dump_hashpagetable.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550
  1. /*
  2. * Copyright 2016, Rashmica Gupta, IBM Corp.
  3. *
  4. * This traverses the kernel virtual memory and dumps the pages that are in
  5. * the hash pagetable, along with their flags to
  6. * /sys/kernel/debug/kernel_hash_pagetable.
  7. *
  8. * If radix is enabled then there is no hash page table and so no debugfs file
  9. * is generated.
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; version 2
  14. * of the License.
  15. */
  16. #include <linux/debugfs.h>
  17. #include <linux/fs.h>
  18. #include <linux/io.h>
  19. #include <linux/mm.h>
  20. #include <linux/sched.h>
  21. #include <linux/seq_file.h>
  22. #include <asm/pgtable.h>
  23. #include <linux/const.h>
  24. #include <asm/page.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/plpar_wrappers.h>
  27. #include <linux/memblock.h>
  28. #include <asm/firmware.h>
  29. struct pg_state {
  30. struct seq_file *seq;
  31. const struct addr_marker *marker;
  32. unsigned long start_address;
  33. unsigned int level;
  34. u64 current_flags;
  35. };
  36. struct addr_marker {
  37. unsigned long start_address;
  38. const char *name;
  39. };
  40. static struct addr_marker address_markers[] = {
  41. { 0, "Start of kernel VM" },
  42. { 0, "vmalloc() Area" },
  43. { 0, "vmalloc() End" },
  44. { 0, "isa I/O start" },
  45. { 0, "isa I/O end" },
  46. { 0, "phb I/O start" },
  47. { 0, "phb I/O end" },
  48. { 0, "I/O remap start" },
  49. { 0, "I/O remap end" },
  50. { 0, "vmemmap start" },
  51. { -1, NULL },
  52. };
  53. struct flag_info {
  54. u64 mask;
  55. u64 val;
  56. const char *set;
  57. const char *clear;
  58. bool is_val;
  59. int shift;
  60. };
  61. static const struct flag_info v_flag_array[] = {
  62. {
  63. .mask = SLB_VSID_B,
  64. .val = SLB_VSID_B_256M,
  65. .set = "ssize: 256M",
  66. .clear = "ssize: 1T ",
  67. }, {
  68. .mask = HPTE_V_SECONDARY,
  69. .val = HPTE_V_SECONDARY,
  70. .set = "secondary",
  71. .clear = "primary ",
  72. }, {
  73. .mask = HPTE_V_VALID,
  74. .val = HPTE_V_VALID,
  75. .set = "valid ",
  76. .clear = "invalid",
  77. }, {
  78. .mask = HPTE_V_BOLTED,
  79. .val = HPTE_V_BOLTED,
  80. .set = "bolted",
  81. .clear = "",
  82. }
  83. };
  84. static const struct flag_info r_flag_array[] = {
  85. {
  86. .mask = HPTE_R_PP0 | HPTE_R_PP,
  87. .val = PP_RWXX,
  88. .set = "prot:RW--",
  89. }, {
  90. .mask = HPTE_R_PP0 | HPTE_R_PP,
  91. .val = PP_RWRX,
  92. .set = "prot:RWR-",
  93. }, {
  94. .mask = HPTE_R_PP0 | HPTE_R_PP,
  95. .val = PP_RWRW,
  96. .set = "prot:RWRW",
  97. }, {
  98. .mask = HPTE_R_PP0 | HPTE_R_PP,
  99. .val = PP_RXRX,
  100. .set = "prot:R-R-",
  101. }, {
  102. .mask = HPTE_R_PP0 | HPTE_R_PP,
  103. .val = PP_RXXX,
  104. .set = "prot:R---",
  105. }, {
  106. .mask = HPTE_R_KEY_HI | HPTE_R_KEY_LO,
  107. .val = HPTE_R_KEY_HI | HPTE_R_KEY_LO,
  108. .set = "key",
  109. .clear = "",
  110. .is_val = true,
  111. }, {
  112. .mask = HPTE_R_R,
  113. .val = HPTE_R_R,
  114. .set = "ref",
  115. .clear = " ",
  116. }, {
  117. .mask = HPTE_R_C,
  118. .val = HPTE_R_C,
  119. .set = "changed",
  120. .clear = " ",
  121. }, {
  122. .mask = HPTE_R_N,
  123. .val = HPTE_R_N,
  124. .set = "no execute",
  125. }, {
  126. .mask = HPTE_R_WIMG,
  127. .val = HPTE_R_W,
  128. .set = "writethru",
  129. }, {
  130. .mask = HPTE_R_WIMG,
  131. .val = HPTE_R_I,
  132. .set = "no cache",
  133. }, {
  134. .mask = HPTE_R_WIMG,
  135. .val = HPTE_R_G,
  136. .set = "guarded",
  137. }
  138. };
  139. static int calculate_pagesize(struct pg_state *st, int ps, char s[])
  140. {
  141. static const char units[] = "BKMGTPE";
  142. const char *unit = units;
  143. while (ps > 9 && unit[1]) {
  144. ps -= 10;
  145. unit++;
  146. }
  147. seq_printf(st->seq, " %s_ps: %i%c\t", s, 1<<ps, *unit);
  148. return ps;
  149. }
  150. static void dump_flag_info(struct pg_state *st, const struct flag_info
  151. *flag, u64 pte, int num)
  152. {
  153. unsigned int i;
  154. for (i = 0; i < num; i++, flag++) {
  155. const char *s = NULL;
  156. u64 val;
  157. /* flag not defined so don't check it */
  158. if (flag->mask == 0)
  159. continue;
  160. /* Some 'flags' are actually values */
  161. if (flag->is_val) {
  162. val = pte & flag->val;
  163. if (flag->shift)
  164. val = val >> flag->shift;
  165. seq_printf(st->seq, " %s:%llx", flag->set, val);
  166. } else {
  167. if ((pte & flag->mask) == flag->val)
  168. s = flag->set;
  169. else
  170. s = flag->clear;
  171. if (s)
  172. seq_printf(st->seq, " %s", s);
  173. }
  174. }
  175. }
  176. static void dump_hpte_info(struct pg_state *st, unsigned long ea, u64 v, u64 r,
  177. unsigned long rpn, int bps, int aps, unsigned long lp)
  178. {
  179. int aps_index;
  180. while (ea >= st->marker[1].start_address) {
  181. st->marker++;
  182. seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
  183. }
  184. seq_printf(st->seq, "0x%lx:\t", ea);
  185. seq_printf(st->seq, "AVPN:%llx\t", HPTE_V_AVPN_VAL(v));
  186. dump_flag_info(st, v_flag_array, v, ARRAY_SIZE(v_flag_array));
  187. seq_printf(st->seq, " rpn: %lx\t", rpn);
  188. dump_flag_info(st, r_flag_array, r, ARRAY_SIZE(r_flag_array));
  189. calculate_pagesize(st, bps, "base");
  190. aps_index = calculate_pagesize(st, aps, "actual");
  191. if (aps_index != 2)
  192. seq_printf(st->seq, "LP enc: %lx", lp);
  193. seq_putc(st->seq, '\n');
  194. }
  195. static int native_find(unsigned long ea, int psize, bool primary, u64 *v, u64
  196. *r)
  197. {
  198. struct hash_pte *hptep;
  199. unsigned long hash, vsid, vpn, hpte_group, want_v, hpte_v;
  200. int i, ssize = mmu_kernel_ssize;
  201. unsigned long shift = mmu_psize_defs[psize].shift;
  202. /* calculate hash */
  203. vsid = get_kernel_vsid(ea, ssize);
  204. vpn = hpt_vpn(ea, vsid, ssize);
  205. hash = hpt_hash(vpn, shift, ssize);
  206. want_v = hpte_encode_avpn(vpn, psize, ssize);
  207. /* to check in the secondary hash table, we invert the hash */
  208. if (!primary)
  209. hash = ~hash;
  210. hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
  211. for (i = 0; i < HPTES_PER_GROUP; i++) {
  212. hptep = htab_address + hpte_group;
  213. hpte_v = be64_to_cpu(hptep->v);
  214. if (HPTE_V_COMPARE(hpte_v, want_v) && (hpte_v & HPTE_V_VALID)) {
  215. /* HPTE matches */
  216. *v = be64_to_cpu(hptep->v);
  217. *r = be64_to_cpu(hptep->r);
  218. return 0;
  219. }
  220. ++hpte_group;
  221. }
  222. return -1;
  223. }
  224. #ifdef CONFIG_PPC_PSERIES
  225. static int pseries_find(unsigned long ea, int psize, bool primary, u64 *v, u64 *r)
  226. {
  227. struct hash_pte ptes[4];
  228. unsigned long vsid, vpn, hash, hpte_group, want_v;
  229. int i, j, ssize = mmu_kernel_ssize;
  230. long lpar_rc = 0;
  231. unsigned long shift = mmu_psize_defs[psize].shift;
  232. /* calculate hash */
  233. vsid = get_kernel_vsid(ea, ssize);
  234. vpn = hpt_vpn(ea, vsid, ssize);
  235. hash = hpt_hash(vpn, shift, ssize);
  236. want_v = hpte_encode_avpn(vpn, psize, ssize);
  237. /* to check in the secondary hash table, we invert the hash */
  238. if (!primary)
  239. hash = ~hash;
  240. hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
  241. /* see if we can find an entry in the hpte with this hash */
  242. for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
  243. lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
  244. if (lpar_rc != H_SUCCESS)
  245. continue;
  246. for (j = 0; j < 4; j++) {
  247. if (HPTE_V_COMPARE(ptes[j].v, want_v) &&
  248. (ptes[j].v & HPTE_V_VALID)) {
  249. /* HPTE matches */
  250. *v = ptes[j].v;
  251. *r = ptes[j].r;
  252. return 0;
  253. }
  254. }
  255. }
  256. return -1;
  257. }
  258. #endif
  259. static void decode_r(int bps, unsigned long r, unsigned long *rpn, int *aps,
  260. unsigned long *lp_bits)
  261. {
  262. struct mmu_psize_def entry;
  263. unsigned long arpn, mask, lp;
  264. int penc = -2, idx = 0, shift;
  265. /*.
  266. * The LP field has 8 bits. Depending on the actual page size, some of
  267. * these bits are concatenated with the APRN to get the RPN. The rest
  268. * of the bits in the LP field is the LP value and is an encoding for
  269. * the base page size and the actual page size.
  270. *
  271. * - find the mmu entry for our base page size
  272. * - go through all page encodings and use the associated mask to
  273. * find an encoding that matches our encoding in the LP field.
  274. */
  275. arpn = (r & HPTE_R_RPN) >> HPTE_R_RPN_SHIFT;
  276. lp = arpn & 0xff;
  277. entry = mmu_psize_defs[bps];
  278. while (idx < MMU_PAGE_COUNT) {
  279. penc = entry.penc[idx];
  280. if ((penc != -1) && (mmu_psize_defs[idx].shift)) {
  281. shift = mmu_psize_defs[idx].shift - HPTE_R_RPN_SHIFT;
  282. mask = (0x1 << (shift)) - 1;
  283. if ((lp & mask) == penc) {
  284. *aps = mmu_psize_to_shift(idx);
  285. *lp_bits = lp & mask;
  286. *rpn = arpn >> shift;
  287. return;
  288. }
  289. }
  290. idx++;
  291. }
  292. }
  293. static int base_hpte_find(unsigned long ea, int psize, bool primary, u64 *v,
  294. u64 *r)
  295. {
  296. #ifdef CONFIG_PPC_PSERIES
  297. if (firmware_has_feature(FW_FEATURE_LPAR))
  298. return pseries_find(ea, psize, primary, v, r);
  299. #endif
  300. return native_find(ea, psize, primary, v, r);
  301. }
  302. static unsigned long hpte_find(struct pg_state *st, unsigned long ea, int psize)
  303. {
  304. unsigned long slot;
  305. u64 v = 0, r = 0;
  306. unsigned long rpn, lp_bits;
  307. int base_psize = 0, actual_psize = 0;
  308. if (ea < PAGE_OFFSET)
  309. return -1;
  310. /* Look in primary table */
  311. slot = base_hpte_find(ea, psize, true, &v, &r);
  312. /* Look in secondary table */
  313. if (slot == -1)
  314. slot = base_hpte_find(ea, psize, false, &v, &r);
  315. /* No entry found */
  316. if (slot == -1)
  317. return -1;
  318. /*
  319. * We found an entry in the hash page table:
  320. * - check that this has the same base page
  321. * - find the actual page size
  322. * - find the RPN
  323. */
  324. base_psize = mmu_psize_to_shift(psize);
  325. if ((v & HPTE_V_LARGE) == HPTE_V_LARGE) {
  326. decode_r(psize, r, &rpn, &actual_psize, &lp_bits);
  327. } else {
  328. /* 4K actual page size */
  329. actual_psize = 12;
  330. rpn = (r & HPTE_R_RPN) >> HPTE_R_RPN_SHIFT;
  331. /* In this case there are no LP bits */
  332. lp_bits = -1;
  333. }
  334. /*
  335. * We didn't find a matching encoding, so the PTE we found isn't for
  336. * this address.
  337. */
  338. if (actual_psize == -1)
  339. return -1;
  340. dump_hpte_info(st, ea, v, r, rpn, base_psize, actual_psize, lp_bits);
  341. return 0;
  342. }
  343. static void walk_pte(struct pg_state *st, pmd_t *pmd, unsigned long start)
  344. {
  345. pte_t *pte = pte_offset_kernel(pmd, 0);
  346. unsigned long addr, pteval, psize;
  347. int i, status;
  348. for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
  349. addr = start + i * PAGE_SIZE;
  350. pteval = pte_val(*pte);
  351. if (addr < VMALLOC_END)
  352. psize = mmu_vmalloc_psize;
  353. else
  354. psize = mmu_io_psize;
  355. #ifdef CONFIG_PPC_64K_PAGES
  356. /* check for secret 4K mappings */
  357. if (((pteval & H_PAGE_COMBO) == H_PAGE_COMBO) ||
  358. ((pteval & H_PAGE_4K_PFN) == H_PAGE_4K_PFN))
  359. psize = mmu_io_psize;
  360. #endif
  361. /* check for hashpte */
  362. status = hpte_find(st, addr, psize);
  363. if (((pteval & H_PAGE_HASHPTE) != H_PAGE_HASHPTE)
  364. && (status != -1)) {
  365. /* found a hpte that is not in the linux page tables */
  366. seq_printf(st->seq, "page probably bolted before linux"
  367. " pagetables were set: addr:%lx, pteval:%lx\n",
  368. addr, pteval);
  369. }
  370. }
  371. }
  372. static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start)
  373. {
  374. pmd_t *pmd = pmd_offset(pud, 0);
  375. unsigned long addr;
  376. unsigned int i;
  377. for (i = 0; i < PTRS_PER_PMD; i++, pmd++) {
  378. addr = start + i * PMD_SIZE;
  379. if (!pmd_none(*pmd))
  380. /* pmd exists */
  381. walk_pte(st, pmd, addr);
  382. }
  383. }
  384. static void walk_pud(struct pg_state *st, pgd_t *pgd, unsigned long start)
  385. {
  386. pud_t *pud = pud_offset(pgd, 0);
  387. unsigned long addr;
  388. unsigned int i;
  389. for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
  390. addr = start + i * PUD_SIZE;
  391. if (!pud_none(*pud))
  392. /* pud exists */
  393. walk_pmd(st, pud, addr);
  394. }
  395. }
  396. static void walk_pagetables(struct pg_state *st)
  397. {
  398. pgd_t *pgd = pgd_offset_k(0UL);
  399. unsigned int i;
  400. unsigned long addr;
  401. /*
  402. * Traverse the linux pagetable structure and dump pages that are in
  403. * the hash pagetable.
  404. */
  405. for (i = 0; i < PTRS_PER_PGD; i++, pgd++) {
  406. addr = KERN_VIRT_START + i * PGDIR_SIZE;
  407. if (!pgd_none(*pgd))
  408. /* pgd exists */
  409. walk_pud(st, pgd, addr);
  410. }
  411. }
  412. static void walk_linearmapping(struct pg_state *st)
  413. {
  414. unsigned long addr;
  415. /*
  416. * Traverse the linear mapping section of virtual memory and dump pages
  417. * that are in the hash pagetable.
  418. */
  419. unsigned long psize = 1 << mmu_psize_defs[mmu_linear_psize].shift;
  420. for (addr = PAGE_OFFSET; addr < PAGE_OFFSET +
  421. memblock_end_of_DRAM(); addr += psize)
  422. hpte_find(st, addr, mmu_linear_psize);
  423. }
  424. static void walk_vmemmap(struct pg_state *st)
  425. {
  426. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  427. struct vmemmap_backing *ptr = vmemmap_list;
  428. /*
  429. * Traverse the vmemmaped memory and dump pages that are in the hash
  430. * pagetable.
  431. */
  432. while (ptr->list) {
  433. hpte_find(st, ptr->virt_addr, mmu_vmemmap_psize);
  434. ptr = ptr->list;
  435. }
  436. seq_puts(st->seq, "---[ vmemmap end ]---\n");
  437. #endif
  438. }
  439. static void populate_markers(void)
  440. {
  441. address_markers[0].start_address = PAGE_OFFSET;
  442. address_markers[1].start_address = VMALLOC_START;
  443. address_markers[2].start_address = VMALLOC_END;
  444. address_markers[3].start_address = ISA_IO_BASE;
  445. address_markers[4].start_address = ISA_IO_END;
  446. address_markers[5].start_address = PHB_IO_BASE;
  447. address_markers[6].start_address = PHB_IO_END;
  448. address_markers[7].start_address = IOREMAP_BASE;
  449. address_markers[8].start_address = IOREMAP_END;
  450. #ifdef CONFIG_PPC_BOOK3S_64
  451. address_markers[9].start_address = H_VMEMMAP_BASE;
  452. #else
  453. address_markers[9].start_address = VMEMMAP_BASE;
  454. #endif
  455. }
  456. static int ptdump_show(struct seq_file *m, void *v)
  457. {
  458. struct pg_state st = {
  459. .seq = m,
  460. .start_address = PAGE_OFFSET,
  461. .marker = address_markers,
  462. };
  463. /*
  464. * Traverse the 0xc, 0xd and 0xf areas of the kernel virtual memory and
  465. * dump pages that are in the hash pagetable.
  466. */
  467. walk_linearmapping(&st);
  468. walk_pagetables(&st);
  469. walk_vmemmap(&st);
  470. return 0;
  471. }
  472. static int ptdump_open(struct inode *inode, struct file *file)
  473. {
  474. return single_open(file, ptdump_show, NULL);
  475. }
  476. static const struct file_operations ptdump_fops = {
  477. .open = ptdump_open,
  478. .read = seq_read,
  479. .llseek = seq_lseek,
  480. .release = single_release,
  481. };
  482. static int ptdump_init(void)
  483. {
  484. struct dentry *debugfs_file;
  485. if (!radix_enabled()) {
  486. populate_markers();
  487. debugfs_file = debugfs_create_file("kernel_hash_pagetable",
  488. 0400, NULL, NULL, &ptdump_fops);
  489. return debugfs_file ? 0 : -ENOMEM;
  490. }
  491. return 0;
  492. }
  493. device_initcall(ptdump_init);