rtctest.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Real Time Clock Driver Test Program
  4. *
  5. * Copyright (c) 2018 Alexandre Belloni <alexandre.belloni@bootlin.com>
  6. */
  7. #include <errno.h>
  8. #include <fcntl.h>
  9. #include <linux/rtc.h>
  10. #include <stdio.h>
  11. #include <stdlib.h>
  12. #include <sys/ioctl.h>
  13. #include <sys/time.h>
  14. #include <sys/types.h>
  15. #include <time.h>
  16. #include <unistd.h>
  17. #include "../kselftest_harness.h"
  18. #define NUM_UIE 3
  19. #define ALARM_DELTA 3
  20. static char *rtc_file = "/dev/rtc0";
  21. FIXTURE(rtc) {
  22. int fd;
  23. };
  24. FIXTURE_SETUP(rtc) {
  25. self->fd = open(rtc_file, O_RDONLY);
  26. ASSERT_NE(-1, self->fd);
  27. }
  28. FIXTURE_TEARDOWN(rtc) {
  29. close(self->fd);
  30. }
  31. TEST_F(rtc, date_read) {
  32. int rc;
  33. struct rtc_time rtc_tm;
  34. /* Read the RTC time/date */
  35. rc = ioctl(self->fd, RTC_RD_TIME, &rtc_tm);
  36. ASSERT_NE(-1, rc);
  37. TH_LOG("Current RTC date/time is %02d/%02d/%02d %02d:%02d:%02d.",
  38. rtc_tm.tm_mday, rtc_tm.tm_mon + 1, rtc_tm.tm_year + 1900,
  39. rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec);
  40. }
  41. TEST_F(rtc, uie_read) {
  42. int i, rc, irq = 0;
  43. unsigned long data;
  44. /* Turn on update interrupts */
  45. rc = ioctl(self->fd, RTC_UIE_ON, 0);
  46. if (rc == -1) {
  47. ASSERT_EQ(EINVAL, errno);
  48. TH_LOG("skip update IRQs not supported.");
  49. return;
  50. }
  51. for (i = 0; i < NUM_UIE; i++) {
  52. /* This read will block */
  53. rc = read(self->fd, &data, sizeof(data));
  54. ASSERT_NE(-1, rc);
  55. irq++;
  56. }
  57. EXPECT_EQ(NUM_UIE, irq);
  58. rc = ioctl(self->fd, RTC_UIE_OFF, 0);
  59. ASSERT_NE(-1, rc);
  60. }
  61. TEST_F(rtc, uie_select) {
  62. int i, rc, irq = 0;
  63. unsigned long data;
  64. /* Turn on update interrupts */
  65. rc = ioctl(self->fd, RTC_UIE_ON, 0);
  66. if (rc == -1) {
  67. ASSERT_EQ(EINVAL, errno);
  68. TH_LOG("skip update IRQs not supported.");
  69. return;
  70. }
  71. for (i = 0; i < NUM_UIE; i++) {
  72. struct timeval tv = { .tv_sec = 2 };
  73. fd_set readfds;
  74. FD_ZERO(&readfds);
  75. FD_SET(self->fd, &readfds);
  76. /* The select will wait until an RTC interrupt happens. */
  77. rc = select(self->fd + 1, &readfds, NULL, NULL, &tv);
  78. ASSERT_NE(-1, rc);
  79. ASSERT_NE(0, rc);
  80. /* This read won't block */
  81. rc = read(self->fd, &data, sizeof(unsigned long));
  82. ASSERT_NE(-1, rc);
  83. irq++;
  84. }
  85. EXPECT_EQ(NUM_UIE, irq);
  86. rc = ioctl(self->fd, RTC_UIE_OFF, 0);
  87. ASSERT_NE(-1, rc);
  88. }
  89. TEST_F(rtc, alarm_alm_set) {
  90. struct timeval tv = { .tv_sec = ALARM_DELTA + 2 };
  91. unsigned long data;
  92. struct rtc_time tm;
  93. fd_set readfds;
  94. time_t secs, new;
  95. int rc;
  96. rc = ioctl(self->fd, RTC_RD_TIME, &tm);
  97. ASSERT_NE(-1, rc);
  98. secs = timegm((struct tm *)&tm) + ALARM_DELTA;
  99. gmtime_r(&secs, (struct tm *)&tm);
  100. rc = ioctl(self->fd, RTC_ALM_SET, &tm);
  101. if (rc == -1) {
  102. ASSERT_EQ(EINVAL, errno);
  103. TH_LOG("skip alarms are not supported.");
  104. return;
  105. }
  106. rc = ioctl(self->fd, RTC_ALM_READ, &tm);
  107. ASSERT_NE(-1, rc);
  108. TH_LOG("Alarm time now set to %02d:%02d:%02d.",
  109. tm.tm_hour, tm.tm_min, tm.tm_sec);
  110. /* Enable alarm interrupts */
  111. rc = ioctl(self->fd, RTC_AIE_ON, 0);
  112. ASSERT_NE(-1, rc);
  113. FD_ZERO(&readfds);
  114. FD_SET(self->fd, &readfds);
  115. rc = select(self->fd + 1, &readfds, NULL, NULL, &tv);
  116. ASSERT_NE(-1, rc);
  117. ASSERT_NE(0, rc);
  118. /* Disable alarm interrupts */
  119. rc = ioctl(self->fd, RTC_AIE_OFF, 0);
  120. ASSERT_NE(-1, rc);
  121. rc = read(self->fd, &data, sizeof(unsigned long));
  122. ASSERT_NE(-1, rc);
  123. TH_LOG("data: %lx", data);
  124. rc = ioctl(self->fd, RTC_RD_TIME, &tm);
  125. ASSERT_NE(-1, rc);
  126. new = timegm((struct tm *)&tm);
  127. ASSERT_EQ(new, secs);
  128. }
  129. TEST_F(rtc, alarm_wkalm_set) {
  130. struct timeval tv = { .tv_sec = ALARM_DELTA + 2 };
  131. struct rtc_wkalrm alarm = { 0 };
  132. struct rtc_time tm;
  133. unsigned long data;
  134. fd_set readfds;
  135. time_t secs, new;
  136. int rc;
  137. rc = ioctl(self->fd, RTC_RD_TIME, &alarm.time);
  138. ASSERT_NE(-1, rc);
  139. secs = timegm((struct tm *)&alarm.time) + ALARM_DELTA;
  140. gmtime_r(&secs, (struct tm *)&alarm.time);
  141. alarm.enabled = 1;
  142. rc = ioctl(self->fd, RTC_WKALM_SET, &alarm);
  143. if (rc == -1) {
  144. ASSERT_EQ(EINVAL, errno);
  145. TH_LOG("skip alarms are not supported.");
  146. return;
  147. }
  148. rc = ioctl(self->fd, RTC_WKALM_RD, &alarm);
  149. ASSERT_NE(-1, rc);
  150. TH_LOG("Alarm time now set to %02d/%02d/%02d %02d:%02d:%02d.",
  151. alarm.time.tm_mday, alarm.time.tm_mon + 1,
  152. alarm.time.tm_year + 1900, alarm.time.tm_hour,
  153. alarm.time.tm_min, alarm.time.tm_sec);
  154. FD_ZERO(&readfds);
  155. FD_SET(self->fd, &readfds);
  156. rc = select(self->fd + 1, &readfds, NULL, NULL, &tv);
  157. ASSERT_NE(-1, rc);
  158. ASSERT_NE(0, rc);
  159. rc = read(self->fd, &data, sizeof(unsigned long));
  160. ASSERT_NE(-1, rc);
  161. rc = ioctl(self->fd, RTC_RD_TIME, &tm);
  162. ASSERT_NE(-1, rc);
  163. new = timegm((struct tm *)&tm);
  164. ASSERT_EQ(new, secs);
  165. }
  166. TEST_F(rtc, alarm_alm_set_minute) {
  167. struct timeval tv = { .tv_sec = 62 };
  168. unsigned long data;
  169. struct rtc_time tm;
  170. fd_set readfds;
  171. time_t secs, new;
  172. int rc;
  173. rc = ioctl(self->fd, RTC_RD_TIME, &tm);
  174. ASSERT_NE(-1, rc);
  175. secs = timegm((struct tm *)&tm) + 60 - tm.tm_sec;
  176. gmtime_r(&secs, (struct tm *)&tm);
  177. rc = ioctl(self->fd, RTC_ALM_SET, &tm);
  178. if (rc == -1) {
  179. ASSERT_EQ(EINVAL, errno);
  180. TH_LOG("skip alarms are not supported.");
  181. return;
  182. }
  183. rc = ioctl(self->fd, RTC_ALM_READ, &tm);
  184. ASSERT_NE(-1, rc);
  185. TH_LOG("Alarm time now set to %02d:%02d:%02d.",
  186. tm.tm_hour, tm.tm_min, tm.tm_sec);
  187. /* Enable alarm interrupts */
  188. rc = ioctl(self->fd, RTC_AIE_ON, 0);
  189. ASSERT_NE(-1, rc);
  190. FD_ZERO(&readfds);
  191. FD_SET(self->fd, &readfds);
  192. rc = select(self->fd + 1, &readfds, NULL, NULL, &tv);
  193. ASSERT_NE(-1, rc);
  194. ASSERT_NE(0, rc);
  195. /* Disable alarm interrupts */
  196. rc = ioctl(self->fd, RTC_AIE_OFF, 0);
  197. ASSERT_NE(-1, rc);
  198. rc = read(self->fd, &data, sizeof(unsigned long));
  199. ASSERT_NE(-1, rc);
  200. TH_LOG("data: %lx", data);
  201. rc = ioctl(self->fd, RTC_RD_TIME, &tm);
  202. ASSERT_NE(-1, rc);
  203. new = timegm((struct tm *)&tm);
  204. ASSERT_EQ(new, secs);
  205. }
  206. TEST_F(rtc, alarm_wkalm_set_minute) {
  207. struct timeval tv = { .tv_sec = 62 };
  208. struct rtc_wkalrm alarm = { 0 };
  209. struct rtc_time tm;
  210. unsigned long data;
  211. fd_set readfds;
  212. time_t secs, new;
  213. int rc;
  214. rc = ioctl(self->fd, RTC_RD_TIME, &alarm.time);
  215. ASSERT_NE(-1, rc);
  216. secs = timegm((struct tm *)&alarm.time) + 60 - alarm.time.tm_sec;
  217. gmtime_r(&secs, (struct tm *)&alarm.time);
  218. alarm.enabled = 1;
  219. rc = ioctl(self->fd, RTC_WKALM_SET, &alarm);
  220. if (rc == -1) {
  221. ASSERT_EQ(EINVAL, errno);
  222. TH_LOG("skip alarms are not supported.");
  223. return;
  224. }
  225. rc = ioctl(self->fd, RTC_WKALM_RD, &alarm);
  226. ASSERT_NE(-1, rc);
  227. TH_LOG("Alarm time now set to %02d/%02d/%02d %02d:%02d:%02d.",
  228. alarm.time.tm_mday, alarm.time.tm_mon + 1,
  229. alarm.time.tm_year + 1900, alarm.time.tm_hour,
  230. alarm.time.tm_min, alarm.time.tm_sec);
  231. FD_ZERO(&readfds);
  232. FD_SET(self->fd, &readfds);
  233. rc = select(self->fd + 1, &readfds, NULL, NULL, &tv);
  234. ASSERT_NE(-1, rc);
  235. ASSERT_NE(0, rc);
  236. rc = read(self->fd, &data, sizeof(unsigned long));
  237. ASSERT_NE(-1, rc);
  238. rc = ioctl(self->fd, RTC_RD_TIME, &tm);
  239. ASSERT_NE(-1, rc);
  240. new = timegm((struct tm *)&tm);
  241. ASSERT_EQ(new, secs);
  242. }
  243. static void __attribute__((constructor))
  244. __constructor_order_last(void)
  245. {
  246. if (!__constructor_order)
  247. __constructor_order = _CONSTRUCTOR_ORDER_BACKWARD;
  248. }
  249. int main(int argc, char **argv)
  250. {
  251. switch (argc) {
  252. case 2:
  253. rtc_file = argv[1];
  254. /* FALLTHROUGH */
  255. case 1:
  256. break;
  257. default:
  258. fprintf(stderr, "usage: %s [rtcdev]\n", argv[0]);
  259. return 1;
  260. }
  261. return test_harness_run(argc, argv);
  262. }