ib_recv.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066
  1. /*
  2. * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-mapping.h>
  37. #include <rdma/rdma_cm.h>
  38. #include "rds_single_path.h"
  39. #include "rds.h"
  40. #include "ib.h"
  41. static struct kmem_cache *rds_ib_incoming_slab;
  42. static struct kmem_cache *rds_ib_frag_slab;
  43. static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  44. void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  45. {
  46. struct rds_ib_recv_work *recv;
  47. u32 i;
  48. for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  49. struct ib_sge *sge;
  50. recv->r_ibinc = NULL;
  51. recv->r_frag = NULL;
  52. recv->r_wr.next = NULL;
  53. recv->r_wr.wr_id = i;
  54. recv->r_wr.sg_list = recv->r_sge;
  55. recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  56. sge = &recv->r_sge[0];
  57. sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  58. sge->length = sizeof(struct rds_header);
  59. sge->lkey = ic->i_pd->local_dma_lkey;
  60. sge = &recv->r_sge[1];
  61. sge->addr = 0;
  62. sge->length = RDS_FRAG_SIZE;
  63. sge->lkey = ic->i_pd->local_dma_lkey;
  64. }
  65. }
  66. /*
  67. * The entire 'from' list, including the from element itself, is put on
  68. * to the tail of the 'to' list.
  69. */
  70. static void list_splice_entire_tail(struct list_head *from,
  71. struct list_head *to)
  72. {
  73. struct list_head *from_last = from->prev;
  74. list_splice_tail(from_last, to);
  75. list_add_tail(from_last, to);
  76. }
  77. static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  78. {
  79. struct list_head *tmp;
  80. tmp = xchg(&cache->xfer, NULL);
  81. if (tmp) {
  82. if (cache->ready)
  83. list_splice_entire_tail(tmp, cache->ready);
  84. else
  85. cache->ready = tmp;
  86. }
  87. }
  88. static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
  89. {
  90. struct rds_ib_cache_head *head;
  91. int cpu;
  92. cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
  93. if (!cache->percpu)
  94. return -ENOMEM;
  95. for_each_possible_cpu(cpu) {
  96. head = per_cpu_ptr(cache->percpu, cpu);
  97. head->first = NULL;
  98. head->count = 0;
  99. }
  100. cache->xfer = NULL;
  101. cache->ready = NULL;
  102. return 0;
  103. }
  104. int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
  105. {
  106. int ret;
  107. ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
  108. if (!ret) {
  109. ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
  110. if (ret)
  111. free_percpu(ic->i_cache_incs.percpu);
  112. }
  113. return ret;
  114. }
  115. static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
  116. struct list_head *caller_list)
  117. {
  118. struct rds_ib_cache_head *head;
  119. int cpu;
  120. for_each_possible_cpu(cpu) {
  121. head = per_cpu_ptr(cache->percpu, cpu);
  122. if (head->first) {
  123. list_splice_entire_tail(head->first, caller_list);
  124. head->first = NULL;
  125. }
  126. }
  127. if (cache->ready) {
  128. list_splice_entire_tail(cache->ready, caller_list);
  129. cache->ready = NULL;
  130. }
  131. }
  132. void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
  133. {
  134. struct rds_ib_incoming *inc;
  135. struct rds_ib_incoming *inc_tmp;
  136. struct rds_page_frag *frag;
  137. struct rds_page_frag *frag_tmp;
  138. LIST_HEAD(list);
  139. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  140. rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
  141. free_percpu(ic->i_cache_incs.percpu);
  142. list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
  143. list_del(&inc->ii_cache_entry);
  144. WARN_ON(!list_empty(&inc->ii_frags));
  145. kmem_cache_free(rds_ib_incoming_slab, inc);
  146. }
  147. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  148. rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
  149. free_percpu(ic->i_cache_frags.percpu);
  150. list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
  151. list_del(&frag->f_cache_entry);
  152. WARN_ON(!list_empty(&frag->f_item));
  153. kmem_cache_free(rds_ib_frag_slab, frag);
  154. }
  155. }
  156. /* fwd decl */
  157. static void rds_ib_recv_cache_put(struct list_head *new_item,
  158. struct rds_ib_refill_cache *cache);
  159. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
  160. /* Recycle frag and attached recv buffer f_sg */
  161. static void rds_ib_frag_free(struct rds_ib_connection *ic,
  162. struct rds_page_frag *frag)
  163. {
  164. rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
  165. rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
  166. atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
  167. rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
  168. }
  169. /* Recycle inc after freeing attached frags */
  170. void rds_ib_inc_free(struct rds_incoming *inc)
  171. {
  172. struct rds_ib_incoming *ibinc;
  173. struct rds_page_frag *frag;
  174. struct rds_page_frag *pos;
  175. struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
  176. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  177. /* Free attached frags */
  178. list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
  179. list_del_init(&frag->f_item);
  180. rds_ib_frag_free(ic, frag);
  181. }
  182. BUG_ON(!list_empty(&ibinc->ii_frags));
  183. rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
  184. rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
  185. }
  186. static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
  187. struct rds_ib_recv_work *recv)
  188. {
  189. if (recv->r_ibinc) {
  190. rds_inc_put(&recv->r_ibinc->ii_inc);
  191. recv->r_ibinc = NULL;
  192. }
  193. if (recv->r_frag) {
  194. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  195. rds_ib_frag_free(ic, recv->r_frag);
  196. recv->r_frag = NULL;
  197. }
  198. }
  199. void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
  200. {
  201. u32 i;
  202. for (i = 0; i < ic->i_recv_ring.w_nr; i++)
  203. rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
  204. }
  205. static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
  206. gfp_t slab_mask)
  207. {
  208. struct rds_ib_incoming *ibinc;
  209. struct list_head *cache_item;
  210. int avail_allocs;
  211. cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
  212. if (cache_item) {
  213. ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
  214. } else {
  215. avail_allocs = atomic_add_unless(&rds_ib_allocation,
  216. 1, rds_ib_sysctl_max_recv_allocation);
  217. if (!avail_allocs) {
  218. rds_ib_stats_inc(s_ib_rx_alloc_limit);
  219. return NULL;
  220. }
  221. ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
  222. if (!ibinc) {
  223. atomic_dec(&rds_ib_allocation);
  224. return NULL;
  225. }
  226. rds_ib_stats_inc(s_ib_rx_total_incs);
  227. }
  228. INIT_LIST_HEAD(&ibinc->ii_frags);
  229. rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
  230. return ibinc;
  231. }
  232. static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
  233. gfp_t slab_mask, gfp_t page_mask)
  234. {
  235. struct rds_page_frag *frag;
  236. struct list_head *cache_item;
  237. int ret;
  238. cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
  239. if (cache_item) {
  240. frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
  241. atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
  242. rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
  243. } else {
  244. frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
  245. if (!frag)
  246. return NULL;
  247. sg_init_table(&frag->f_sg, 1);
  248. ret = rds_page_remainder_alloc(&frag->f_sg,
  249. RDS_FRAG_SIZE, page_mask);
  250. if (ret) {
  251. kmem_cache_free(rds_ib_frag_slab, frag);
  252. return NULL;
  253. }
  254. rds_ib_stats_inc(s_ib_rx_total_frags);
  255. }
  256. INIT_LIST_HEAD(&frag->f_item);
  257. return frag;
  258. }
  259. static int rds_ib_recv_refill_one(struct rds_connection *conn,
  260. struct rds_ib_recv_work *recv, gfp_t gfp)
  261. {
  262. struct rds_ib_connection *ic = conn->c_transport_data;
  263. struct ib_sge *sge;
  264. int ret = -ENOMEM;
  265. gfp_t slab_mask = GFP_NOWAIT;
  266. gfp_t page_mask = GFP_NOWAIT;
  267. if (gfp & __GFP_DIRECT_RECLAIM) {
  268. slab_mask = GFP_KERNEL;
  269. page_mask = GFP_HIGHUSER;
  270. }
  271. if (!ic->i_cache_incs.ready)
  272. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  273. if (!ic->i_cache_frags.ready)
  274. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  275. /*
  276. * ibinc was taken from recv if recv contained the start of a message.
  277. * recvs that were continuations will still have this allocated.
  278. */
  279. if (!recv->r_ibinc) {
  280. recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
  281. if (!recv->r_ibinc)
  282. goto out;
  283. }
  284. WARN_ON(recv->r_frag); /* leak! */
  285. recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
  286. if (!recv->r_frag)
  287. goto out;
  288. ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
  289. 1, DMA_FROM_DEVICE);
  290. WARN_ON(ret != 1);
  291. sge = &recv->r_sge[0];
  292. sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
  293. sge->length = sizeof(struct rds_header);
  294. sge = &recv->r_sge[1];
  295. sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
  296. sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
  297. ret = 0;
  298. out:
  299. return ret;
  300. }
  301. static int acquire_refill(struct rds_connection *conn)
  302. {
  303. return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
  304. }
  305. static void release_refill(struct rds_connection *conn)
  306. {
  307. clear_bit(RDS_RECV_REFILL, &conn->c_flags);
  308. /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
  309. * hot path and finding waiters is very rare. We don't want to walk
  310. * the system-wide hashed waitqueue buckets in the fast path only to
  311. * almost never find waiters.
  312. */
  313. if (waitqueue_active(&conn->c_waitq))
  314. wake_up_all(&conn->c_waitq);
  315. }
  316. /*
  317. * This tries to allocate and post unused work requests after making sure that
  318. * they have all the allocations they need to queue received fragments into
  319. * sockets.
  320. */
  321. void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
  322. {
  323. struct rds_ib_connection *ic = conn->c_transport_data;
  324. struct rds_ib_recv_work *recv;
  325. unsigned int posted = 0;
  326. int ret = 0;
  327. bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
  328. u32 pos;
  329. /* the goal here is to just make sure that someone, somewhere
  330. * is posting buffers. If we can't get the refill lock,
  331. * let them do their thing
  332. */
  333. if (!acquire_refill(conn))
  334. return;
  335. while ((prefill || rds_conn_up(conn)) &&
  336. rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
  337. if (pos >= ic->i_recv_ring.w_nr) {
  338. printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
  339. pos);
  340. break;
  341. }
  342. recv = &ic->i_recvs[pos];
  343. ret = rds_ib_recv_refill_one(conn, recv, gfp);
  344. if (ret) {
  345. break;
  346. }
  347. rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
  348. recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
  349. (long) ib_sg_dma_address(
  350. ic->i_cm_id->device,
  351. &recv->r_frag->f_sg));
  352. /* XXX when can this fail? */
  353. ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
  354. if (ret) {
  355. rds_ib_conn_error(conn, "recv post on "
  356. "%pI6c returned %d, disconnecting and "
  357. "reconnecting\n", &conn->c_faddr,
  358. ret);
  359. break;
  360. }
  361. posted++;
  362. }
  363. /* We're doing flow control - update the window. */
  364. if (ic->i_flowctl && posted)
  365. rds_ib_advertise_credits(conn, posted);
  366. if (ret)
  367. rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
  368. release_refill(conn);
  369. /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
  370. * in this case the ring being low is going to lead to more interrupts
  371. * and we can safely let the softirq code take care of it unless the
  372. * ring is completely empty.
  373. *
  374. * if we're called from krdsd, we'll be GFP_KERNEL. In this case
  375. * we might have raced with the softirq code while we had the refill
  376. * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
  377. * if we should requeue.
  378. */
  379. if (rds_conn_up(conn) &&
  380. ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
  381. rds_ib_ring_empty(&ic->i_recv_ring))) {
  382. queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
  383. }
  384. }
  385. /*
  386. * We want to recycle several types of recv allocations, like incs and frags.
  387. * To use this, the *_free() function passes in the ptr to a list_head within
  388. * the recyclee, as well as the cache to put it on.
  389. *
  390. * First, we put the memory on a percpu list. When this reaches a certain size,
  391. * We move it to an intermediate non-percpu list in a lockless manner, with some
  392. * xchg/compxchg wizardry.
  393. *
  394. * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
  395. * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
  396. * list_empty() will return true with one element is actually present.
  397. */
  398. static void rds_ib_recv_cache_put(struct list_head *new_item,
  399. struct rds_ib_refill_cache *cache)
  400. {
  401. unsigned long flags;
  402. struct list_head *old, *chpfirst;
  403. local_irq_save(flags);
  404. chpfirst = __this_cpu_read(cache->percpu->first);
  405. if (!chpfirst)
  406. INIT_LIST_HEAD(new_item);
  407. else /* put on front */
  408. list_add_tail(new_item, chpfirst);
  409. __this_cpu_write(cache->percpu->first, new_item);
  410. __this_cpu_inc(cache->percpu->count);
  411. if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
  412. goto end;
  413. /*
  414. * Return our per-cpu first list to the cache's xfer by atomically
  415. * grabbing the current xfer list, appending it to our per-cpu list,
  416. * and then atomically returning that entire list back to the
  417. * cache's xfer list as long as it's still empty.
  418. */
  419. do {
  420. old = xchg(&cache->xfer, NULL);
  421. if (old)
  422. list_splice_entire_tail(old, chpfirst);
  423. old = cmpxchg(&cache->xfer, NULL, chpfirst);
  424. } while (old);
  425. __this_cpu_write(cache->percpu->first, NULL);
  426. __this_cpu_write(cache->percpu->count, 0);
  427. end:
  428. local_irq_restore(flags);
  429. }
  430. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
  431. {
  432. struct list_head *head = cache->ready;
  433. if (head) {
  434. if (!list_empty(head)) {
  435. cache->ready = head->next;
  436. list_del_init(head);
  437. } else
  438. cache->ready = NULL;
  439. }
  440. return head;
  441. }
  442. int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
  443. {
  444. struct rds_ib_incoming *ibinc;
  445. struct rds_page_frag *frag;
  446. unsigned long to_copy;
  447. unsigned long frag_off = 0;
  448. int copied = 0;
  449. int ret;
  450. u32 len;
  451. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  452. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  453. len = be32_to_cpu(inc->i_hdr.h_len);
  454. while (iov_iter_count(to) && copied < len) {
  455. if (frag_off == RDS_FRAG_SIZE) {
  456. frag = list_entry(frag->f_item.next,
  457. struct rds_page_frag, f_item);
  458. frag_off = 0;
  459. }
  460. to_copy = min_t(unsigned long, iov_iter_count(to),
  461. RDS_FRAG_SIZE - frag_off);
  462. to_copy = min_t(unsigned long, to_copy, len - copied);
  463. /* XXX needs + offset for multiple recvs per page */
  464. rds_stats_add(s_copy_to_user, to_copy);
  465. ret = copy_page_to_iter(sg_page(&frag->f_sg),
  466. frag->f_sg.offset + frag_off,
  467. to_copy,
  468. to);
  469. if (ret != to_copy)
  470. return -EFAULT;
  471. frag_off += to_copy;
  472. copied += to_copy;
  473. }
  474. return copied;
  475. }
  476. /* ic starts out kzalloc()ed */
  477. void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
  478. {
  479. struct ib_send_wr *wr = &ic->i_ack_wr;
  480. struct ib_sge *sge = &ic->i_ack_sge;
  481. sge->addr = ic->i_ack_dma;
  482. sge->length = sizeof(struct rds_header);
  483. sge->lkey = ic->i_pd->local_dma_lkey;
  484. wr->sg_list = sge;
  485. wr->num_sge = 1;
  486. wr->opcode = IB_WR_SEND;
  487. wr->wr_id = RDS_IB_ACK_WR_ID;
  488. wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  489. }
  490. /*
  491. * You'd think that with reliable IB connections you wouldn't need to ack
  492. * messages that have been received. The problem is that IB hardware generates
  493. * an ack message before it has DMAed the message into memory. This creates a
  494. * potential message loss if the HCA is disabled for any reason between when it
  495. * sends the ack and before the message is DMAed and processed. This is only a
  496. * potential issue if another HCA is available for fail-over.
  497. *
  498. * When the remote host receives our ack they'll free the sent message from
  499. * their send queue. To decrease the latency of this we always send an ack
  500. * immediately after we've received messages.
  501. *
  502. * For simplicity, we only have one ack in flight at a time. This puts
  503. * pressure on senders to have deep enough send queues to absorb the latency of
  504. * a single ack frame being in flight. This might not be good enough.
  505. *
  506. * This is implemented by have a long-lived send_wr and sge which point to a
  507. * statically allocated ack frame. This ack wr does not fall under the ring
  508. * accounting that the tx and rx wrs do. The QP attribute specifically makes
  509. * room for it beyond the ring size. Send completion notices its special
  510. * wr_id and avoids working with the ring in that case.
  511. */
  512. #ifndef KERNEL_HAS_ATOMIC64
  513. void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
  514. {
  515. unsigned long flags;
  516. spin_lock_irqsave(&ic->i_ack_lock, flags);
  517. ic->i_ack_next = seq;
  518. if (ack_required)
  519. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  520. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  521. }
  522. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  523. {
  524. unsigned long flags;
  525. u64 seq;
  526. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  527. spin_lock_irqsave(&ic->i_ack_lock, flags);
  528. seq = ic->i_ack_next;
  529. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  530. return seq;
  531. }
  532. #else
  533. void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
  534. {
  535. atomic64_set(&ic->i_ack_next, seq);
  536. if (ack_required) {
  537. smp_mb__before_atomic();
  538. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  539. }
  540. }
  541. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  542. {
  543. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  544. smp_mb__after_atomic();
  545. return atomic64_read(&ic->i_ack_next);
  546. }
  547. #endif
  548. static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
  549. {
  550. struct rds_header *hdr = ic->i_ack;
  551. u64 seq;
  552. int ret;
  553. seq = rds_ib_get_ack(ic);
  554. rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
  555. rds_message_populate_header(hdr, 0, 0, 0);
  556. hdr->h_ack = cpu_to_be64(seq);
  557. hdr->h_credit = adv_credits;
  558. rds_message_make_checksum(hdr);
  559. ic->i_ack_queued = jiffies;
  560. ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
  561. if (unlikely(ret)) {
  562. /* Failed to send. Release the WR, and
  563. * force another ACK.
  564. */
  565. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  566. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  567. rds_ib_stats_inc(s_ib_ack_send_failure);
  568. rds_ib_conn_error(ic->conn, "sending ack failed\n");
  569. } else
  570. rds_ib_stats_inc(s_ib_ack_sent);
  571. }
  572. /*
  573. * There are 3 ways of getting acknowledgements to the peer:
  574. * 1. We call rds_ib_attempt_ack from the recv completion handler
  575. * to send an ACK-only frame.
  576. * However, there can be only one such frame in the send queue
  577. * at any time, so we may have to postpone it.
  578. * 2. When another (data) packet is transmitted while there's
  579. * an ACK in the queue, we piggyback the ACK sequence number
  580. * on the data packet.
  581. * 3. If the ACK WR is done sending, we get called from the
  582. * send queue completion handler, and check whether there's
  583. * another ACK pending (postponed because the WR was on the
  584. * queue). If so, we transmit it.
  585. *
  586. * We maintain 2 variables:
  587. * - i_ack_flags, which keeps track of whether the ACK WR
  588. * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
  589. * - i_ack_next, which is the last sequence number we received
  590. *
  591. * Potentially, send queue and receive queue handlers can run concurrently.
  592. * It would be nice to not have to use a spinlock to synchronize things,
  593. * but the one problem that rules this out is that 64bit updates are
  594. * not atomic on all platforms. Things would be a lot simpler if
  595. * we had atomic64 or maybe cmpxchg64 everywhere.
  596. *
  597. * Reconnecting complicates this picture just slightly. When we
  598. * reconnect, we may be seeing duplicate packets. The peer
  599. * is retransmitting them, because it hasn't seen an ACK for
  600. * them. It is important that we ACK these.
  601. *
  602. * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
  603. * this flag set *MUST* be acknowledged immediately.
  604. */
  605. /*
  606. * When we get here, we're called from the recv queue handler.
  607. * Check whether we ought to transmit an ACK.
  608. */
  609. void rds_ib_attempt_ack(struct rds_ib_connection *ic)
  610. {
  611. unsigned int adv_credits;
  612. if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  613. return;
  614. if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
  615. rds_ib_stats_inc(s_ib_ack_send_delayed);
  616. return;
  617. }
  618. /* Can we get a send credit? */
  619. if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
  620. rds_ib_stats_inc(s_ib_tx_throttle);
  621. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  622. return;
  623. }
  624. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  625. rds_ib_send_ack(ic, adv_credits);
  626. }
  627. /*
  628. * We get here from the send completion handler, when the
  629. * adapter tells us the ACK frame was sent.
  630. */
  631. void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
  632. {
  633. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  634. rds_ib_attempt_ack(ic);
  635. }
  636. /*
  637. * This is called by the regular xmit code when it wants to piggyback
  638. * an ACK on an outgoing frame.
  639. */
  640. u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
  641. {
  642. if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  643. rds_ib_stats_inc(s_ib_ack_send_piggybacked);
  644. return rds_ib_get_ack(ic);
  645. }
  646. /*
  647. * It's kind of lame that we're copying from the posted receive pages into
  648. * long-lived bitmaps. We could have posted the bitmaps and rdma written into
  649. * them. But receiving new congestion bitmaps should be a *rare* event, so
  650. * hopefully we won't need to invest that complexity in making it more
  651. * efficient. By copying we can share a simpler core with TCP which has to
  652. * copy.
  653. */
  654. static void rds_ib_cong_recv(struct rds_connection *conn,
  655. struct rds_ib_incoming *ibinc)
  656. {
  657. struct rds_cong_map *map;
  658. unsigned int map_off;
  659. unsigned int map_page;
  660. struct rds_page_frag *frag;
  661. unsigned long frag_off;
  662. unsigned long to_copy;
  663. unsigned long copied;
  664. uint64_t uncongested = 0;
  665. void *addr;
  666. /* catch completely corrupt packets */
  667. if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
  668. return;
  669. map = conn->c_fcong;
  670. map_page = 0;
  671. map_off = 0;
  672. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  673. frag_off = 0;
  674. copied = 0;
  675. while (copied < RDS_CONG_MAP_BYTES) {
  676. uint64_t *src, *dst;
  677. unsigned int k;
  678. to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
  679. BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
  680. addr = kmap_atomic(sg_page(&frag->f_sg));
  681. src = addr + frag->f_sg.offset + frag_off;
  682. dst = (void *)map->m_page_addrs[map_page] + map_off;
  683. for (k = 0; k < to_copy; k += 8) {
  684. /* Record ports that became uncongested, ie
  685. * bits that changed from 0 to 1. */
  686. uncongested |= ~(*src) & *dst;
  687. *dst++ = *src++;
  688. }
  689. kunmap_atomic(addr);
  690. copied += to_copy;
  691. map_off += to_copy;
  692. if (map_off == PAGE_SIZE) {
  693. map_off = 0;
  694. map_page++;
  695. }
  696. frag_off += to_copy;
  697. if (frag_off == RDS_FRAG_SIZE) {
  698. frag = list_entry(frag->f_item.next,
  699. struct rds_page_frag, f_item);
  700. frag_off = 0;
  701. }
  702. }
  703. /* the congestion map is in little endian order */
  704. uncongested = le64_to_cpu(uncongested);
  705. rds_cong_map_updated(map, uncongested);
  706. }
  707. static void rds_ib_process_recv(struct rds_connection *conn,
  708. struct rds_ib_recv_work *recv, u32 data_len,
  709. struct rds_ib_ack_state *state)
  710. {
  711. struct rds_ib_connection *ic = conn->c_transport_data;
  712. struct rds_ib_incoming *ibinc = ic->i_ibinc;
  713. struct rds_header *ihdr, *hdr;
  714. /* XXX shut down the connection if port 0,0 are seen? */
  715. rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
  716. data_len);
  717. if (data_len < sizeof(struct rds_header)) {
  718. rds_ib_conn_error(conn, "incoming message "
  719. "from %pI6c didn't include a "
  720. "header, disconnecting and "
  721. "reconnecting\n",
  722. &conn->c_faddr);
  723. return;
  724. }
  725. data_len -= sizeof(struct rds_header);
  726. ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
  727. /* Validate the checksum. */
  728. if (!rds_message_verify_checksum(ihdr)) {
  729. rds_ib_conn_error(conn, "incoming message "
  730. "from %pI6c has corrupted header - "
  731. "forcing a reconnect\n",
  732. &conn->c_faddr);
  733. rds_stats_inc(s_recv_drop_bad_checksum);
  734. return;
  735. }
  736. /* Process the ACK sequence which comes with every packet */
  737. state->ack_recv = be64_to_cpu(ihdr->h_ack);
  738. state->ack_recv_valid = 1;
  739. /* Process the credits update if there was one */
  740. if (ihdr->h_credit)
  741. rds_ib_send_add_credits(conn, ihdr->h_credit);
  742. if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
  743. /* This is an ACK-only packet. The fact that it gets
  744. * special treatment here is that historically, ACKs
  745. * were rather special beasts.
  746. */
  747. rds_ib_stats_inc(s_ib_ack_received);
  748. /*
  749. * Usually the frags make their way on to incs and are then freed as
  750. * the inc is freed. We don't go that route, so we have to drop the
  751. * page ref ourselves. We can't just leave the page on the recv
  752. * because that confuses the dma mapping of pages and each recv's use
  753. * of a partial page.
  754. *
  755. * FIXME: Fold this into the code path below.
  756. */
  757. rds_ib_frag_free(ic, recv->r_frag);
  758. recv->r_frag = NULL;
  759. return;
  760. }
  761. /*
  762. * If we don't already have an inc on the connection then this
  763. * fragment has a header and starts a message.. copy its header
  764. * into the inc and save the inc so we can hang upcoming fragments
  765. * off its list.
  766. */
  767. if (!ibinc) {
  768. ibinc = recv->r_ibinc;
  769. recv->r_ibinc = NULL;
  770. ic->i_ibinc = ibinc;
  771. hdr = &ibinc->ii_inc.i_hdr;
  772. ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
  773. local_clock();
  774. memcpy(hdr, ihdr, sizeof(*hdr));
  775. ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
  776. ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
  777. local_clock();
  778. rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
  779. ic->i_recv_data_rem, hdr->h_flags);
  780. } else {
  781. hdr = &ibinc->ii_inc.i_hdr;
  782. /* We can't just use memcmp here; fragments of a
  783. * single message may carry different ACKs */
  784. if (hdr->h_sequence != ihdr->h_sequence ||
  785. hdr->h_len != ihdr->h_len ||
  786. hdr->h_sport != ihdr->h_sport ||
  787. hdr->h_dport != ihdr->h_dport) {
  788. rds_ib_conn_error(conn,
  789. "fragment header mismatch; forcing reconnect\n");
  790. return;
  791. }
  792. }
  793. list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
  794. recv->r_frag = NULL;
  795. if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
  796. ic->i_recv_data_rem -= RDS_FRAG_SIZE;
  797. else {
  798. ic->i_recv_data_rem = 0;
  799. ic->i_ibinc = NULL;
  800. if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
  801. rds_ib_cong_recv(conn, ibinc);
  802. } else {
  803. rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
  804. &ibinc->ii_inc, GFP_ATOMIC);
  805. state->ack_next = be64_to_cpu(hdr->h_sequence);
  806. state->ack_next_valid = 1;
  807. }
  808. /* Evaluate the ACK_REQUIRED flag *after* we received
  809. * the complete frame, and after bumping the next_rx
  810. * sequence. */
  811. if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
  812. rds_stats_inc(s_recv_ack_required);
  813. state->ack_required = 1;
  814. }
  815. rds_inc_put(&ibinc->ii_inc);
  816. }
  817. }
  818. void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
  819. struct ib_wc *wc,
  820. struct rds_ib_ack_state *state)
  821. {
  822. struct rds_connection *conn = ic->conn;
  823. struct rds_ib_recv_work *recv;
  824. rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
  825. (unsigned long long)wc->wr_id, wc->status,
  826. ib_wc_status_msg(wc->status), wc->byte_len,
  827. be32_to_cpu(wc->ex.imm_data));
  828. rds_ib_stats_inc(s_ib_rx_cq_event);
  829. recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
  830. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
  831. DMA_FROM_DEVICE);
  832. /* Also process recvs in connecting state because it is possible
  833. * to get a recv completion _before_ the rdmacm ESTABLISHED
  834. * event is processed.
  835. */
  836. if (wc->status == IB_WC_SUCCESS) {
  837. rds_ib_process_recv(conn, recv, wc->byte_len, state);
  838. } else {
  839. /* We expect errors as the qp is drained during shutdown */
  840. if (rds_conn_up(conn) || rds_conn_connecting(conn))
  841. rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c> had status %u (%s), disconnecting and reconnecting\n",
  842. &conn->c_laddr, &conn->c_faddr,
  843. wc->status,
  844. ib_wc_status_msg(wc->status));
  845. }
  846. /* rds_ib_process_recv() doesn't always consume the frag, and
  847. * we might not have called it at all if the wc didn't indicate
  848. * success. We already unmapped the frag's pages, though, and
  849. * the following rds_ib_ring_free() call tells the refill path
  850. * that it will not find an allocated frag here. Make sure we
  851. * keep that promise by freeing a frag that's still on the ring.
  852. */
  853. if (recv->r_frag) {
  854. rds_ib_frag_free(ic, recv->r_frag);
  855. recv->r_frag = NULL;
  856. }
  857. rds_ib_ring_free(&ic->i_recv_ring, 1);
  858. /* If we ever end up with a really empty receive ring, we're
  859. * in deep trouble, as the sender will definitely see RNR
  860. * timeouts. */
  861. if (rds_ib_ring_empty(&ic->i_recv_ring))
  862. rds_ib_stats_inc(s_ib_rx_ring_empty);
  863. if (rds_ib_ring_low(&ic->i_recv_ring)) {
  864. rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
  865. rds_ib_stats_inc(s_ib_rx_refill_from_cq);
  866. }
  867. }
  868. int rds_ib_recv_path(struct rds_conn_path *cp)
  869. {
  870. struct rds_connection *conn = cp->cp_conn;
  871. struct rds_ib_connection *ic = conn->c_transport_data;
  872. rdsdebug("conn %p\n", conn);
  873. if (rds_conn_up(conn)) {
  874. rds_ib_attempt_ack(ic);
  875. rds_ib_recv_refill(conn, 0, GFP_KERNEL);
  876. rds_ib_stats_inc(s_ib_rx_refill_from_thread);
  877. }
  878. return 0;
  879. }
  880. int rds_ib_recv_init(void)
  881. {
  882. struct sysinfo si;
  883. int ret = -ENOMEM;
  884. /* Default to 30% of all available RAM for recv memory */
  885. si_meminfo(&si);
  886. rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
  887. rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
  888. sizeof(struct rds_ib_incoming),
  889. 0, SLAB_HWCACHE_ALIGN, NULL);
  890. if (!rds_ib_incoming_slab)
  891. goto out;
  892. rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
  893. sizeof(struct rds_page_frag),
  894. 0, SLAB_HWCACHE_ALIGN, NULL);
  895. if (!rds_ib_frag_slab) {
  896. kmem_cache_destroy(rds_ib_incoming_slab);
  897. rds_ib_incoming_slab = NULL;
  898. } else
  899. ret = 0;
  900. out:
  901. return ret;
  902. }
  903. void rds_ib_recv_exit(void)
  904. {
  905. kmem_cache_destroy(rds_ib_incoming_slab);
  906. kmem_cache_destroy(rds_ib_frag_slab);
  907. }