windfarm_pm91.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. /*
  2. * Windfarm PowerMac thermal control. SMU based 1 CPU desktop control loops
  3. *
  4. * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
  5. * <benh@kernel.crashing.org>
  6. *
  7. * Released under the term of the GNU GPL v2.
  8. *
  9. * The algorithm used is the PID control algorithm, used the same
  10. * way the published Darwin code does, using the same values that
  11. * are present in the Darwin 8.2 snapshot property lists (note however
  12. * that none of the code has been re-used, it's a complete re-implementation
  13. *
  14. * The various control loops found in Darwin config file are:
  15. *
  16. * PowerMac9,1
  17. * ===========
  18. *
  19. * Has 3 control loops: CPU fans is similar to PowerMac8,1 (though it doesn't
  20. * try to play with other control loops fans). Drive bay is rather basic PID
  21. * with one sensor and one fan. Slots area is a bit different as the Darwin
  22. * driver is supposed to be capable of working in a special "AGP" mode which
  23. * involves the presence of an AGP sensor and an AGP fan (possibly on the
  24. * AGP card itself). I can't deal with that special mode as I don't have
  25. * access to those additional sensor/fans for now (though ultimately, it would
  26. * be possible to add sensor objects for them) so I'm only implementing the
  27. * basic PCI slot control loop
  28. */
  29. #include <linux/types.h>
  30. #include <linux/errno.h>
  31. #include <linux/kernel.h>
  32. #include <linux/delay.h>
  33. #include <linux/slab.h>
  34. #include <linux/init.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/wait.h>
  37. #include <linux/kmod.h>
  38. #include <linux/device.h>
  39. #include <linux/platform_device.h>
  40. #include <asm/prom.h>
  41. #include <asm/machdep.h>
  42. #include <asm/io.h>
  43. #include <asm/sections.h>
  44. #include <asm/smu.h>
  45. #include "windfarm.h"
  46. #include "windfarm_pid.h"
  47. #define VERSION "0.4"
  48. #undef DEBUG
  49. #ifdef DEBUG
  50. #define DBG(args...) printk(args)
  51. #else
  52. #define DBG(args...) do { } while(0)
  53. #endif
  54. /* define this to force CPU overtemp to 74 degree, useful for testing
  55. * the overtemp code
  56. */
  57. #undef HACKED_OVERTEMP
  58. /* Controls & sensors */
  59. static struct wf_sensor *sensor_cpu_power;
  60. static struct wf_sensor *sensor_cpu_temp;
  61. static struct wf_sensor *sensor_hd_temp;
  62. static struct wf_sensor *sensor_slots_power;
  63. static struct wf_control *fan_cpu_main;
  64. static struct wf_control *fan_cpu_second;
  65. static struct wf_control *fan_cpu_third;
  66. static struct wf_control *fan_hd;
  67. static struct wf_control *fan_slots;
  68. static struct wf_control *cpufreq_clamp;
  69. /* Set to kick the control loop into life */
  70. static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok;
  71. static bool wf_smu_started;
  72. static bool wf_smu_overtemp;
  73. /* Failure handling.. could be nicer */
  74. #define FAILURE_FAN 0x01
  75. #define FAILURE_SENSOR 0x02
  76. #define FAILURE_OVERTEMP 0x04
  77. static unsigned int wf_smu_failure_state;
  78. static int wf_smu_readjust, wf_smu_skipping;
  79. /*
  80. * ****** CPU Fans Control Loop ******
  81. *
  82. */
  83. #define WF_SMU_CPU_FANS_INTERVAL 1
  84. #define WF_SMU_CPU_FANS_MAX_HISTORY 16
  85. /* State data used by the cpu fans control loop
  86. */
  87. struct wf_smu_cpu_fans_state {
  88. int ticks;
  89. s32 cpu_setpoint;
  90. struct wf_cpu_pid_state pid;
  91. };
  92. static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
  93. /*
  94. * ****** Drive Fan Control Loop ******
  95. *
  96. */
  97. struct wf_smu_drive_fans_state {
  98. int ticks;
  99. s32 setpoint;
  100. struct wf_pid_state pid;
  101. };
  102. static struct wf_smu_drive_fans_state *wf_smu_drive_fans;
  103. /*
  104. * ****** Slots Fan Control Loop ******
  105. *
  106. */
  107. struct wf_smu_slots_fans_state {
  108. int ticks;
  109. s32 setpoint;
  110. struct wf_pid_state pid;
  111. };
  112. static struct wf_smu_slots_fans_state *wf_smu_slots_fans;
  113. /*
  114. * ***** Implementation *****
  115. *
  116. */
  117. static void wf_smu_create_cpu_fans(void)
  118. {
  119. struct wf_cpu_pid_param pid_param;
  120. const struct smu_sdbp_header *hdr;
  121. struct smu_sdbp_cpupiddata *piddata;
  122. struct smu_sdbp_fvt *fvt;
  123. s32 tmax, tdelta, maxpow, powadj;
  124. /* First, locate the PID params in SMU SBD */
  125. hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
  126. if (hdr == 0) {
  127. printk(KERN_WARNING "windfarm: CPU PID fan config not found "
  128. "max fan speed\n");
  129. goto fail;
  130. }
  131. piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
  132. /* Get the FVT params for operating point 0 (the only supported one
  133. * for now) in order to get tmax
  134. */
  135. hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
  136. if (hdr) {
  137. fvt = (struct smu_sdbp_fvt *)&hdr[1];
  138. tmax = ((s32)fvt->maxtemp) << 16;
  139. } else
  140. tmax = 0x5e0000; /* 94 degree default */
  141. /* Alloc & initialize state */
  142. wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
  143. GFP_KERNEL);
  144. if (wf_smu_cpu_fans == NULL)
  145. goto fail;
  146. wf_smu_cpu_fans->ticks = 1;
  147. /* Fill PID params */
  148. pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
  149. pid_param.history_len = piddata->history_len;
  150. if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
  151. printk(KERN_WARNING "windfarm: History size overflow on "
  152. "CPU control loop (%d)\n", piddata->history_len);
  153. pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
  154. }
  155. pid_param.gd = piddata->gd;
  156. pid_param.gp = piddata->gp;
  157. pid_param.gr = piddata->gr / pid_param.history_len;
  158. tdelta = ((s32)piddata->target_temp_delta) << 16;
  159. maxpow = ((s32)piddata->max_power) << 16;
  160. powadj = ((s32)piddata->power_adj) << 16;
  161. pid_param.tmax = tmax;
  162. pid_param.ttarget = tmax - tdelta;
  163. pid_param.pmaxadj = maxpow - powadj;
  164. pid_param.min = wf_control_get_min(fan_cpu_main);
  165. pid_param.max = wf_control_get_max(fan_cpu_main);
  166. wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
  167. DBG("wf: CPU Fan control initialized.\n");
  168. DBG(" ttarget=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
  169. FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
  170. pid_param.min, pid_param.max);
  171. return;
  172. fail:
  173. printk(KERN_WARNING "windfarm: CPU fan config not found\n"
  174. "for this machine model, max fan speed\n");
  175. if (cpufreq_clamp)
  176. wf_control_set_max(cpufreq_clamp);
  177. if (fan_cpu_main)
  178. wf_control_set_max(fan_cpu_main);
  179. }
  180. static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
  181. {
  182. s32 new_setpoint, temp, power;
  183. int rc;
  184. if (--st->ticks != 0) {
  185. if (wf_smu_readjust)
  186. goto readjust;
  187. return;
  188. }
  189. st->ticks = WF_SMU_CPU_FANS_INTERVAL;
  190. rc = wf_sensor_get(sensor_cpu_temp, &temp);
  191. if (rc) {
  192. printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
  193. rc);
  194. wf_smu_failure_state |= FAILURE_SENSOR;
  195. return;
  196. }
  197. rc = wf_sensor_get(sensor_cpu_power, &power);
  198. if (rc) {
  199. printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
  200. rc);
  201. wf_smu_failure_state |= FAILURE_SENSOR;
  202. return;
  203. }
  204. DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
  205. FIX32TOPRINT(temp), FIX32TOPRINT(power));
  206. #ifdef HACKED_OVERTEMP
  207. if (temp > 0x4a0000)
  208. wf_smu_failure_state |= FAILURE_OVERTEMP;
  209. #else
  210. if (temp > st->pid.param.tmax)
  211. wf_smu_failure_state |= FAILURE_OVERTEMP;
  212. #endif
  213. new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
  214. DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
  215. if (st->cpu_setpoint == new_setpoint)
  216. return;
  217. st->cpu_setpoint = new_setpoint;
  218. readjust:
  219. if (fan_cpu_main && wf_smu_failure_state == 0) {
  220. rc = wf_control_set(fan_cpu_main, st->cpu_setpoint);
  221. if (rc) {
  222. printk(KERN_WARNING "windfarm: CPU main fan"
  223. " error %d\n", rc);
  224. wf_smu_failure_state |= FAILURE_FAN;
  225. }
  226. }
  227. if (fan_cpu_second && wf_smu_failure_state == 0) {
  228. rc = wf_control_set(fan_cpu_second, st->cpu_setpoint);
  229. if (rc) {
  230. printk(KERN_WARNING "windfarm: CPU second fan"
  231. " error %d\n", rc);
  232. wf_smu_failure_state |= FAILURE_FAN;
  233. }
  234. }
  235. if (fan_cpu_third && wf_smu_failure_state == 0) {
  236. rc = wf_control_set(fan_cpu_third, st->cpu_setpoint);
  237. if (rc) {
  238. printk(KERN_WARNING "windfarm: CPU third fan"
  239. " error %d\n", rc);
  240. wf_smu_failure_state |= FAILURE_FAN;
  241. }
  242. }
  243. }
  244. static void wf_smu_create_drive_fans(void)
  245. {
  246. struct wf_pid_param param = {
  247. .interval = 5,
  248. .history_len = 2,
  249. .gd = 0x01e00000,
  250. .gp = 0x00500000,
  251. .gr = 0x00000000,
  252. .itarget = 0x00200000,
  253. };
  254. /* Alloc & initialize state */
  255. wf_smu_drive_fans = kmalloc(sizeof(struct wf_smu_drive_fans_state),
  256. GFP_KERNEL);
  257. if (wf_smu_drive_fans == NULL) {
  258. printk(KERN_WARNING "windfarm: Memory allocation error"
  259. " max fan speed\n");
  260. goto fail;
  261. }
  262. wf_smu_drive_fans->ticks = 1;
  263. /* Fill PID params */
  264. param.additive = (fan_hd->type == WF_CONTROL_RPM_FAN);
  265. param.min = wf_control_get_min(fan_hd);
  266. param.max = wf_control_get_max(fan_hd);
  267. wf_pid_init(&wf_smu_drive_fans->pid, &param);
  268. DBG("wf: Drive Fan control initialized.\n");
  269. DBG(" itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
  270. FIX32TOPRINT(param.itarget), param.min, param.max);
  271. return;
  272. fail:
  273. if (fan_hd)
  274. wf_control_set_max(fan_hd);
  275. }
  276. static void wf_smu_drive_fans_tick(struct wf_smu_drive_fans_state *st)
  277. {
  278. s32 new_setpoint, temp;
  279. int rc;
  280. if (--st->ticks != 0) {
  281. if (wf_smu_readjust)
  282. goto readjust;
  283. return;
  284. }
  285. st->ticks = st->pid.param.interval;
  286. rc = wf_sensor_get(sensor_hd_temp, &temp);
  287. if (rc) {
  288. printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
  289. rc);
  290. wf_smu_failure_state |= FAILURE_SENSOR;
  291. return;
  292. }
  293. DBG("wf_smu: Drive Fans tick ! HD temp: %d.%03d\n",
  294. FIX32TOPRINT(temp));
  295. if (temp > (st->pid.param.itarget + 0x50000))
  296. wf_smu_failure_state |= FAILURE_OVERTEMP;
  297. new_setpoint = wf_pid_run(&st->pid, temp);
  298. DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
  299. if (st->setpoint == new_setpoint)
  300. return;
  301. st->setpoint = new_setpoint;
  302. readjust:
  303. if (fan_hd && wf_smu_failure_state == 0) {
  304. rc = wf_control_set(fan_hd, st->setpoint);
  305. if (rc) {
  306. printk(KERN_WARNING "windfarm: HD fan error %d\n",
  307. rc);
  308. wf_smu_failure_state |= FAILURE_FAN;
  309. }
  310. }
  311. }
  312. static void wf_smu_create_slots_fans(void)
  313. {
  314. struct wf_pid_param param = {
  315. .interval = 1,
  316. .history_len = 8,
  317. .gd = 0x00000000,
  318. .gp = 0x00000000,
  319. .gr = 0x00020000,
  320. .itarget = 0x00000000
  321. };
  322. /* Alloc & initialize state */
  323. wf_smu_slots_fans = kmalloc(sizeof(struct wf_smu_slots_fans_state),
  324. GFP_KERNEL);
  325. if (wf_smu_slots_fans == NULL) {
  326. printk(KERN_WARNING "windfarm: Memory allocation error"
  327. " max fan speed\n");
  328. goto fail;
  329. }
  330. wf_smu_slots_fans->ticks = 1;
  331. /* Fill PID params */
  332. param.additive = (fan_slots->type == WF_CONTROL_RPM_FAN);
  333. param.min = wf_control_get_min(fan_slots);
  334. param.max = wf_control_get_max(fan_slots);
  335. wf_pid_init(&wf_smu_slots_fans->pid, &param);
  336. DBG("wf: Slots Fan control initialized.\n");
  337. DBG(" itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
  338. FIX32TOPRINT(param.itarget), param.min, param.max);
  339. return;
  340. fail:
  341. if (fan_slots)
  342. wf_control_set_max(fan_slots);
  343. }
  344. static void wf_smu_slots_fans_tick(struct wf_smu_slots_fans_state *st)
  345. {
  346. s32 new_setpoint, power;
  347. int rc;
  348. if (--st->ticks != 0) {
  349. if (wf_smu_readjust)
  350. goto readjust;
  351. return;
  352. }
  353. st->ticks = st->pid.param.interval;
  354. rc = wf_sensor_get(sensor_slots_power, &power);
  355. if (rc) {
  356. printk(KERN_WARNING "windfarm: Slots power sensor error %d\n",
  357. rc);
  358. wf_smu_failure_state |= FAILURE_SENSOR;
  359. return;
  360. }
  361. DBG("wf_smu: Slots Fans tick ! Slots power: %d.%03d\n",
  362. FIX32TOPRINT(power));
  363. #if 0 /* Check what makes a good overtemp condition */
  364. if (power > (st->pid.param.itarget + 0x50000))
  365. wf_smu_failure_state |= FAILURE_OVERTEMP;
  366. #endif
  367. new_setpoint = wf_pid_run(&st->pid, power);
  368. DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
  369. if (st->setpoint == new_setpoint)
  370. return;
  371. st->setpoint = new_setpoint;
  372. readjust:
  373. if (fan_slots && wf_smu_failure_state == 0) {
  374. rc = wf_control_set(fan_slots, st->setpoint);
  375. if (rc) {
  376. printk(KERN_WARNING "windfarm: Slots fan error %d\n",
  377. rc);
  378. wf_smu_failure_state |= FAILURE_FAN;
  379. }
  380. }
  381. }
  382. /*
  383. * ****** Setup / Init / Misc ... ******
  384. *
  385. */
  386. static void wf_smu_tick(void)
  387. {
  388. unsigned int last_failure = wf_smu_failure_state;
  389. unsigned int new_failure;
  390. if (!wf_smu_started) {
  391. DBG("wf: creating control loops !\n");
  392. wf_smu_create_drive_fans();
  393. wf_smu_create_slots_fans();
  394. wf_smu_create_cpu_fans();
  395. wf_smu_started = true;
  396. }
  397. /* Skipping ticks */
  398. if (wf_smu_skipping && --wf_smu_skipping)
  399. return;
  400. wf_smu_failure_state = 0;
  401. if (wf_smu_drive_fans)
  402. wf_smu_drive_fans_tick(wf_smu_drive_fans);
  403. if (wf_smu_slots_fans)
  404. wf_smu_slots_fans_tick(wf_smu_slots_fans);
  405. if (wf_smu_cpu_fans)
  406. wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
  407. wf_smu_readjust = 0;
  408. new_failure = wf_smu_failure_state & ~last_failure;
  409. /* If entering failure mode, clamp cpufreq and ramp all
  410. * fans to full speed.
  411. */
  412. if (wf_smu_failure_state && !last_failure) {
  413. if (cpufreq_clamp)
  414. wf_control_set_max(cpufreq_clamp);
  415. if (fan_cpu_main)
  416. wf_control_set_max(fan_cpu_main);
  417. if (fan_cpu_second)
  418. wf_control_set_max(fan_cpu_second);
  419. if (fan_cpu_third)
  420. wf_control_set_max(fan_cpu_third);
  421. if (fan_hd)
  422. wf_control_set_max(fan_hd);
  423. if (fan_slots)
  424. wf_control_set_max(fan_slots);
  425. }
  426. /* If leaving failure mode, unclamp cpufreq and readjust
  427. * all fans on next iteration
  428. */
  429. if (!wf_smu_failure_state && last_failure) {
  430. if (cpufreq_clamp)
  431. wf_control_set_min(cpufreq_clamp);
  432. wf_smu_readjust = 1;
  433. }
  434. /* Overtemp condition detected, notify and start skipping a couple
  435. * ticks to let the temperature go down
  436. */
  437. if (new_failure & FAILURE_OVERTEMP) {
  438. wf_set_overtemp();
  439. wf_smu_skipping = 2;
  440. wf_smu_overtemp = true;
  441. }
  442. /* We only clear the overtemp condition if overtemp is cleared
  443. * _and_ no other failure is present. Since a sensor error will
  444. * clear the overtemp condition (can't measure temperature) at
  445. * the control loop levels, but we don't want to keep it clear
  446. * here in this case
  447. */
  448. if (!wf_smu_failure_state && wf_smu_overtemp) {
  449. wf_clear_overtemp();
  450. wf_smu_overtemp = false;
  451. }
  452. }
  453. static void wf_smu_new_control(struct wf_control *ct)
  454. {
  455. if (wf_smu_all_controls_ok)
  456. return;
  457. if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-rear-fan-0")) {
  458. if (wf_get_control(ct) == 0)
  459. fan_cpu_main = ct;
  460. }
  461. if (fan_cpu_second == NULL && !strcmp(ct->name, "cpu-rear-fan-1")) {
  462. if (wf_get_control(ct) == 0)
  463. fan_cpu_second = ct;
  464. }
  465. if (fan_cpu_third == NULL && !strcmp(ct->name, "cpu-front-fan-0")) {
  466. if (wf_get_control(ct) == 0)
  467. fan_cpu_third = ct;
  468. }
  469. if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
  470. if (wf_get_control(ct) == 0)
  471. cpufreq_clamp = ct;
  472. }
  473. if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
  474. if (wf_get_control(ct) == 0)
  475. fan_hd = ct;
  476. }
  477. if (fan_slots == NULL && !strcmp(ct->name, "slots-fan")) {
  478. if (wf_get_control(ct) == 0)
  479. fan_slots = ct;
  480. }
  481. if (fan_cpu_main && (fan_cpu_second || fan_cpu_third) && fan_hd &&
  482. fan_slots && cpufreq_clamp)
  483. wf_smu_all_controls_ok = 1;
  484. }
  485. static void wf_smu_new_sensor(struct wf_sensor *sr)
  486. {
  487. if (wf_smu_all_sensors_ok)
  488. return;
  489. if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
  490. if (wf_get_sensor(sr) == 0)
  491. sensor_cpu_power = sr;
  492. }
  493. if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
  494. if (wf_get_sensor(sr) == 0)
  495. sensor_cpu_temp = sr;
  496. }
  497. if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
  498. if (wf_get_sensor(sr) == 0)
  499. sensor_hd_temp = sr;
  500. }
  501. if (sensor_slots_power == NULL && !strcmp(sr->name, "slots-power")) {
  502. if (wf_get_sensor(sr) == 0)
  503. sensor_slots_power = sr;
  504. }
  505. if (sensor_cpu_power && sensor_cpu_temp &&
  506. sensor_hd_temp && sensor_slots_power)
  507. wf_smu_all_sensors_ok = 1;
  508. }
  509. static int wf_smu_notify(struct notifier_block *self,
  510. unsigned long event, void *data)
  511. {
  512. switch(event) {
  513. case WF_EVENT_NEW_CONTROL:
  514. DBG("wf: new control %s detected\n",
  515. ((struct wf_control *)data)->name);
  516. wf_smu_new_control(data);
  517. wf_smu_readjust = 1;
  518. break;
  519. case WF_EVENT_NEW_SENSOR:
  520. DBG("wf: new sensor %s detected\n",
  521. ((struct wf_sensor *)data)->name);
  522. wf_smu_new_sensor(data);
  523. break;
  524. case WF_EVENT_TICK:
  525. if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
  526. wf_smu_tick();
  527. }
  528. return 0;
  529. }
  530. static struct notifier_block wf_smu_events = {
  531. .notifier_call = wf_smu_notify,
  532. };
  533. static int wf_init_pm(void)
  534. {
  535. printk(KERN_INFO "windfarm: Initializing for Desktop G5 model\n");
  536. return 0;
  537. }
  538. static int wf_smu_probe(struct platform_device *ddev)
  539. {
  540. wf_register_client(&wf_smu_events);
  541. return 0;
  542. }
  543. static int wf_smu_remove(struct platform_device *ddev)
  544. {
  545. wf_unregister_client(&wf_smu_events);
  546. /* XXX We don't have yet a guarantee that our callback isn't
  547. * in progress when returning from wf_unregister_client, so
  548. * we add an arbitrary delay. I'll have to fix that in the core
  549. */
  550. msleep(1000);
  551. /* Release all sensors */
  552. /* One more crappy race: I don't think we have any guarantee here
  553. * that the attribute callback won't race with the sensor beeing
  554. * disposed of, and I'm not 100% certain what best way to deal
  555. * with that except by adding locks all over... I'll do that
  556. * eventually but heh, who ever rmmod this module anyway ?
  557. */
  558. if (sensor_cpu_power)
  559. wf_put_sensor(sensor_cpu_power);
  560. if (sensor_cpu_temp)
  561. wf_put_sensor(sensor_cpu_temp);
  562. if (sensor_hd_temp)
  563. wf_put_sensor(sensor_hd_temp);
  564. if (sensor_slots_power)
  565. wf_put_sensor(sensor_slots_power);
  566. /* Release all controls */
  567. if (fan_cpu_main)
  568. wf_put_control(fan_cpu_main);
  569. if (fan_cpu_second)
  570. wf_put_control(fan_cpu_second);
  571. if (fan_cpu_third)
  572. wf_put_control(fan_cpu_third);
  573. if (fan_hd)
  574. wf_put_control(fan_hd);
  575. if (fan_slots)
  576. wf_put_control(fan_slots);
  577. if (cpufreq_clamp)
  578. wf_put_control(cpufreq_clamp);
  579. /* Destroy control loops state structures */
  580. kfree(wf_smu_slots_fans);
  581. kfree(wf_smu_drive_fans);
  582. kfree(wf_smu_cpu_fans);
  583. return 0;
  584. }
  585. static struct platform_driver wf_smu_driver = {
  586. .probe = wf_smu_probe,
  587. .remove = wf_smu_remove,
  588. .driver = {
  589. .name = "windfarm",
  590. },
  591. };
  592. static int __init wf_smu_init(void)
  593. {
  594. int rc = -ENODEV;
  595. if (of_machine_is_compatible("PowerMac9,1"))
  596. rc = wf_init_pm();
  597. if (rc == 0) {
  598. #ifdef MODULE
  599. request_module("windfarm_smu_controls");
  600. request_module("windfarm_smu_sensors");
  601. request_module("windfarm_lm75_sensor");
  602. request_module("windfarm_cpufreq_clamp");
  603. #endif /* MODULE */
  604. platform_driver_register(&wf_smu_driver);
  605. }
  606. return rc;
  607. }
  608. static void __exit wf_smu_exit(void)
  609. {
  610. platform_driver_unregister(&wf_smu_driver);
  611. }
  612. module_init(wf_smu_init);
  613. module_exit(wf_smu_exit);
  614. MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
  615. MODULE_DESCRIPTION("Thermal control logic for PowerMac9,1");
  616. MODULE_LICENSE("GPL");
  617. MODULE_ALIAS("platform:windfarm");