tasklet schedule.
  1898. * This helps when TX completions are delayed too much.
  1899. */
  1900. if (tcp_rtx_queue_empty(sk))
  1901. return false;
  1902. set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
  1903. /* It is possible TX completion already happened
  1904. * before we set TSQ_THROTTLED, so we must
  1905. * test again the condition.
  1906. */
  1907. smp_mb__after_atomic();
  1908. if (refcount_read(&sk->sk_wmem_alloc) > limit)
  1909. return true;
  1910. }
  1911. return false;
  1912. }
  1913. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1914. {
  1915. const u32 now = tcp_jiffies32;
  1916. enum tcp_chrono old = tp->chrono_type;
  1917. if (old > TCP_CHRONO_UNSPEC)
  1918. tp->chrono_stat[old - 1] += now - tp->chrono_start;
  1919. tp->chrono_start = now;
  1920. tp->chrono_type = new;
  1921. }
  1922. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1923. {
  1924. struct tcp_sock *tp = tcp_sk(sk);
  1925. /* If there are multiple conditions worthy of tracking in a
  1926. * chronograph then the highest priority enum takes precedence
  1927. * over the other conditions. So that if something "more interesting"
  1928. * starts happening, stop the previous chrono and start a new one.
  1929. */
  1930. if (type > tp->chrono_type)
  1931. tcp_chrono_set(tp, type);
  1932. }
  1933. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1934. {
  1935. struct tcp_sock *tp = tcp_sk(sk);
  1936. /* There are multiple conditions worthy of tracking in a
  1937. * chronograph, so that the highest priority enum takes
  1938. * precedence over the other conditions (see tcp_chrono_start).
  1939. * If a condition stops, we only stop chrono tracking if
  1940. * it's the "most interesting" or current chrono we are
  1941. * tracking and starts busy chrono if we have pending data.
  1942. */
  1943. if (tcp_rtx_and_write_queues_empty(sk))
  1944. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1945. else if (type == tp->chrono_type)
  1946. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1947. }
  1948. /* This routine writes packets to the network. It advances the
  1949. * send_head. This happens as incoming acks open up the remote
  1950. * window for us.
  1951. *
  1952. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1953. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1954. * account rare use of URG, this is not a big flaw.
  1955. *
  1956. * Send at most one packet when push_one > 0. Temporarily ignore
  1957. * cwnd limit to force at most one packet out when push_one == 2.
  1958. * Returns true, if no segments are in flight and we have queued segments,
  1959. * but cannot send anything now because of SWS or another problem.
  1960. */
  1961. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1962. int push_one, gfp_t gfp)
  1963. {
  1964. struct tcp_sock *tp = tcp_sk(sk);
  1965. struct sk_buff *skb;
  1966. unsigned int tso_segs, sent_pkts;
  1967. int cwnd_quota;
  1968. int result;
  1969. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1970. u32 max_segs;
  1971. sent_pkts = 0;
  1972. tcp_mstamp_refresh(tp);
  1973. if (!push_one) {
  1974. /* Do MTU probing. */
  1975. result = tcp_mtu_probe(sk);
  1976. if (!result) {
  1977. return false;
  1978. } else if (result > 0) {
  1979. sent_pkts = 1;
  1980. }
  1981. }
  1982. max_segs = tcp_tso_segs(sk, mss_now);
  1983. while ((skb = tcp_send_head(sk))) {
  1984. unsigned int limit;
  1985. if (tcp_pacing_check(sk))
  1986. break;
  1987. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1988. BUG_ON(!tso_segs);
  1989. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1990. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1991. tcp_update_skb_after_send(tp, skb);
  1992. goto repair; /* Skip network transmission */
  1993. }
  1994. cwnd_quota = tcp_cwnd_test(tp, skb);
  1995. if (!cwnd_quota) {
  1996. if (push_one == 2)
  1997. /* Force out a loss probe pkt. */
  1998. cwnd_quota = 1;
  1999. else
  2000. break;
  2001. }
  2002. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  2003. is_rwnd_limited = true;
  2004. break;
  2005. }
  2006. if (tso_segs == 1) {
  2007. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  2008. (tcp_skb_is_last(sk, skb) ?
  2009. nonagle : TCP_NAGLE_PUSH))))
  2010. break;
  2011. } else {
  2012. if (!push_one &&
  2013. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  2014. &is_rwnd_limited, max_segs))
  2015. break;
  2016. }
  2017. limit = mss_now;
  2018. if (tso_segs > 1 && !tcp_urg_mode(tp))
  2019. limit = tcp_mss_split_point(sk, skb, mss_now,
  2020. min_t(unsigned int,
  2021. cwnd_quota,
  2022. max_segs),
  2023. nonagle);
  2024. if (skb->len > limit &&
  2025. unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  2026. skb, limit, mss_now, gfp)))
  2027. break;
  2028. if (tcp_small_queue_check(sk, skb, 0))
  2029. break;
  2030. /* Argh, we hit an empty skb(), presumably a thread
  2031. * is sleeping in sendmsg()/sk_stream_wait_memory().
  2032. * We do not want to send a pure-ack packet and have
  2033. * a strange looking rtx queue with empty packet(s).
  2034. */
  2035. if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
  2036. break;
  2037. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  2038. break;
  2039. repair:
  2040. /* Advance the send_head. This one is sent out.
  2041. * This call will increment packets_out.
  2042. */
  2043. tcp_event_new_data_sent(sk, skb);
  2044. tcp_minshall_update(tp, mss_now, skb);
  2045. sent_pkts += tcp_skb_pcount(skb);
  2046. if (push_one)
  2047. break;
  2048. }
  2049. if (is_rwnd_limited)
  2050. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  2051. else
  2052. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  2053. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  2054. if (likely(sent_pkts || is_cwnd_limited))
  2055. tcp_cwnd_validate(sk, is_cwnd_limited);
  2056. if (likely(sent_pkts)) {
  2057. if (tcp_in_cwnd_reduction(sk))
  2058. tp->prr_out += sent_pkts;
  2059. /* Send one loss probe per tail loss episode. */
  2060. if (push_one != 2)
  2061. tcp_schedule_loss_probe(sk, false);
  2062. return false;
  2063. }
  2064. return !tp->packets_out && !tcp_write_queue_empty(sk);
  2065. }
  2066. bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
  2067. {
  2068. struct inet_connection_sock *icsk = inet_csk(sk);
  2069. struct tcp_sock *tp = tcp_sk(sk);
  2070. u32 timeout, rto_delta_us;
  2071. int early_retrans;
  2072. /* Don't do any loss probe on a Fast Open connection before 3WHS
  2073. * finishes.
  2074. */
  2075. if (tp->fastopen_rsk)
  2076. return false;
  2077. early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
  2078. /* Schedule a loss probe in 2*RTT for SACK capable connections
  2079. * not in loss recovery, that are either limited by cwnd or application.
  2080. */
  2081. if ((early_retrans != 3 && early_retrans != 4) ||
  2082. !tp->packets_out || !tcp_is_sack(tp) ||
  2083. (icsk->icsk_ca_state != TCP_CA_Open &&
  2084. icsk->icsk_ca_state != TCP_CA_CWR))
  2085. return false;
  2086. /* Probe timeout is 2*rtt. Add minimum RTO to account
  2087. * for delayed ack when there's one outstanding packet. If no RTT
  2088. * sample is available then probe after TCP_TIMEOUT_INIT.
  2089. */
  2090. if (tp->srtt_us) {
  2091. timeout = usecs_to_jiffies(tp->srtt_us >> 2);
  2092. if (tp->packets_out == 1)
  2093. timeout += TCP_RTO_MIN;
  2094. else
  2095. timeout += TCP_TIMEOUT_MIN;
  2096. } else {
  2097. timeout = TCP_TIMEOUT_INIT;
  2098. }
  2099. /* If the RTO formula yields an earlier time, then use that time. */
  2100. rto_delta_us = advancing_rto ?
  2101. jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
  2102. tcp_rto_delta_us(sk); /* How far in future is RTO? */
  2103. if (rto_delta_us > 0)
  2104. timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
  2105. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  2106. TCP_RTO_MAX);
  2107. return true;
  2108. }
  2109. /* Thanks to skb fast clones, we can detect if a prior transmit of
  2110. * a packet is still in a qdisc or driver queue.
  2111. * In this case, there is very little point doing a retransmit !
  2112. */
  2113. static bool skb_still_in_host_queue(const struct sock *sk,
  2114. const struct sk_buff *skb)
  2115. {
  2116. if (unlikely(skb_fclone_busy(sk, skb))) {
  2117. NET_INC_STATS(sock_net(sk),
  2118. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  2119. return true;
  2120. }
  2121. return false;
  2122. }
  2123. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  2124. * retransmit the last segment.
  2125. */
  2126. void tcp_send_loss_probe(struct sock *sk)
  2127. {
  2128. struct tcp_sock *tp = tcp_sk(sk);
  2129. struct sk_buff *skb;
  2130. int pcount;
  2131. int mss = tcp_current_mss(sk);
  2132. /* At most one outstanding TLP */
  2133. if (tp->tlp_high_seq)
  2134. goto rearm_timer;
  2135. tp->tlp_retrans = 0;
  2136. skb = tcp_send_head(sk);
  2137. if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
  2138. pcount = tp->packets_out;
  2139. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  2140. if (tp->packets_out > pcount)
  2141. goto probe_sent;
  2142. goto rearm_timer;
  2143. }
  2144. skb = skb_rb_last(&sk->tcp_rtx_queue);
  2145. if (unlikely(!skb)) {
  2146. WARN_ONCE(tp->packets_out,
  2147. "invalid inflight: %u state %u cwnd %u mss %d\n",
  2148. tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
  2149. inet_csk(sk)->icsk_pending = 0;
  2150. return;
  2151. }
  2152. if (skb_still_in_host_queue(sk, skb))
  2153. goto rearm_timer;
  2154. pcount = tcp_skb_pcount(skb);
  2155. if (WARN_ON(!pcount))
  2156. goto rearm_timer;
  2157. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2158. if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  2159. (pcount - 1) * mss, mss,
  2160. GFP_ATOMIC)))
  2161. goto rearm_timer;
  2162. skb = skb_rb_next(skb);
  2163. }
  2164. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2165. goto rearm_timer;
  2166. if (__tcp_retransmit_skb(sk, skb, 1))
  2167. goto rearm_timer;
  2168. tp->tlp_retrans = 1;
  2169. probe_sent:
  2170. /* Record snd_nxt for loss detection. */
  2171. tp->tlp_high_seq = tp->snd_nxt;
  2172. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2173. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2174. inet_csk(sk)->icsk_pending = 0;
  2175. rearm_timer:
  2176. tcp_rearm_rto(sk);
  2177. }
  2178. /* Push out any pending frames which were held back due to
  2179. * TCP_CORK or attempt at coalescing tiny packets.
  2180. * The socket must be locked by the caller.
  2181. */
  2182. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2183. int nonagle)
  2184. {
  2185. /* If we are closed, the bytes will have to remain here.
  2186. * In time closedown will finish, we empty the write queue and
  2187. * all will be happy.
  2188. */
  2189. if (unlikely(sk->sk_state == TCP_CLOSE))
  2190. return;
  2191. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2192. sk_gfp_mask(sk, GFP_ATOMIC)))
  2193. tcp_check_probe_timer(sk);
  2194. }
  2195. /* Send _single_ skb sitting at the send head. This function requires
  2196. * true push pending frames to setup probe timer etc.
  2197. */
  2198. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2199. {
  2200. struct sk_buff *skb = tcp_send_head(sk);
  2201. BUG_ON(!skb || skb->len < mss_now);
  2202. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2203. }
  2204. /* This function returns the amount that we can raise the
  2205. * usable window based on the following constraints
  2206. *
  2207. * 1. The window can never be shrunk once it is offered (RFC 793)
  2208. * 2. We limit memory per socket
  2209. *
  2210. * RFC 1122:
  2211. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2212. * RECV.NEXT + RCV.WIN fixed until:
  2213. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2214. *
  2215. * i.e. don't raise the right edge of the window until you can raise
  2216. * it at least MSS bytes.
  2217. *
  2218. * Unfortunately, the recommended algorithm breaks header prediction,
  2219. * since header prediction assumes th->window stays fixed.
  2220. *
  2221. * Strictly speaking, keeping th->window fixed violates the receiver
  2222. * side SWS prevention criteria. The problem is that under this rule
  2223. * a stream of single byte packets will cause the right side of the
  2224. * window to always advance by a single byte.
  2225. *
  2226. * Of course, if the sender implements sender side SWS prevention
  2227. * then this will not be a problem.
  2228. *
  2229. * BSD seems to make the following compromise:
  2230. *
  2231. * If the free space is less than the 1/4 of the maximum
  2232. * space available and the free space is less than 1/2 mss,
  2233. * then set the window to 0.
  2234. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2235. * Otherwise, just prevent the window from shrinking
  2236. * and from being larger than the largest representable value.
  2237. *
  2238. * This prevents incremental opening of the window in the regime
  2239. * where TCP is limited by the speed of the reader side taking
  2240. * data out of the TCP receive queue. It does nothing about
  2241. * those cases where the window is constrained on the sender side
  2242. * because the pipeline is full.
  2243. *
  2244. * BSD also seems to "accidentally" limit itself to windows that are a
  2245. * multiple of MSS, at least until the free space gets quite small.
  2246. * This would appear to be a side effect of the mbuf implementation.
  2247. * Combining these two algorithms results in the observed behavior
  2248. * of having a fixed window size at almost all times.
  2249. *
  2250. * Below we obtain similar behavior by forcing the offered window to
  2251. * a multiple of the mss when it is feasible to do so.
  2252. *
  2253. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2254. * Regular options like TIMESTAMP are taken into account.
  2255. */
  2256. u32 __tcp_select_window(struct sock *sk)
  2257. {
  2258. struct inet_connection_sock *icsk = inet_csk(sk);
  2259. struct tcp_sock *tp = tcp_sk(sk);
  2260. /* MSS for the peer's data. Previous versions used mss_clamp
  2261. * here. I don't know if the value based on our guesses
  2262. * of peer's MSS is better for the performance. It's more correct
  2263. * but may be worse for the performance because of rcv_mss
  2264. * fluctuations. --SAW 1998/11/1
  2265. */
  2266. int mss = icsk->icsk_ack.rcv_mss;
  2267. int free_space = tcp_space(sk);
  2268. int allowed_space = tcp_full_space(sk);
  2269. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2270. int window;
  2271. if (unlikely(mss > full_space)) {
  2272. mss = full_space;
  2273. if (mss <= 0)
  2274. return 0;
  2275. }
  2276. if (free_space < (full_space >> 1)) {
  2277. icsk->icsk_ack.quick = 0;
  2278. if (tcp_under_memory_pressure(sk))
  2279. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2280. 4U * tp->advmss);
  2281. /* free_space might become our new window, make sure we don't
  2282. * increase it due to wscale.
  2283. */
  2284. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2285. /* if free space is less than mss estimate, or is below 1/16th
  2286. * of the maximum allowed, try to move to zero-window, else
  2287. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2288. * new incoming data is dropped due to memory limits.
  2289. * With large window, mss test triggers way too late in order
  2290. * to announce zero window in time before rmem limit kicks in.
  2291. */
  2292. if (free_space < (allowed_space >> 4) || free_space < mss)
  2293. return 0;
  2294. }
  2295. if (free_space > tp->rcv_ssthresh)
  2296. free_space = tp->rcv_ssthresh;
  2297. /* Don't do rounding if we are using window scaling, since the
  2298. * scaled window will not line up with the MSS boundary anyway.
  2299. */
  2300. if (tp->rx_opt.rcv_wscale) {
  2301. window = free_space;
  2302. /* Advertise enough space so that it won't get scaled away.
  2303. * Import case: prevent zero window announcement if
  2304. * 1<<rcv_wscale > mss.
  2305. */
  2306. window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
  2307. } else {
  2308. window = tp->rcv_wnd;
  2309. /* Get the largest window that is a nice multiple of mss.
  2310. * Window clamp already applied above.
  2311. * If our current window offering is within 1 mss of the
  2312. * free space we just keep it. This prevents the divide
  2313. * and multiply from happening most of the time.
  2314. * We also don't do any window rounding when the free space
  2315. * is too small.
  2316. */
  2317. if (window <= free_space - mss || window > free_space)
  2318. window = rounddown(free_space, mss);
  2319. else if (mss == full_space &&
  2320. free_space > window + (full_space >> 1))
  2321. window = free_space;
  2322. }
  2323. return window;
  2324. }
  2325. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2326. const struct sk_buff *next_skb)
  2327. {
  2328. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2329. const struct skb_shared_info *next_shinfo =
  2330. skb_shinfo(next_skb);
  2331. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2332. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2333. shinfo->tskey = next_shinfo->tskey;
  2334. TCP_SKB_CB(skb)->txstamp_ack |=
  2335. TCP_SKB_CB(next_skb)->txstamp_ack;
  2336. }
  2337. }
  2338. /* Collapses two adjacent SKB's during retransmission. */
  2339. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2340. {
  2341. struct tcp_sock *tp = tcp_sk(sk);
  2342. struct sk_buff *next_skb = skb_rb_next(skb);
  2343. int next_skb_size;
  2344. next_skb_size = next_skb->len;
  2345. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2346. if (next_skb_size) {
  2347. if (next_skb_size <= skb_availroom(skb))
  2348. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2349. next_skb_size);
  2350. else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
  2351. return false;
  2352. }
  2353. tcp_highest_sack_replace(sk, next_skb, skb);
  2354. /* Update sequence range on original skb. */
  2355. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2356. /* Merge over control information. This moves PSH/FIN etc. over */
  2357. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2358. /* All done, get rid of second SKB and account for it so
  2359. * packet counting does not break.
  2360. */
  2361. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2362. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2363. /* changed transmit queue under us so clear hints */
  2364. tcp_clear_retrans_hints_partial(tp);
  2365. if (next_skb == tp->retransmit_skb_hint)
  2366. tp->retransmit_skb_hint = skb;
  2367. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2368. tcp_skb_collapse_tstamp(skb, next_skb);
  2369. tcp_rtx_queue_unlink_and_free(next_skb, sk);
  2370. return true;
  2371. }
  2372. /* Check if coalescing SKBs is legal. */
  2373. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2374. {
  2375. if (tcp_skb_pcount(skb) > 1)
  2376. return false;
  2377. if (skb_cloned(skb))
  2378. return false;
  2379. /* Some heuristics for collapsing over SACK'd could be invented */
  2380. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2381. return false;
  2382. return true;
  2383. }
  2384. /* Collapse packets in the retransmit queue to make to create
  2385. * less packets on the wire. This is only done on retransmission.
  2386. */
  2387. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2388. int space)
  2389. {
  2390. struct tcp_sock *tp = tcp_sk(sk);
  2391. struct sk_buff *skb = to, *tmp;
  2392. bool first = true;
  2393. if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
  2394. return;
  2395. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2396. return;
  2397. skb_rbtree_walk_from_safe(skb, tmp) {
  2398. if (!tcp_can_collapse(sk, skb))
  2399. break;
  2400. if (!tcp_skb_can_collapse_to(to))
  2401. break;
  2402. space -= skb->len;
  2403. if (first) {
  2404. first = false;
  2405. continue;
  2406. }
  2407. if (space < 0)
  2408. break;
  2409. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2410. break;
  2411. if (!tcp_collapse_retrans(sk, to))
  2412. break;
  2413. }
  2414. }
  2415. /* This retransmits one SKB. Policy decisions and retransmit queue
  2416. * state updates are done by the caller. Returns non-zero if an
  2417. * error occurred which prevented the send.
  2418. */
  2419. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2420. {
  2421. struct inet_connection_sock *icsk = inet_csk(sk);
  2422. struct tcp_sock *tp = tcp_sk(sk);
  2423. unsigned int cur_mss;
  2424. int diff, len, err;
  2425. /* Inconclusive MTU probe */
  2426. if (icsk->icsk_mtup.probe_size)
  2427. icsk->icsk_mtup.probe_size = 0;
  2428. /* Do not sent more than we queued. 1/4 is reserved for possible
  2429. * copying overhead: fragmentation, tunneling, mangling etc.
  2430. */
  2431. if (refcount_read(&sk->sk_wmem_alloc) >
  2432. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2433. sk->sk_sndbuf))
  2434. return -EAGAIN;
  2435. if (skb_still_in_host_queue(sk, skb))
  2436. return -EBUSY;
  2437. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2438. if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
  2439. WARN_ON_ONCE(1);
  2440. return -EINVAL;
  2441. }
  2442. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2443. return -ENOMEM;
  2444. }
  2445. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2446. return -EHOSTUNREACH; /* Routing failure or similar. */
  2447. cur_mss = tcp_current_mss(sk);
  2448. /* If receiver has shrunk his window, and skb is out of
  2449. * new window, do not retransmit it. The exception is the
  2450. * case, when window is shrunk to zero. In this case
  2451. * our retransmit serves as a zero window probe.
  2452. */
  2453. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2454. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2455. return -EAGAIN;
  2456. len = cur_mss * segs;
  2457. if (skb->len > len) {
  2458. if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
  2459. cur_mss, GFP_ATOMIC))
  2460. return -ENOMEM; /* We'll try again later. */
  2461. } else {
  2462. if (skb_unclone(skb, GFP_ATOMIC))
  2463. return -ENOMEM;
  2464. diff = tcp_skb_pcount(skb);
  2465. tcp_set_skb_tso_segs(skb, cur_mss);
  2466. diff -= tcp_skb_pcount(skb);
  2467. if (diff)
  2468. tcp_adjust_pcount(sk, skb, diff);
  2469. if (skb->len < cur_mss)
  2470. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2471. }
  2472. /* RFC3168, section 6.1.1.1. ECN fallback */
  2473. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2474. tcp_ecn_clear_syn(sk, skb);
  2475. /* Update global and local TCP statistics. */
  2476. segs = tcp_skb_pcount(skb);
  2477. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2478. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2479. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2480. tp->total_retrans += segs;
  2481. tp->bytes_retrans += skb->len;
  2482. /* make sure skb->data is aligned on arches that require it
  2483. * and check if ack-trimming & collapsing extended the headroom
  2484. * beyond what csum_start can cover.
  2485. */
  2486. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2487. skb_headroom(skb) >= 0xFFFF)) {
  2488. struct sk_buff *nskb;
  2489. tcp_skb_tsorted_save(skb) {
  2490. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2491. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2492. -ENOBUFS;
  2493. } tcp_skb_tsorted_restore(skb);
  2494. if (!err) {
  2495. tcp_update_skb_after_send(tp, skb);
  2496. tcp_rate_skb_sent(sk, skb);
  2497. }
  2498. } else {
  2499. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2500. }
  2501. if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
  2502. tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
  2503. TCP_SKB_CB(skb)->seq, segs, err);
  2504. if (likely(!err)) {
  2505. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2506. trace_tcp_retransmit_skb(sk, skb);
  2507. } else if (err != -EBUSY) {
  2508. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
  2509. }
  2510. return err;
  2511. }
  2512. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2513. {
  2514. struct tcp_sock *tp = tcp_sk(sk);
  2515. int err = __tcp_retransmit_skb(sk, skb, segs);
  2516. if (err == 0) {
  2517. #if FASTRETRANS_DEBUG > 0
  2518. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2519. net_dbg_ratelimited("retrans_out leaked\n");
  2520. }
  2521. #endif
  2522. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2523. tp->retrans_out += tcp_skb_pcount(skb);
  2524. /* Save stamp of the first retransmit. */
  2525. if (!tp->retrans_stamp)
  2526. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2527. }
  2528. if (tp->undo_retrans < 0)
  2529. tp->undo_retrans = 0;
  2530. tp->undo_retrans += tcp_skb_pcount(skb);
  2531. return err;
  2532. }
  2533. /* This gets called after a retransmit timeout, and the initially
  2534. * retransmitted data is acknowledged. It tries to continue
  2535. * resending the rest of the retransmit queue, until either
  2536. * we've sent it all or the congestion window limit is reached.
  2537. */
  2538. void tcp_xmit_retransmit_queue(struct sock *sk)
  2539. {
  2540. const struct inet_connection_sock *icsk = inet_csk(sk);
  2541. struct sk_buff *skb, *rtx_head, *hole = NULL;
  2542. struct tcp_sock *tp = tcp_sk(sk);
  2543. u32 max_segs;
  2544. int mib_idx;
  2545. if (!tp->packets_out)
  2546. return;
  2547. rtx_head = tcp_rtx_queue_head(sk);
  2548. skb = tp->retransmit_skb_hint ?: rtx_head;
  2549. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2550. skb_rbtree_walk_from(skb) {
  2551. __u8 sacked;
  2552. int segs;
  2553. if (tcp_pacing_check(sk))
  2554. break;
  2555. /* we could do better than to assign each time */
  2556. if (!hole)
  2557. tp->retransmit_skb_hint = skb;
  2558. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2559. if (segs <= 0)
  2560. return;
  2561. sacked = TCP_SKB_CB(skb)->sacked;
  2562. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2563. * we need to make sure not sending too bigs TSO packets
  2564. */
  2565. segs = min_t(int, segs, max_segs);
  2566. if (tp->retrans_out >= tp->lost_out) {
  2567. break;
  2568. } else if (!(sacked & TCPCB_LOST)) {
  2569. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2570. hole = skb;
  2571. continue;
  2572. } else {
  2573. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2574. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2575. else
  2576. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2577. }
  2578. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2579. continue;
  2580. if (tcp_small_queue_check(sk, skb, 1))
  2581. return;
  2582. if (tcp_retransmit_skb(sk, skb, segs))
  2583. return;
  2584. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2585. if (tcp_in_cwnd_reduction(sk))
  2586. tp->prr_out += tcp_skb_pcount(skb);
  2587. if (skb == rtx_head &&
  2588. icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
  2589. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2590. inet_csk(sk)->icsk_rto,
  2591. TCP_RTO_MAX);
  2592. }
  2593. }
  2594. /* We allow to exceed memory limits for FIN packets to expedite
  2595. * connection tear down and (memory) recovery.
  2596. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2597. * or even be forced to close flow without any FIN.
  2598. * In general, we want to allow one skb per socket to avoid hangs
  2599. * with edge trigger epoll()
  2600. */
  2601. void sk_forced_mem_schedule(struct sock *sk, int size)
  2602. {
  2603. int amt;
  2604. if (size <= sk->sk_forward_alloc)
  2605. return;
  2606. amt = sk_mem_pages(size);
  2607. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2608. sk_memory_allocated_add(sk, amt);
  2609. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2610. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2611. }
  2612. /* Send a FIN. The caller locks the socket for us.
  2613. * We should try to send a FIN packet really hard, but eventually give up.
  2614. */
  2615. void tcp_send_fin(struct sock *sk)
  2616. {
  2617. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2618. struct tcp_sock *tp = tcp_sk(sk);
  2619. /* Optimization, tack on the FIN if we have one skb in write queue and
  2620. * this skb was not yet sent, or we are under memory pressure.
  2621. * Note: in the latter case, FIN packet will be sent after a timeout,
  2622. * as TCP stack thinks it has already been transmitted.
  2623. */
  2624. if (!tskb && tcp_under_memory_pressure(sk))
  2625. tskb = skb_rb_last(&sk->tcp_rtx_queue);
  2626. if (tskb) {
  2627. coalesce:
  2628. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2629. TCP_SKB_CB(tskb)->end_seq++;
  2630. tp->write_seq++;
  2631. if (tcp_write_queue_empty(sk)) {
  2632. /* This means tskb was already sent.
  2633. * Pretend we included the FIN on previous transmit.
  2634. * We need to set tp->snd_nxt to the value it would have
  2635. * if FIN had been sent. This is because retransmit path
  2636. * does not change tp->snd_nxt.
  2637. */
  2638. tp->snd_nxt++;
  2639. return;
  2640. }
  2641. } else {
  2642. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2643. if (unlikely(!skb)) {
  2644. if (tskb)
  2645. goto coalesce;
  2646. return;
  2647. }
  2648. INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
  2649. skb_reserve(skb, MAX_TCP_HEADER);
  2650. sk_forced_mem_schedule(sk, skb->truesize);
  2651. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2652. tcp_init_nondata_skb(skb, tp->write_seq,
  2653. TCPHDR_ACK | TCPHDR_FIN);
  2654. tcp_queue_skb(sk, skb);
  2655. }
  2656. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2657. }
  2658. /* We get here when a process closes a file descriptor (either due to
  2659. * an explicit close() or as a byproduct of exit()'ing) and there
  2660. * was unread data in the receive queue. This behavior is recommended
  2661. * by RFC 2525, section 2.17. -DaveM
  2662. */
  2663. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2664. {
  2665. struct sk_buff *skb;
  2666. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2667. /* NOTE: No TCP options attached and we never retransmit this. */
  2668. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2669. if (!skb) {
  2670. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2671. return;
  2672. }
  2673. /* Reserve space for headers and prepare control bits. */
  2674. skb_reserve(skb, MAX_TCP_HEADER);
  2675. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2676. TCPHDR_ACK | TCPHDR_RST);
  2677. tcp_mstamp_refresh(tcp_sk(sk));
  2678. /* Send it off. */
  2679. if (tcp_transmit_skb(sk, skb, 0, priority))
  2680. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2681. /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
  2682. * skb here is different to the troublesome skb, so use NULL
  2683. */
  2684. trace_tcp_send_reset(sk, NULL);
  2685. }
  2686. /* Send a crossed SYN-ACK during socket establishment.
  2687. * WARNING: This routine must only be called when we have already sent
  2688. * a SYN packet that crossed the incoming SYN that caused this routine
  2689. * to get called. If this assumption fails then the initial rcv_wnd
  2690. * and rcv_wscale values will not be correct.
  2691. */
  2692. int tcp_send_synack(struct sock *sk)
  2693. {
  2694. struct sk_buff *skb;
  2695. skb = tcp_rtx_queue_head(sk);
  2696. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2697. pr_err("%s: wrong queue state\n", __func__);
  2698. return -EFAULT;
  2699. }
  2700. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2701. if (skb_cloned(skb)) {
  2702. struct sk_buff *nskb;
  2703. tcp_skb_tsorted_save(skb) {
  2704. nskb = skb_copy(skb, GFP_ATOMIC);
  2705. } tcp_skb_tsorted_restore(skb);
  2706. if (!nskb)
  2707. return -ENOMEM;
  2708. INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
  2709. tcp_highest_sack_replace(sk, skb, nskb);
  2710. tcp_rtx_queue_unlink_and_free(skb, sk);
  2711. __skb_header_release(nskb);
  2712. tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
  2713. sk->sk_wmem_queued += nskb->truesize;
  2714. sk_mem_charge(sk, nskb->truesize);
  2715. skb = nskb;
  2716. }
  2717. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2718. tcp_ecn_send_synack(sk, skb);
  2719. }
  2720. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2721. }
  2722. /**
  2723. * tcp_make_synack - Prepare a SYN-ACK.
  2724. * sk: listener socket
  2725. * dst: dst entry attached to the SYNACK
  2726. * req: request_sock pointer
  2727. *
  2728. * Allocate one skb and build a SYNACK packet.
  2729. * @dst is consumed : Caller should not use it again.
  2730. */
  2731. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2732. struct request_sock *req,
  2733. struct tcp_fastopen_cookie *foc,
  2734. enum tcp_synack_type synack_type)
  2735. {
  2736. struct inet_request_sock *ireq = inet_rsk(req);
  2737. const struct tcp_sock *tp = tcp_sk(sk);
  2738. struct tcp_md5sig_key *md5 = NULL;
  2739. struct tcp_out_options opts;
  2740. struct sk_buff *skb;
  2741. int tcp_header_size;
  2742. struct tcphdr *th;
  2743. int mss;
  2744. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2745. if (unlikely(!skb)) {
  2746. dst_release(dst);
  2747. return NULL;
  2748. }
  2749. /* Reserve space for headers. */
  2750. skb_reserve(skb, MAX_TCP_HEADER);
  2751. switch (synack_type) {
  2752. case TCP_SYNACK_NORMAL:
  2753. skb_set_owner_w(skb, req_to_sk(req));
  2754. break;
  2755. case TCP_SYNACK_COOKIE:
  2756. /* Under synflood, we do not attach skb to a socket,
  2757. * to avoid false sharing.
  2758. */
  2759. break;
  2760. case TCP_SYNACK_FASTOPEN:
  2761. /* sk is a const pointer, because we want to express multiple
  2762. * cpu might call us concurrently.
  2763. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2764. */
  2765. skb_set_owner_w(skb, (struct sock *)sk);
  2766. break;
  2767. }
  2768. skb_dst_set(skb, dst);
  2769. mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2770. memset(&opts, 0, sizeof(opts));
  2771. #ifdef CONFIG_SYN_COOKIES
  2772. if (unlikely(req->cookie_ts))
  2773. skb->skb_mstamp = cookie_init_timestamp(req);
  2774. else
  2775. #endif
  2776. skb->skb_mstamp = tcp_clock_us();
  2777. #ifdef CONFIG_TCP_MD5SIG
  2778. rcu_read_lock();
  2779. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2780. #endif
  2781. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2782. tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
  2783. foc, synack_type) + sizeof(*th);
  2784. skb_push(skb, tcp_header_size);
  2785. skb_reset_transport_header(skb);
  2786. th = (struct tcphdr *)skb->data;
  2787. memset(th, 0, sizeof(struct tcphdr));
  2788. th->syn = 1;
  2789. th->ack = 1;
  2790. tcp_ecn_make_synack(req, th);
  2791. th->source = htons(ireq->ir_num);
  2792. th->dest = ireq->ir_rmt_port;
  2793. skb->mark = ireq->ir_mark;
  2794. skb->ip_summed = CHECKSUM_PARTIAL;
  2795. th->seq = htonl(tcp_rsk(req)->snt_isn);
  2796. /* XXX data is queued and acked as is. No buffer/window check */
  2797. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2798. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2799. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2800. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2801. th->doff = (tcp_header_size >> 2);
  2802. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2803. #ifdef CONFIG_TCP_MD5SIG
  2804. /* Okay, we have all we need - do the md5 hash if needed */
  2805. if (md5)
  2806. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2807. md5, req_to_sk(req), skb);
  2808. rcu_read_unlock();
  2809. #endif
  2810. /* Do not fool tcpdump (if any), clean our debris */
  2811. skb->tstamp = 0;
  2812. return skb;
  2813. }
  2814. EXPORT_SYMBOL(tcp_make_synack);
  2815. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2816. {
  2817. struct inet_connection_sock *icsk = inet_csk(sk);
  2818. const struct tcp_congestion_ops *ca;
  2819. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2820. if (ca_key == TCP_CA_UNSPEC)
  2821. return;
  2822. rcu_read_lock();
  2823. ca = tcp_ca_find_key(ca_key);
  2824. if (likely(ca && try_module_get(ca->owner))) {
  2825. module_put(icsk->icsk_ca_ops->owner);
  2826. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2827. icsk->icsk_ca_ops = ca;
  2828. }
  2829. rcu_read_unlock();
  2830. }
  2831. /* Do all connect socket setups that can be done AF independent. */
  2832. static void tcp_connect_init(struct sock *sk)
  2833. {
  2834. const struct dst_entry *dst = __sk_dst_get(sk);
  2835. struct tcp_sock *tp = tcp_sk(sk);
  2836. __u8 rcv_wscale;
  2837. u32 rcv_wnd;
  2838. /* We'll fix this up when we get a response from the other end.
  2839. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2840. */
  2841. tp->tcp_header_len = sizeof(struct tcphdr);
  2842. if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
  2843. tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
  2844. #ifdef CONFIG_TCP_MD5SIG
  2845. if (tp->af_specific->md5_lookup(sk, sk))
  2846. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2847. #endif
  2848. /* If user gave his TCP_MAXSEG, record it to clamp */
  2849. if (tp->rx_opt.user_mss)
  2850. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2851. tp->max_window = 0;
  2852. tcp_mtup_init(sk);
  2853. tcp_sync_mss(sk, dst_mtu(dst));
  2854. tcp_ca_dst_init(sk, dst);
  2855. if (!tp->window_clamp)
  2856. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2857. tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2858. tcp_initialize_rcv_mss(sk);
  2859. /* limit the window selection if the user enforce a smaller rx buffer */
  2860. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2861. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2862. tp->window_clamp = tcp_full_space(sk);
  2863. rcv_wnd = tcp_rwnd_init_bpf(sk);
  2864. if (rcv_wnd == 0)
  2865. rcv_wnd = dst_metric(dst, RTAX_INITRWND);
  2866. tcp_select_initial_window(sk, tcp_full_space(sk),
  2867. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2868. &tp->rcv_wnd,
  2869. &tp->window_clamp,
  2870. sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
  2871. &rcv_wscale,
  2872. rcv_wnd);
  2873. tp->rx_opt.rcv_wscale = rcv_wscale;
  2874. tp->rcv_ssthresh = tp->rcv_wnd;
  2875. sk->sk_err = 0;
  2876. sock_reset_flag(sk, SOCK_DONE);
  2877. tp->snd_wnd = 0;
  2878. tcp_init_wl(tp, 0);
  2879. tcp_write_queue_purge(sk);
  2880. tp->snd_una = tp->write_seq;
  2881. tp->snd_sml = tp->write_seq;
  2882. tp->snd_up = tp->write_seq;
  2883. tp->snd_nxt = tp->write_seq;
  2884. if (likely(!tp->repair))
  2885. tp->rcv_nxt = 0;
  2886. else
  2887. tp->rcv_tstamp = tcp_jiffies32;
  2888. tp->rcv_wup = tp->rcv_nxt;
  2889. WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
  2890. inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
  2891. inet_csk(sk)->icsk_retransmits = 0;
  2892. tcp_clear_retrans(tp);
  2893. }
  2894. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2895. {
  2896. struct tcp_sock *tp = tcp_sk(sk);
  2897. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2898. tcb->end_seq += skb->len;
  2899. __skb_header_release(skb);
  2900. sk->sk_wmem_queued += skb->truesize;
  2901. sk_mem_charge(sk, skb->truesize);
  2902. WRITE_ONCE(tp->write_seq, tcb->end_seq);
  2903. tp->packets_out += tcp_skb_pcount(skb);
  2904. }
  2905. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2906. * queue a data-only packet after the regular SYN, such that regular SYNs
  2907. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2908. * only the SYN sequence, the data are retransmitted in the first ACK.
  2909. * If cookie is not cached or other error occurs, falls back to send a
  2910. * regular SYN with Fast Open cookie request option.
  2911. */
  2912. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2913. {
  2914. struct tcp_sock *tp = tcp_sk(sk);
  2915. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2916. int space, err = 0;
  2917. struct sk_buff *syn_data;
  2918. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2919. if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
  2920. goto fallback;
  2921. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2922. * user-MSS. Reserve maximum option space for middleboxes that add
  2923. * private TCP options. The cost is reduced data space in SYN :(
  2924. */
  2925. tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
  2926. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2927. MAX_TCP_OPTION_SPACE;
  2928. space = min_t(size_t, space, fo->size);
  2929. /* limit to order-0 allocations */
  2930. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2931. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2932. if (!syn_data)
  2933. goto fallback;
  2934. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2935. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2936. if (space) {
  2937. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2938. &fo->data->msg_iter);
  2939. if (unlikely(!copied)) {
  2940. tcp_skb_tsorted_anchor_cleanup(syn_data);
  2941. kfree_skb(syn_data);
  2942. goto fallback;
  2943. }
  2944. if (copied != space) {
  2945. skb_trim(syn_data, copied);
  2946. space = copied;
  2947. }
  2948. }
  2949. /* No more data pending in inet_wait_for_connect() */
  2950. if (space == fo->size)
  2951. fo->data = NULL;
  2952. fo->copied = space;
  2953. tcp_connect_queue_skb(sk, syn_data);
  2954. if (syn_data->len)
  2955. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2956. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2957. syn->skb_mstamp = syn_data->skb_mstamp;
  2958. /* Now full SYN+DATA was cloned and sent (or not),
  2959. * remove the SYN from the original skb (syn_data)
  2960. * we keep in write queue in case of a retransmit, as we
  2961. * also have the SYN packet (with no data) in the same queue.
  2962. */
  2963. TCP_SKB_CB(syn_data)->seq++;
  2964. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2965. if (!err) {
  2966. tp->syn_data = (fo->copied > 0);
  2967. tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
  2968. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2969. goto done;
  2970. }
  2971. /* data was not sent, put it in write_queue */
  2972. __skb_queue_tail(&sk->sk_write_queue, syn_data);
  2973. tp->packets_out -= tcp_skb_pcount(syn_data);
  2974. fallback:
  2975. /* Send a regular SYN with Fast Open cookie request option */
  2976. if (fo->cookie.len > 0)
  2977. fo->cookie.len = 0;
  2978. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2979. if (err)
  2980. tp->syn_fastopen = 0;
  2981. done:
  2982. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2983. return err;
  2984. }
  2985. /* Build a SYN and send it off. */
  2986. int tcp_connect(struct sock *sk)
  2987. {
  2988. struct tcp_sock *tp = tcp_sk(sk);
  2989. struct sk_buff *buff;
  2990. int err;
  2991. tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
  2992. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2993. return -EHOSTUNREACH; /* Routing failure or similar. */
  2994. tcp_connect_init(sk);
  2995. if (unlikely(tp->repair)) {
  2996. tcp_finish_connect(sk, NULL);
  2997. return 0;
  2998. }
  2999. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  3000. if (unlikely(!buff))
  3001. return -ENOBUFS;
  3002. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  3003. tcp_mstamp_refresh(tp);
  3004. tp->retrans_stamp = tcp_time_stamp(tp);
  3005. tcp_connect_queue_skb(sk, buff);
  3006. tcp_ecn_send_syn(sk, buff);
  3007. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  3008. /* Send off SYN; include data in Fast Open. */
  3009. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  3010. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  3011. if (err == -ECONNREFUSED)
  3012. return err;
  3013. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  3014. * in order to make this packet get counted in tcpOutSegs.
  3015. */
  3016. tp->snd_nxt = tp->write_seq;
  3017. tp->pushed_seq = tp->write_seq;
  3018. buff = tcp_send_head(sk);
  3019. if (unlikely(buff)) {
  3020. tp->snd_nxt = TCP_SKB_CB(buff)->seq;
  3021. tp->pushed_seq = TCP_SKB_CB(buff)->seq;
  3022. }
  3023. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  3024. /* Timer for repeating the SYN until an answer. */
  3025. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  3026. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  3027. return 0;
  3028. }
  3029. EXPORT_SYMBOL(tcp_connect);
  3030. /* Send out a delayed ack, the caller does the policy checking
  3031. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  3032. * for details.
  3033. */
  3034. void tcp_send_delayed_ack(struct sock *sk)
  3035. {
  3036. struct inet_connection_sock *icsk = inet_csk(sk);
  3037. int ato = icsk->icsk_ack.ato;
  3038. unsigned long timeout;
  3039. if (ato > TCP_DELACK_MIN) {
  3040. const struct tcp_sock *tp = tcp_sk(sk);
  3041. int max_ato = HZ / 2;
  3042. if (icsk->icsk_ack.pingpong ||
  3043. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  3044. max_ato = TCP_DELACK_MAX;
  3045. /* Slow path, intersegment interval is "high". */
  3046. /* If some rtt estimate is known, use it to bound delayed ack.
  3047. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  3048. * directly.
  3049. */
  3050. if (tp->srtt_us) {
  3051. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  3052. TCP_DELACK_MIN);
  3053. if (rtt < max_ato)
  3054. max_ato = rtt;
  3055. }
  3056. ato = min(ato, max_ato);
  3057. }
  3058. /* Stay within the limit we were given */
  3059. timeout = jiffies + ato;
  3060. /* Use new timeout only if there wasn't a older one earlier. */
  3061. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  3062. /* If delack timer was blocked or is about to expire,
  3063. * send ACK now.
  3064. */
  3065. if (icsk->icsk_ack.blocked ||
  3066. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  3067. tcp_send_ack(sk);
  3068. return;
  3069. }
  3070. if (!time_before(timeout, icsk->icsk_ack.timeout))
  3071. timeout = icsk->icsk_ack.timeout;
  3072. }
  3073. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  3074. icsk->icsk_ack.timeout = timeout;
  3075. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  3076. }
  3077. /* This routine sends an ack and also updates the window. */
  3078. void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
  3079. {
  3080. struct sk_buff *buff;
  3081. /* If we have been reset, we may not send again. */
  3082. if (sk->sk_state == TCP_CLOSE)
  3083. return;
  3084. /* We are not putting this on the write queue, so
  3085. * tcp_transmit_skb() will set the ownership to this
  3086. * sock.
  3087. */
  3088. buff = alloc_skb(MAX_TCP_HEADER,
  3089. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3090. if (unlikely(!buff)) {
  3091. inet_csk_schedule_ack(sk);
  3092. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  3093. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  3094. TCP_DELACK_MAX, TCP_RTO_MAX);
  3095. return;
  3096. }
  3097. /* Reserve space for headers and prepare control bits. */
  3098. skb_reserve(buff, MAX_TCP_HEADER);
  3099. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  3100. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  3101. * too much.
  3102. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  3103. */
  3104. skb_set_tcp_pure_ack(buff);
  3105. /* Send it off, this clears delayed acks for us. */
  3106. __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
  3107. }
  3108. EXPORT_SYMBOL_GPL(__tcp_send_ack);
  3109. void tcp_send_ack(struct sock *sk)
  3110. {
  3111. __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
  3112. }
  3113. /* This routine sends a packet with an out of date sequence
  3114. * number. It assumes the other end will try to ack it.
  3115. *
  3116. * Question: what should we make while urgent mode?
  3117. * 4.4BSD forces sending single byte of data. We cannot send
  3118. * out of window data, because we have SND.NXT==SND.MAX...
  3119. *
  3120. * Current solution: to send TWO zero-length segments in urgent mode:
  3121. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  3122. * out-of-date with SND.UNA-1 to probe window.
  3123. */
  3124. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  3125. {
  3126. struct tcp_sock *tp = tcp_sk(sk);
  3127. struct sk_buff *skb;
  3128. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  3129. skb = alloc_skb(MAX_TCP_HEADER,
  3130. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3131. if (!skb)
  3132. return -1;
  3133. /* Reserve space for headers and set control bits. */
  3134. skb_reserve(skb, MAX_TCP_HEADER);
  3135. /* Use a previous sequence. This should cause the other
  3136. * end to send an ack. Don't queue or clone SKB, just
  3137. * send it.
  3138. */
  3139. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3140. NET_INC_STATS(sock_net(sk), mib);
  3141. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3142. }
  3143. /* Called from setsockopt( ... TCP_REPAIR ) */
  3144. void tcp_send_window_probe(struct sock *sk)
  3145. {
  3146. if (sk->sk_state == TCP_ESTABLISHED) {
  3147. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3148. tcp_mstamp_refresh(tcp_sk(sk));
  3149. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3150. }
  3151. }
  3152. /* Initiate keepalive or window probe from timer. */
  3153. int tcp_write_wakeup(struct sock *sk, int mib)
  3154. {
  3155. struct tcp_sock *tp = tcp_sk(sk);
  3156. struct sk_buff *skb;
  3157. if (sk->sk_state == TCP_CLOSE)
  3158. return -1;
  3159. skb = tcp_send_head(sk);
  3160. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3161. int err;
  3162. unsigned int mss = tcp_current_mss(sk);
  3163. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3164. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3165. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3166. /* We are probing the opening of a window
  3167. * but the window size is != 0
  3168. * must have been a result SWS avoidance ( sender )
  3169. */
  3170. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3171. skb->len > mss) {
  3172. seg_size = min(seg_size, mss);
  3173. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3174. if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  3175. skb, seg_size, mss, GFP_ATOMIC))
  3176. return -1;
  3177. } else if (!tcp_skb_pcount(skb))
  3178. tcp_set_skb_tso_segs(skb, mss);
  3179. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3180. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3181. if (!err)
  3182. tcp_event_new_data_sent(sk, skb);
  3183. return err;
  3184. } else {
  3185. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3186. tcp_xmit_probe_skb(sk, 1, mib);
  3187. return tcp_xmit_probe_skb(sk, 0, mib);
  3188. }
  3189. }
  3190. /* A window probe timeout has occurred. If window is not closed send
  3191. * a partial packet else a zero probe.
  3192. */
  3193. void tcp_send_probe0(struct sock *sk)
  3194. {
  3195. struct inet_connection_sock *icsk = inet_csk(sk);
  3196. struct tcp_sock *tp = tcp_sk(sk);
  3197. struct net *net = sock_net(sk);
  3198. unsigned long probe_max;
  3199. int err;
  3200. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3201. if (tp->packets_out || tcp_write_queue_empty(sk)) {
  3202. /* Cancel probe timer, if it is not required. */
  3203. icsk->icsk_probes_out = 0;
  3204. icsk->icsk_backoff = 0;
  3205. return;
  3206. }
  3207. if (err <= 0) {
  3208. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3209. icsk->icsk_backoff++;
  3210. icsk->icsk_probes_out++;
  3211. probe_max = TCP_RTO_MAX;
  3212. } else {
  3213. /* If packet was not sent due to local congestion,
  3214. * do not backoff and do not remember icsk_probes_out.
  3215. * Let local senders to fight for local resources.
  3216. *
  3217. * Use accumulated backoff yet.
  3218. */
  3219. if (!icsk->icsk_probes_out)
  3220. icsk->icsk_probes_out = 1;
  3221. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3222. }
  3223. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3224. tcp_probe0_when(sk, probe_max),
  3225. TCP_RTO_MAX);
  3226. }
  3227. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3228. {
  3229. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3230. struct flowi fl;
  3231. int res;
  3232. tcp_rsk(req)->txhash = net_tx_rndhash();
  3233. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3234. if (!res) {
  3235. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3236. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3237. if (unlikely(tcp_passive_fastopen(sk)))
  3238. tcp_sk(sk)->total_retrans++;
  3239. trace_tcp_retransmit_synack(sk, req);
  3240. }
  3241. return res;
  3242. }
  3243. EXPORT_SYMBOL(tcp_rtx_synack);