kasan_init_64.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. // SPDX-License-Identifier: GPL-2.0
  2. #define DISABLE_BRANCH_PROFILING
  3. #define pr_fmt(fmt) "kasan: " fmt
  4. /* cpu_feature_enabled() cannot be used this early */
  5. #define USE_EARLY_PGTABLE_L5
  6. #include <linux/bootmem.h>
  7. #include <linux/kasan.h>
  8. #include <linux/kdebug.h>
  9. #include <linux/memblock.h>
  10. #include <linux/mm.h>
  11. #include <linux/sched.h>
  12. #include <linux/sched/task.h>
  13. #include <linux/vmalloc.h>
  14. #include <asm/e820/types.h>
  15. #include <asm/pgalloc.h>
  16. #include <asm/tlbflush.h>
  17. #include <asm/sections.h>
  18. #include <asm/pgtable.h>
  19. #include <asm/cpu_entry_area.h>
  20. extern struct range pfn_mapped[E820_MAX_ENTRIES];
  21. static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
  22. static __init void *early_alloc(size_t size, int nid, bool panic)
  23. {
  24. if (panic)
  25. return memblock_virt_alloc_try_nid(size, size,
  26. __pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
  27. else
  28. return memblock_virt_alloc_try_nid_nopanic(size, size,
  29. __pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
  30. }
  31. static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
  32. unsigned long end, int nid)
  33. {
  34. pte_t *pte;
  35. if (pmd_none(*pmd)) {
  36. void *p;
  37. if (boot_cpu_has(X86_FEATURE_PSE) &&
  38. ((end - addr) == PMD_SIZE) &&
  39. IS_ALIGNED(addr, PMD_SIZE)) {
  40. p = early_alloc(PMD_SIZE, nid, false);
  41. if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
  42. return;
  43. else if (p)
  44. memblock_free(__pa(p), PMD_SIZE);
  45. }
  46. p = early_alloc(PAGE_SIZE, nid, true);
  47. pmd_populate_kernel(&init_mm, pmd, p);
  48. }
  49. pte = pte_offset_kernel(pmd, addr);
  50. do {
  51. pte_t entry;
  52. void *p;
  53. if (!pte_none(*pte))
  54. continue;
  55. p = early_alloc(PAGE_SIZE, nid, true);
  56. entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
  57. set_pte_at(&init_mm, addr, pte, entry);
  58. } while (pte++, addr += PAGE_SIZE, addr != end);
  59. }
  60. static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
  61. unsigned long end, int nid)
  62. {
  63. pmd_t *pmd;
  64. unsigned long next;
  65. if (pud_none(*pud)) {
  66. void *p;
  67. if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
  68. ((end - addr) == PUD_SIZE) &&
  69. IS_ALIGNED(addr, PUD_SIZE)) {
  70. p = early_alloc(PUD_SIZE, nid, false);
  71. if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
  72. return;
  73. else if (p)
  74. memblock_free(__pa(p), PUD_SIZE);
  75. }
  76. p = early_alloc(PAGE_SIZE, nid, true);
  77. pud_populate(&init_mm, pud, p);
  78. }
  79. pmd = pmd_offset(pud, addr);
  80. do {
  81. next = pmd_addr_end(addr, end);
  82. if (!pmd_large(*pmd))
  83. kasan_populate_pmd(pmd, addr, next, nid);
  84. } while (pmd++, addr = next, addr != end);
  85. }
  86. static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
  87. unsigned long end, int nid)
  88. {
  89. pud_t *pud;
  90. unsigned long next;
  91. if (p4d_none(*p4d)) {
  92. void *p = early_alloc(PAGE_SIZE, nid, true);
  93. p4d_populate(&init_mm, p4d, p);
  94. }
  95. pud = pud_offset(p4d, addr);
  96. do {
  97. next = pud_addr_end(addr, end);
  98. if (!pud_large(*pud))
  99. kasan_populate_pud(pud, addr, next, nid);
  100. } while (pud++, addr = next, addr != end);
  101. }
  102. static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
  103. unsigned long end, int nid)
  104. {
  105. void *p;
  106. p4d_t *p4d;
  107. unsigned long next;
  108. if (pgd_none(*pgd)) {
  109. p = early_alloc(PAGE_SIZE, nid, true);
  110. pgd_populate(&init_mm, pgd, p);
  111. }
  112. p4d = p4d_offset(pgd, addr);
  113. do {
  114. next = p4d_addr_end(addr, end);
  115. kasan_populate_p4d(p4d, addr, next, nid);
  116. } while (p4d++, addr = next, addr != end);
  117. }
  118. static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
  119. int nid)
  120. {
  121. pgd_t *pgd;
  122. unsigned long next;
  123. addr = addr & PAGE_MASK;
  124. end = round_up(end, PAGE_SIZE);
  125. pgd = pgd_offset_k(addr);
  126. do {
  127. next = pgd_addr_end(addr, end);
  128. kasan_populate_pgd(pgd, addr, next, nid);
  129. } while (pgd++, addr = next, addr != end);
  130. }
  131. static void __init map_range(struct range *range)
  132. {
  133. unsigned long start;
  134. unsigned long end;
  135. start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
  136. end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
  137. kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
  138. }
  139. static void __init clear_pgds(unsigned long start,
  140. unsigned long end)
  141. {
  142. pgd_t *pgd;
  143. /* See comment in kasan_init() */
  144. unsigned long pgd_end = end & PGDIR_MASK;
  145. for (; start < pgd_end; start += PGDIR_SIZE) {
  146. pgd = pgd_offset_k(start);
  147. /*
  148. * With folded p4d, pgd_clear() is nop, use p4d_clear()
  149. * instead.
  150. */
  151. if (pgtable_l5_enabled())
  152. pgd_clear(pgd);
  153. else
  154. p4d_clear(p4d_offset(pgd, start));
  155. }
  156. pgd = pgd_offset_k(start);
  157. for (; start < end; start += P4D_SIZE)
  158. p4d_clear(p4d_offset(pgd, start));
  159. }
  160. static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
  161. {
  162. unsigned long p4d;
  163. if (!pgtable_l5_enabled())
  164. return (p4d_t *)pgd;
  165. p4d = pgd_val(*pgd) & PTE_PFN_MASK;
  166. p4d += __START_KERNEL_map - phys_base;
  167. return (p4d_t *)p4d + p4d_index(addr);
  168. }
  169. static void __init kasan_early_p4d_populate(pgd_t *pgd,
  170. unsigned long addr,
  171. unsigned long end)
  172. {
  173. pgd_t pgd_entry;
  174. p4d_t *p4d, p4d_entry;
  175. unsigned long next;
  176. if (pgd_none(*pgd)) {
  177. pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
  178. set_pgd(pgd, pgd_entry);
  179. }
  180. p4d = early_p4d_offset(pgd, addr);
  181. do {
  182. next = p4d_addr_end(addr, end);
  183. if (!p4d_none(*p4d))
  184. continue;
  185. p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
  186. set_p4d(p4d, p4d_entry);
  187. } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
  188. }
  189. static void __init kasan_map_early_shadow(pgd_t *pgd)
  190. {
  191. /* See comment in kasan_init() */
  192. unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
  193. unsigned long end = KASAN_SHADOW_END;
  194. unsigned long next;
  195. pgd += pgd_index(addr);
  196. do {
  197. next = pgd_addr_end(addr, end);
  198. kasan_early_p4d_populate(pgd, addr, next);
  199. } while (pgd++, addr = next, addr != end);
  200. }
  201. #ifdef CONFIG_KASAN_INLINE
  202. static int kasan_die_handler(struct notifier_block *self,
  203. unsigned long val,
  204. void *data)
  205. {
  206. if (val == DIE_GPF) {
  207. pr_emerg("CONFIG_KASAN_INLINE enabled\n");
  208. pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
  209. }
  210. return NOTIFY_OK;
  211. }
  212. static struct notifier_block kasan_die_notifier = {
  213. .notifier_call = kasan_die_handler,
  214. };
  215. #endif
  216. void __init kasan_early_init(void)
  217. {
  218. int i;
  219. pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
  220. pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
  221. pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
  222. p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
  223. /* Mask out unsupported __PAGE_KERNEL bits: */
  224. pte_val &= __default_kernel_pte_mask;
  225. pmd_val &= __default_kernel_pte_mask;
  226. pud_val &= __default_kernel_pte_mask;
  227. p4d_val &= __default_kernel_pte_mask;
  228. for (i = 0; i < PTRS_PER_PTE; i++)
  229. kasan_zero_pte[i] = __pte(pte_val);
  230. for (i = 0; i < PTRS_PER_PMD; i++)
  231. kasan_zero_pmd[i] = __pmd(pmd_val);
  232. for (i = 0; i < PTRS_PER_PUD; i++)
  233. kasan_zero_pud[i] = __pud(pud_val);
  234. for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
  235. kasan_zero_p4d[i] = __p4d(p4d_val);
  236. kasan_map_early_shadow(early_top_pgt);
  237. kasan_map_early_shadow(init_top_pgt);
  238. }
  239. void __init kasan_init(void)
  240. {
  241. int i;
  242. void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
  243. #ifdef CONFIG_KASAN_INLINE
  244. register_die_notifier(&kasan_die_notifier);
  245. #endif
  246. memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
  247. /*
  248. * We use the same shadow offset for 4- and 5-level paging to
  249. * facilitate boot-time switching between paging modes.
  250. * As result in 5-level paging mode KASAN_SHADOW_START and
  251. * KASAN_SHADOW_END are not aligned to PGD boundary.
  252. *
  253. * KASAN_SHADOW_START doesn't share PGD with anything else.
  254. * We claim whole PGD entry to make things easier.
  255. *
  256. * KASAN_SHADOW_END lands in the last PGD entry and it collides with
  257. * bunch of things like kernel code, modules, EFI mapping, etc.
  258. * We need to take extra steps to not overwrite them.
  259. */
  260. if (pgtable_l5_enabled()) {
  261. void *ptr;
  262. ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
  263. memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
  264. set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
  265. __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
  266. }
  267. load_cr3(early_top_pgt);
  268. __flush_tlb_all();
  269. clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
  270. kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
  271. kasan_mem_to_shadow((void *)PAGE_OFFSET));
  272. for (i = 0; i < E820_MAX_ENTRIES; i++) {
  273. if (pfn_mapped[i].end == 0)
  274. break;
  275. map_range(&pfn_mapped[i]);
  276. }
  277. shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
  278. shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
  279. shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
  280. PAGE_SIZE);
  281. shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
  282. CPU_ENTRY_AREA_MAP_SIZE);
  283. shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
  284. shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
  285. PAGE_SIZE);
  286. kasan_populate_zero_shadow(
  287. kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
  288. shadow_cpu_entry_begin);
  289. kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
  290. (unsigned long)shadow_cpu_entry_end, 0);
  291. kasan_populate_zero_shadow(shadow_cpu_entry_end,
  292. kasan_mem_to_shadow((void *)__START_KERNEL_map));
  293. kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
  294. (unsigned long)kasan_mem_to_shadow(_end),
  295. early_pfn_to_nid(__pa(_stext)));
  296. kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
  297. (void *)KASAN_SHADOW_END);
  298. load_cr3(init_top_pgt);
  299. __flush_tlb_all();
  300. /*
  301. * kasan_zero_page has been used as early shadow memory, thus it may
  302. * contain some garbage. Now we can clear and write protect it, since
  303. * after the TLB flush no one should write to it.
  304. */
  305. memset(kasan_zero_page, 0, PAGE_SIZE);
  306. for (i = 0; i < PTRS_PER_PTE; i++) {
  307. pte_t pte;
  308. pgprot_t prot;
  309. prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
  310. pgprot_val(prot) &= __default_kernel_pte_mask;
  311. pte = __pte(__pa(kasan_zero_page) | pgprot_val(prot));
  312. set_pte(&kasan_zero_pte[i], pte);
  313. }
  314. /* Flush TLBs again to be sure that write protection applied. */
  315. __flush_tlb_all();
  316. init_task.kasan_depth = 0;
  317. pr_info("KernelAddressSanitizer initialized\n");
  318. }