board_k2g.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * K2G EVM : Board initialization
  4. *
  5. * (C) Copyright 2015
  6. * Texas Instruments Incorporated, <www.ti.com>
  7. */
  8. #include <common.h>
  9. #include <asm/arch/clock.h>
  10. #include <asm/ti-common/keystone_net.h>
  11. #include <asm/arch/psc_defs.h>
  12. #include <asm/arch/mmc_host_def.h>
  13. #include <fdtdec.h>
  14. #include <i2c.h>
  15. #include <remoteproc.h>
  16. #include "mux-k2g.h"
  17. #include "../common/board_detect.h"
  18. #define K2G_GP_AUDIO_CODEC_ADDRESS 0x1B
  19. const unsigned int sysclk_array[MAX_SYSCLK] = {
  20. 19200000,
  21. 24000000,
  22. 25000000,
  23. 26000000,
  24. };
  25. unsigned int get_external_clk(u32 clk)
  26. {
  27. unsigned int clk_freq;
  28. u8 sysclk_index = get_sysclk_index();
  29. switch (clk) {
  30. case sys_clk:
  31. clk_freq = sysclk_array[sysclk_index];
  32. break;
  33. case pa_clk:
  34. clk_freq = sysclk_array[sysclk_index];
  35. break;
  36. case tetris_clk:
  37. clk_freq = sysclk_array[sysclk_index];
  38. break;
  39. case ddr3a_clk:
  40. clk_freq = sysclk_array[sysclk_index];
  41. break;
  42. case uart_clk:
  43. clk_freq = sysclk_array[sysclk_index];
  44. break;
  45. default:
  46. clk_freq = 0;
  47. break;
  48. }
  49. return clk_freq;
  50. }
  51. int speeds[DEVSPEED_NUMSPDS] = {
  52. SPD400,
  53. SPD600,
  54. SPD800,
  55. SPD900,
  56. SPD1000,
  57. SPD900,
  58. SPD800,
  59. SPD600,
  60. SPD400,
  61. SPD200,
  62. };
  63. static int dev_speeds[DEVSPEED_NUMSPDS] = {
  64. SPD600,
  65. SPD800,
  66. SPD900,
  67. SPD1000,
  68. SPD900,
  69. SPD800,
  70. SPD600,
  71. SPD400,
  72. };
  73. static struct pll_init_data main_pll_config[MAX_SYSCLK][NUM_SPDS] = {
  74. [SYSCLK_19MHz] = {
  75. [SPD400] = {MAIN_PLL, 125, 3, 2},
  76. [SPD600] = {MAIN_PLL, 125, 2, 2},
  77. [SPD800] = {MAIN_PLL, 250, 3, 2},
  78. [SPD900] = {MAIN_PLL, 187, 2, 2},
  79. [SPD1000] = {MAIN_PLL, 104, 1, 2},
  80. },
  81. [SYSCLK_24MHz] = {
  82. [SPD400] = {MAIN_PLL, 100, 3, 2},
  83. [SPD600] = {MAIN_PLL, 300, 6, 2},
  84. [SPD800] = {MAIN_PLL, 200, 3, 2},
  85. [SPD900] = {MAIN_PLL, 75, 1, 2},
  86. [SPD1000] = {MAIN_PLL, 250, 3, 2},
  87. },
  88. [SYSCLK_25MHz] = {
  89. [SPD400] = {MAIN_PLL, 32, 1, 2},
  90. [SPD600] = {MAIN_PLL, 48, 1, 2},
  91. [SPD800] = {MAIN_PLL, 64, 1, 2},
  92. [SPD900] = {MAIN_PLL, 72, 1, 2},
  93. [SPD1000] = {MAIN_PLL, 80, 1, 2},
  94. },
  95. [SYSCLK_26MHz] = {
  96. [SPD400] = {MAIN_PLL, 400, 13, 2},
  97. [SPD600] = {MAIN_PLL, 230, 5, 2},
  98. [SPD800] = {MAIN_PLL, 123, 2, 2},
  99. [SPD900] = {MAIN_PLL, 69, 1, 2},
  100. [SPD1000] = {MAIN_PLL, 384, 5, 2},
  101. },
  102. };
  103. static struct pll_init_data tetris_pll_config[MAX_SYSCLK][NUM_SPDS] = {
  104. [SYSCLK_19MHz] = {
  105. [SPD200] = {TETRIS_PLL, 625, 6, 10},
  106. [SPD400] = {TETRIS_PLL, 125, 1, 6},
  107. [SPD600] = {TETRIS_PLL, 125, 1, 4},
  108. [SPD800] = {TETRIS_PLL, 333, 2, 4},
  109. [SPD900] = {TETRIS_PLL, 187, 2, 2},
  110. [SPD1000] = {TETRIS_PLL, 104, 1, 2},
  111. },
  112. [SYSCLK_24MHz] = {
  113. [SPD200] = {TETRIS_PLL, 250, 3, 10},
  114. [SPD400] = {TETRIS_PLL, 100, 1, 6},
  115. [SPD600] = {TETRIS_PLL, 100, 1, 4},
  116. [SPD800] = {TETRIS_PLL, 400, 3, 4},
  117. [SPD900] = {TETRIS_PLL, 75, 1, 2},
  118. [SPD1000] = {TETRIS_PLL, 250, 3, 2},
  119. },
  120. [SYSCLK_25MHz] = {
  121. [SPD200] = {TETRIS_PLL, 80, 1, 10},
  122. [SPD400] = {TETRIS_PLL, 96, 1, 6},
  123. [SPD600] = {TETRIS_PLL, 96, 1, 4},
  124. [SPD800] = {TETRIS_PLL, 128, 1, 4},
  125. [SPD900] = {TETRIS_PLL, 72, 1, 2},
  126. [SPD1000] = {TETRIS_PLL, 80, 1, 2},
  127. },
  128. [SYSCLK_26MHz] = {
  129. [SPD200] = {TETRIS_PLL, 307, 4, 10},
  130. [SPD400] = {TETRIS_PLL, 369, 4, 6},
  131. [SPD600] = {TETRIS_PLL, 369, 4, 4},
  132. [SPD800] = {TETRIS_PLL, 123, 1, 4},
  133. [SPD900] = {TETRIS_PLL, 69, 1, 2},
  134. [SPD1000] = {TETRIS_PLL, 384, 5, 2},
  135. },
  136. };
  137. static struct pll_init_data uart_pll_config[MAX_SYSCLK] = {
  138. [SYSCLK_19MHz] = {UART_PLL, 160, 1, 8},
  139. [SYSCLK_24MHz] = {UART_PLL, 128, 1, 8},
  140. [SYSCLK_25MHz] = {UART_PLL, 768, 5, 10},
  141. [SYSCLK_26MHz] = {UART_PLL, 384, 13, 2},
  142. };
  143. static struct pll_init_data nss_pll_config[MAX_SYSCLK] = {
  144. [SYSCLK_19MHz] = {NSS_PLL, 625, 6, 2},
  145. [SYSCLK_24MHz] = {NSS_PLL, 250, 3, 2},
  146. [SYSCLK_25MHz] = {NSS_PLL, 80, 1, 2},
  147. [SYSCLK_26MHz] = {NSS_PLL, 1000, 13, 2},
  148. };
  149. static struct pll_init_data ddr3_pll_config_800[MAX_SYSCLK] = {
  150. [SYSCLK_19MHz] = {DDR3A_PLL, 167, 1, 16},
  151. [SYSCLK_24MHz] = {DDR3A_PLL, 133, 1, 16},
  152. [SYSCLK_25MHz] = {DDR3A_PLL, 128, 1, 16},
  153. [SYSCLK_26MHz] = {DDR3A_PLL, 123, 1, 16},
  154. };
  155. static struct pll_init_data ddr3_pll_config_1066[MAX_SYSCLK] = {
  156. [SYSCLK_19MHz] = {DDR3A_PLL, 194, 1, 14},
  157. [SYSCLK_24MHz] = {DDR3A_PLL, 156, 1, 14},
  158. [SYSCLK_25MHz] = {DDR3A_PLL, 149, 1, 14},
  159. [SYSCLK_26MHz] = {DDR3A_PLL, 144, 1, 14},
  160. };
  161. struct pll_init_data *get_pll_init_data(int pll)
  162. {
  163. int speed;
  164. struct pll_init_data *data = NULL;
  165. u8 sysclk_index = get_sysclk_index();
  166. switch (pll) {
  167. case MAIN_PLL:
  168. speed = get_max_dev_speed(dev_speeds);
  169. data = &main_pll_config[sysclk_index][speed];
  170. break;
  171. case TETRIS_PLL:
  172. speed = get_max_arm_speed(speeds);
  173. data = &tetris_pll_config[sysclk_index][speed];
  174. break;
  175. case NSS_PLL:
  176. data = &nss_pll_config[sysclk_index];
  177. break;
  178. case UART_PLL:
  179. data = &uart_pll_config[sysclk_index];
  180. break;
  181. case DDR3_PLL:
  182. if (cpu_revision() & CPU_66AK2G1x) {
  183. speed = get_max_arm_speed(speeds);
  184. if (speed == SPD1000)
  185. data = &ddr3_pll_config_1066[sysclk_index];
  186. else
  187. data = &ddr3_pll_config_800[sysclk_index];
  188. } else {
  189. data = &ddr3_pll_config_800[sysclk_index];
  190. }
  191. break;
  192. default:
  193. data = NULL;
  194. }
  195. return data;
  196. }
  197. s16 divn_val[16] = {
  198. -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
  199. };
  200. #if defined(CONFIG_MMC)
  201. int board_mmc_init(bd_t *bis)
  202. {
  203. if (psc_enable_module(KS2_LPSC_MMC)) {
  204. printf("%s module enabled failed\n", __func__);
  205. return -1;
  206. }
  207. if (board_is_k2g_gp() || board_is_k2g_g1())
  208. omap_mmc_init(0, 0, 0, -1, -1);
  209. omap_mmc_init(1, 0, 0, -1, -1);
  210. return 0;
  211. }
  212. #endif
  213. #if defined(CONFIG_MULTI_DTB_FIT)
  214. int board_fit_config_name_match(const char *name)
  215. {
  216. bool eeprom_read = board_ti_was_eeprom_read();
  217. if (!strcmp(name, "keystone-k2g-generic") && !eeprom_read)
  218. return 0;
  219. else if (!strcmp(name, "keystone-k2g-evm") &&
  220. (board_ti_is("66AK2GGP") || board_ti_is("66AK2GG1")))
  221. return 0;
  222. else if (!strcmp(name, "keystone-k2g-ice") && board_ti_is("66AK2GIC"))
  223. return 0;
  224. else
  225. return -1;
  226. }
  227. #endif
  228. #if defined(CONFIG_DTB_RESELECT)
  229. static int k2g_alt_board_detect(void)
  230. {
  231. int rc;
  232. rc = i2c_set_bus_num(1);
  233. if (rc)
  234. return rc;
  235. rc = i2c_probe(K2G_GP_AUDIO_CODEC_ADDRESS);
  236. if (rc)
  237. return rc;
  238. ti_i2c_eeprom_am_set("66AK2GGP", "1.0X");
  239. return 0;
  240. }
  241. static void k2g_reset_mux_config(void)
  242. {
  243. /* Unlock the reset mux register */
  244. clrbits_le32(KS2_RSTMUX8, RSTMUX_LOCK8_MASK);
  245. /* Configure BOOTCFG_RSTMUX8 for WDT event to cause a device reset */
  246. clrsetbits_le32(KS2_RSTMUX8, RSTMUX_OMODE8_MASK,
  247. RSTMUX_OMODE8_DEV_RESET << RSTMUX_OMODE8_SHIFT);
  248. /* lock the reset mux register to prevent any spurious writes. */
  249. setbits_le32(KS2_RSTMUX8, RSTMUX_LOCK8_MASK);
  250. }
  251. int embedded_dtb_select(void)
  252. {
  253. int rc;
  254. rc = ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
  255. CONFIG_EEPROM_CHIP_ADDRESS);
  256. if (rc) {
  257. rc = k2g_alt_board_detect();
  258. if (rc) {
  259. printf("Unable to do board detection\n");
  260. return -1;
  261. }
  262. }
  263. fdtdec_setup();
  264. k2g_mux_config();
  265. k2g_reset_mux_config();
  266. if (board_is_k2g_gp() || board_is_k2g_g1()) {
  267. /* deassert FLASH_HOLD */
  268. clrbits_le32(K2G_GPIO1_BANK2_BASE + K2G_GPIO_DIR_OFFSET,
  269. BIT(9));
  270. setbits_le32(K2G_GPIO1_BANK2_BASE + K2G_GPIO_SETDATA_OFFSET,
  271. BIT(9));
  272. }
  273. return 0;
  274. }
  275. #endif
  276. #ifdef CONFIG_BOARD_LATE_INIT
  277. int board_late_init(void)
  278. {
  279. #if !defined(CONFIG_SPL_BUILD) && defined(CONFIG_TI_I2C_BOARD_DETECT)
  280. int rc;
  281. rc = ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
  282. CONFIG_EEPROM_CHIP_ADDRESS);
  283. if (rc)
  284. printf("ti_i2c_eeprom_init failed %d\n", rc);
  285. board_ti_set_ethaddr(1);
  286. #endif
  287. #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
  288. if (board_is_k2g_gp())
  289. env_set("board_name", "66AK2GGP\0");
  290. else if (board_is_k2g_g1())
  291. env_set("board_name", "66AK2GG1\0");
  292. else if (board_is_k2g_ice())
  293. env_set("board_name", "66AK2GIC\0");
  294. #endif
  295. return 0;
  296. }
  297. #endif
  298. #ifdef CONFIG_BOARD_EARLY_INIT_F
  299. int board_early_init_f(void)
  300. {
  301. init_plls();
  302. k2g_mux_config();
  303. return 0;
  304. }
  305. #endif
  306. #ifdef CONFIG_SPL_BUILD
  307. void spl_init_keystone_plls(void)
  308. {
  309. init_plls();
  310. }
  311. #endif
  312. #ifdef CONFIG_DRIVER_TI_KEYSTONE_NET
  313. struct eth_priv_t eth_priv_cfg[] = {
  314. {
  315. .int_name = "K2G_EMAC",
  316. .rx_flow = 0,
  317. .phy_addr = 0,
  318. .slave_port = 1,
  319. .sgmii_link_type = SGMII_LINK_MAC_PHY,
  320. .phy_if = PHY_INTERFACE_MODE_RGMII,
  321. },
  322. };
  323. int get_num_eth_ports(void)
  324. {
  325. return sizeof(eth_priv_cfg) / sizeof(struct eth_priv_t);
  326. }
  327. #endif
  328. #ifdef CONFIG_TI_SECURE_DEVICE
  329. void board_pmmc_image_process(ulong pmmc_image, size_t pmmc_size)
  330. {
  331. int id = env_get_ulong("dev_pmmc", 10, 0);
  332. int ret;
  333. if (!rproc_is_initialized())
  334. rproc_init();
  335. ret = rproc_load(id, pmmc_image, pmmc_size);
  336. printf("Load Remote Processor %d with data@addr=0x%08lx %u bytes:%s\n",
  337. id, pmmc_image, pmmc_size, ret ? " Failed!" : " Success!");
  338. if (!ret)
  339. rproc_start(id);
  340. }
  341. U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_PMMC, board_pmmc_image_process);
  342. #endif