fsl-mc-bus.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Freescale Management Complex (MC) bus driver
  4. *
  5. * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
  6. * Author: German Rivera <German.Rivera@freescale.com>
  7. *
  8. */
  9. #define pr_fmt(fmt) "fsl-mc: " fmt
  10. #include <linux/module.h>
  11. #include <linux/of_device.h>
  12. #include <linux/of_address.h>
  13. #include <linux/ioport.h>
  14. #include <linux/slab.h>
  15. #include <linux/limits.h>
  16. #include <linux/bitops.h>
  17. #include <linux/msi.h>
  18. #include <linux/dma-mapping.h>
  19. #include "fsl-mc-private.h"
  20. /**
  21. * Default DMA mask for devices on a fsl-mc bus
  22. */
  23. #define FSL_MC_DEFAULT_DMA_MASK (~0ULL)
  24. /**
  25. * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device
  26. * @root_mc_bus_dev: fsl-mc device representing the root DPRC
  27. * @num_translation_ranges: number of entries in addr_translation_ranges
  28. * @translation_ranges: array of bus to system address translation ranges
  29. */
  30. struct fsl_mc {
  31. struct fsl_mc_device *root_mc_bus_dev;
  32. u8 num_translation_ranges;
  33. struct fsl_mc_addr_translation_range *translation_ranges;
  34. };
  35. /**
  36. * struct fsl_mc_addr_translation_range - bus to system address translation
  37. * range
  38. * @mc_region_type: Type of MC region for the range being translated
  39. * @start_mc_offset: Start MC offset of the range being translated
  40. * @end_mc_offset: MC offset of the first byte after the range (last MC
  41. * offset of the range is end_mc_offset - 1)
  42. * @start_phys_addr: system physical address corresponding to start_mc_addr
  43. */
  44. struct fsl_mc_addr_translation_range {
  45. enum dprc_region_type mc_region_type;
  46. u64 start_mc_offset;
  47. u64 end_mc_offset;
  48. phys_addr_t start_phys_addr;
  49. };
  50. /**
  51. * struct mc_version
  52. * @major: Major version number: incremented on API compatibility changes
  53. * @minor: Minor version number: incremented on API additions (that are
  54. * backward compatible); reset when major version is incremented
  55. * @revision: Internal revision number: incremented on implementation changes
  56. * and/or bug fixes that have no impact on API
  57. */
  58. struct mc_version {
  59. u32 major;
  60. u32 minor;
  61. u32 revision;
  62. };
  63. /**
  64. * fsl_mc_bus_match - device to driver matching callback
  65. * @dev: the fsl-mc device to match against
  66. * @drv: the device driver to search for matching fsl-mc object type
  67. * structures
  68. *
  69. * Returns 1 on success, 0 otherwise.
  70. */
  71. static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv)
  72. {
  73. const struct fsl_mc_device_id *id;
  74. struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
  75. struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv);
  76. bool found = false;
  77. if (!mc_drv->match_id_table)
  78. goto out;
  79. /*
  80. * If the object is not 'plugged' don't match.
  81. * Only exception is the root DPRC, which is a special case.
  82. */
  83. if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 &&
  84. !fsl_mc_is_root_dprc(&mc_dev->dev))
  85. goto out;
  86. /*
  87. * Traverse the match_id table of the given driver, trying to find
  88. * a matching for the given device.
  89. */
  90. for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) {
  91. if (id->vendor == mc_dev->obj_desc.vendor &&
  92. strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) {
  93. found = true;
  94. break;
  95. }
  96. }
  97. out:
  98. dev_dbg(dev, "%smatched\n", found ? "" : "not ");
  99. return found;
  100. }
  101. /**
  102. * fsl_mc_bus_uevent - callback invoked when a device is added
  103. */
  104. static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env)
  105. {
  106. struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
  107. if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s",
  108. mc_dev->obj_desc.vendor,
  109. mc_dev->obj_desc.type))
  110. return -ENOMEM;
  111. return 0;
  112. }
  113. static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
  114. char *buf)
  115. {
  116. struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
  117. return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor,
  118. mc_dev->obj_desc.type);
  119. }
  120. static DEVICE_ATTR_RO(modalias);
  121. static struct attribute *fsl_mc_dev_attrs[] = {
  122. &dev_attr_modalias.attr,
  123. NULL,
  124. };
  125. ATTRIBUTE_GROUPS(fsl_mc_dev);
  126. struct bus_type fsl_mc_bus_type = {
  127. .name = "fsl-mc",
  128. .match = fsl_mc_bus_match,
  129. .uevent = fsl_mc_bus_uevent,
  130. .dev_groups = fsl_mc_dev_groups,
  131. };
  132. EXPORT_SYMBOL_GPL(fsl_mc_bus_type);
  133. struct device_type fsl_mc_bus_dprc_type = {
  134. .name = "fsl_mc_bus_dprc"
  135. };
  136. struct device_type fsl_mc_bus_dpni_type = {
  137. .name = "fsl_mc_bus_dpni"
  138. };
  139. struct device_type fsl_mc_bus_dpio_type = {
  140. .name = "fsl_mc_bus_dpio"
  141. };
  142. struct device_type fsl_mc_bus_dpsw_type = {
  143. .name = "fsl_mc_bus_dpsw"
  144. };
  145. struct device_type fsl_mc_bus_dpbp_type = {
  146. .name = "fsl_mc_bus_dpbp"
  147. };
  148. struct device_type fsl_mc_bus_dpcon_type = {
  149. .name = "fsl_mc_bus_dpcon"
  150. };
  151. struct device_type fsl_mc_bus_dpmcp_type = {
  152. .name = "fsl_mc_bus_dpmcp"
  153. };
  154. struct device_type fsl_mc_bus_dpmac_type = {
  155. .name = "fsl_mc_bus_dpmac"
  156. };
  157. struct device_type fsl_mc_bus_dprtc_type = {
  158. .name = "fsl_mc_bus_dprtc"
  159. };
  160. static struct device_type *fsl_mc_get_device_type(const char *type)
  161. {
  162. static const struct {
  163. struct device_type *dev_type;
  164. const char *type;
  165. } dev_types[] = {
  166. { &fsl_mc_bus_dprc_type, "dprc" },
  167. { &fsl_mc_bus_dpni_type, "dpni" },
  168. { &fsl_mc_bus_dpio_type, "dpio" },
  169. { &fsl_mc_bus_dpsw_type, "dpsw" },
  170. { &fsl_mc_bus_dpbp_type, "dpbp" },
  171. { &fsl_mc_bus_dpcon_type, "dpcon" },
  172. { &fsl_mc_bus_dpmcp_type, "dpmcp" },
  173. { &fsl_mc_bus_dpmac_type, "dpmac" },
  174. { &fsl_mc_bus_dprtc_type, "dprtc" },
  175. { NULL, NULL }
  176. };
  177. int i;
  178. for (i = 0; dev_types[i].dev_type; i++)
  179. if (!strcmp(dev_types[i].type, type))
  180. return dev_types[i].dev_type;
  181. return NULL;
  182. }
  183. static int fsl_mc_driver_probe(struct device *dev)
  184. {
  185. struct fsl_mc_driver *mc_drv;
  186. struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
  187. int error;
  188. mc_drv = to_fsl_mc_driver(dev->driver);
  189. error = mc_drv->probe(mc_dev);
  190. if (error < 0) {
  191. if (error != -EPROBE_DEFER)
  192. dev_err(dev, "%s failed: %d\n", __func__, error);
  193. return error;
  194. }
  195. return 0;
  196. }
  197. static int fsl_mc_driver_remove(struct device *dev)
  198. {
  199. struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
  200. struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
  201. int error;
  202. error = mc_drv->remove(mc_dev);
  203. if (error < 0) {
  204. dev_err(dev, "%s failed: %d\n", __func__, error);
  205. return error;
  206. }
  207. return 0;
  208. }
  209. static void fsl_mc_driver_shutdown(struct device *dev)
  210. {
  211. struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
  212. struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
  213. mc_drv->shutdown(mc_dev);
  214. }
  215. /**
  216. * __fsl_mc_driver_register - registers a child device driver with the
  217. * MC bus
  218. *
  219. * This function is implicitly invoked from the registration function of
  220. * fsl_mc device drivers, which is generated by the
  221. * module_fsl_mc_driver() macro.
  222. */
  223. int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver,
  224. struct module *owner)
  225. {
  226. int error;
  227. mc_driver->driver.owner = owner;
  228. mc_driver->driver.bus = &fsl_mc_bus_type;
  229. if (mc_driver->probe)
  230. mc_driver->driver.probe = fsl_mc_driver_probe;
  231. if (mc_driver->remove)
  232. mc_driver->driver.remove = fsl_mc_driver_remove;
  233. if (mc_driver->shutdown)
  234. mc_driver->driver.shutdown = fsl_mc_driver_shutdown;
  235. error = driver_register(&mc_driver->driver);
  236. if (error < 0) {
  237. pr_err("driver_register() failed for %s: %d\n",
  238. mc_driver->driver.name, error);
  239. return error;
  240. }
  241. return 0;
  242. }
  243. EXPORT_SYMBOL_GPL(__fsl_mc_driver_register);
  244. /**
  245. * fsl_mc_driver_unregister - unregisters a device driver from the
  246. * MC bus
  247. */
  248. void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver)
  249. {
  250. driver_unregister(&mc_driver->driver);
  251. }
  252. EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister);
  253. /**
  254. * mc_get_version() - Retrieves the Management Complex firmware
  255. * version information
  256. * @mc_io: Pointer to opaque I/O object
  257. * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
  258. * @mc_ver_info: Returned version information structure
  259. *
  260. * Return: '0' on Success; Error code otherwise.
  261. */
  262. static int mc_get_version(struct fsl_mc_io *mc_io,
  263. u32 cmd_flags,
  264. struct mc_version *mc_ver_info)
  265. {
  266. struct fsl_mc_command cmd = { 0 };
  267. struct dpmng_rsp_get_version *rsp_params;
  268. int err;
  269. /* prepare command */
  270. cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION,
  271. cmd_flags,
  272. 0);
  273. /* send command to mc*/
  274. err = mc_send_command(mc_io, &cmd);
  275. if (err)
  276. return err;
  277. /* retrieve response parameters */
  278. rsp_params = (struct dpmng_rsp_get_version *)cmd.params;
  279. mc_ver_info->revision = le32_to_cpu(rsp_params->revision);
  280. mc_ver_info->major = le32_to_cpu(rsp_params->version_major);
  281. mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor);
  282. return 0;
  283. }
  284. /**
  285. * fsl_mc_get_root_dprc - function to traverse to the root dprc
  286. */
  287. static void fsl_mc_get_root_dprc(struct device *dev,
  288. struct device **root_dprc_dev)
  289. {
  290. if (!dev) {
  291. *root_dprc_dev = NULL;
  292. } else if (!dev_is_fsl_mc(dev)) {
  293. *root_dprc_dev = NULL;
  294. } else {
  295. *root_dprc_dev = dev;
  296. while (dev_is_fsl_mc((*root_dprc_dev)->parent))
  297. *root_dprc_dev = (*root_dprc_dev)->parent;
  298. }
  299. }
  300. static int get_dprc_attr(struct fsl_mc_io *mc_io,
  301. int container_id, struct dprc_attributes *attr)
  302. {
  303. u16 dprc_handle;
  304. int error;
  305. error = dprc_open(mc_io, 0, container_id, &dprc_handle);
  306. if (error < 0) {
  307. dev_err(mc_io->dev, "dprc_open() failed: %d\n", error);
  308. return error;
  309. }
  310. memset(attr, 0, sizeof(struct dprc_attributes));
  311. error = dprc_get_attributes(mc_io, 0, dprc_handle, attr);
  312. if (error < 0) {
  313. dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n",
  314. error);
  315. goto common_cleanup;
  316. }
  317. error = 0;
  318. common_cleanup:
  319. (void)dprc_close(mc_io, 0, dprc_handle);
  320. return error;
  321. }
  322. static int get_dprc_icid(struct fsl_mc_io *mc_io,
  323. int container_id, u16 *icid)
  324. {
  325. struct dprc_attributes attr;
  326. int error;
  327. error = get_dprc_attr(mc_io, container_id, &attr);
  328. if (error == 0)
  329. *icid = attr.icid;
  330. return error;
  331. }
  332. static int translate_mc_addr(struct fsl_mc_device *mc_dev,
  333. enum dprc_region_type mc_region_type,
  334. u64 mc_offset, phys_addr_t *phys_addr)
  335. {
  336. int i;
  337. struct device *root_dprc_dev;
  338. struct fsl_mc *mc;
  339. fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev);
  340. mc = dev_get_drvdata(root_dprc_dev->parent);
  341. if (mc->num_translation_ranges == 0) {
  342. /*
  343. * Do identity mapping:
  344. */
  345. *phys_addr = mc_offset;
  346. return 0;
  347. }
  348. for (i = 0; i < mc->num_translation_ranges; i++) {
  349. struct fsl_mc_addr_translation_range *range =
  350. &mc->translation_ranges[i];
  351. if (mc_region_type == range->mc_region_type &&
  352. mc_offset >= range->start_mc_offset &&
  353. mc_offset < range->end_mc_offset) {
  354. *phys_addr = range->start_phys_addr +
  355. (mc_offset - range->start_mc_offset);
  356. return 0;
  357. }
  358. }
  359. return -EFAULT;
  360. }
  361. static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev,
  362. struct fsl_mc_device *mc_bus_dev)
  363. {
  364. int i;
  365. int error;
  366. struct resource *regions;
  367. struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc;
  368. struct device *parent_dev = mc_dev->dev.parent;
  369. enum dprc_region_type mc_region_type;
  370. if (is_fsl_mc_bus_dprc(mc_dev) ||
  371. is_fsl_mc_bus_dpmcp(mc_dev)) {
  372. mc_region_type = DPRC_REGION_TYPE_MC_PORTAL;
  373. } else if (is_fsl_mc_bus_dpio(mc_dev)) {
  374. mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL;
  375. } else {
  376. /*
  377. * This function should not have been called for this MC object
  378. * type, as this object type is not supposed to have MMIO
  379. * regions
  380. */
  381. return -EINVAL;
  382. }
  383. regions = kmalloc_array(obj_desc->region_count,
  384. sizeof(regions[0]), GFP_KERNEL);
  385. if (!regions)
  386. return -ENOMEM;
  387. for (i = 0; i < obj_desc->region_count; i++) {
  388. struct dprc_region_desc region_desc;
  389. error = dprc_get_obj_region(mc_bus_dev->mc_io,
  390. 0,
  391. mc_bus_dev->mc_handle,
  392. obj_desc->type,
  393. obj_desc->id, i, &region_desc);
  394. if (error < 0) {
  395. dev_err(parent_dev,
  396. "dprc_get_obj_region() failed: %d\n", error);
  397. goto error_cleanup_regions;
  398. }
  399. error = translate_mc_addr(mc_dev, mc_region_type,
  400. region_desc.base_offset,
  401. &regions[i].start);
  402. if (error < 0) {
  403. dev_err(parent_dev,
  404. "Invalid MC offset: %#x (for %s.%d\'s region %d)\n",
  405. region_desc.base_offset,
  406. obj_desc->type, obj_desc->id, i);
  407. goto error_cleanup_regions;
  408. }
  409. regions[i].end = regions[i].start + region_desc.size - 1;
  410. regions[i].name = "fsl-mc object MMIO region";
  411. regions[i].flags = IORESOURCE_IO;
  412. if (region_desc.flags & DPRC_REGION_CACHEABLE)
  413. regions[i].flags |= IORESOURCE_CACHEABLE;
  414. }
  415. mc_dev->regions = regions;
  416. return 0;
  417. error_cleanup_regions:
  418. kfree(regions);
  419. return error;
  420. }
  421. /**
  422. * fsl_mc_is_root_dprc - function to check if a given device is a root dprc
  423. */
  424. bool fsl_mc_is_root_dprc(struct device *dev)
  425. {
  426. struct device *root_dprc_dev;
  427. fsl_mc_get_root_dprc(dev, &root_dprc_dev);
  428. if (!root_dprc_dev)
  429. return false;
  430. return dev == root_dprc_dev;
  431. }
  432. static void fsl_mc_device_release(struct device *dev)
  433. {
  434. struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
  435. kfree(mc_dev->regions);
  436. if (is_fsl_mc_bus_dprc(mc_dev))
  437. kfree(to_fsl_mc_bus(mc_dev));
  438. else
  439. kfree(mc_dev);
  440. }
  441. /**
  442. * Add a newly discovered fsl-mc device to be visible in Linux
  443. */
  444. int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc,
  445. struct fsl_mc_io *mc_io,
  446. struct device *parent_dev,
  447. struct fsl_mc_device **new_mc_dev)
  448. {
  449. int error;
  450. struct fsl_mc_device *mc_dev = NULL;
  451. struct fsl_mc_bus *mc_bus = NULL;
  452. struct fsl_mc_device *parent_mc_dev;
  453. if (dev_is_fsl_mc(parent_dev))
  454. parent_mc_dev = to_fsl_mc_device(parent_dev);
  455. else
  456. parent_mc_dev = NULL;
  457. if (strcmp(obj_desc->type, "dprc") == 0) {
  458. /*
  459. * Allocate an MC bus device object:
  460. */
  461. mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL);
  462. if (!mc_bus)
  463. return -ENOMEM;
  464. mc_dev = &mc_bus->mc_dev;
  465. } else {
  466. /*
  467. * Allocate a regular fsl_mc_device object:
  468. */
  469. mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL);
  470. if (!mc_dev)
  471. return -ENOMEM;
  472. }
  473. mc_dev->obj_desc = *obj_desc;
  474. mc_dev->mc_io = mc_io;
  475. device_initialize(&mc_dev->dev);
  476. mc_dev->dev.parent = parent_dev;
  477. mc_dev->dev.bus = &fsl_mc_bus_type;
  478. mc_dev->dev.release = fsl_mc_device_release;
  479. mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type);
  480. if (!mc_dev->dev.type) {
  481. error = -ENODEV;
  482. dev_err(parent_dev, "unknown device type %s\n", obj_desc->type);
  483. goto error_cleanup_dev;
  484. }
  485. dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id);
  486. if (strcmp(obj_desc->type, "dprc") == 0) {
  487. struct fsl_mc_io *mc_io2;
  488. mc_dev->flags |= FSL_MC_IS_DPRC;
  489. /*
  490. * To get the DPRC's ICID, we need to open the DPRC
  491. * in get_dprc_icid(). For child DPRCs, we do so using the
  492. * parent DPRC's MC portal instead of the child DPRC's MC
  493. * portal, in case the child DPRC is already opened with
  494. * its own portal (e.g., the DPRC used by AIOP).
  495. *
  496. * NOTE: There cannot be more than one active open for a
  497. * given MC object, using the same MC portal.
  498. */
  499. if (parent_mc_dev) {
  500. /*
  501. * device being added is a child DPRC device
  502. */
  503. mc_io2 = parent_mc_dev->mc_io;
  504. } else {
  505. /*
  506. * device being added is the root DPRC device
  507. */
  508. if (!mc_io) {
  509. error = -EINVAL;
  510. goto error_cleanup_dev;
  511. }
  512. mc_io2 = mc_io;
  513. }
  514. error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid);
  515. if (error < 0)
  516. goto error_cleanup_dev;
  517. } else {
  518. /*
  519. * A non-DPRC object has to be a child of a DPRC, use the
  520. * parent's ICID and interrupt domain.
  521. */
  522. mc_dev->icid = parent_mc_dev->icid;
  523. mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK;
  524. mc_dev->dev.dma_mask = &mc_dev->dma_mask;
  525. dev_set_msi_domain(&mc_dev->dev,
  526. dev_get_msi_domain(&parent_mc_dev->dev));
  527. }
  528. /*
  529. * Get MMIO regions for the device from the MC:
  530. *
  531. * NOTE: the root DPRC is a special case as its MMIO region is
  532. * obtained from the device tree
  533. */
  534. if (parent_mc_dev && obj_desc->region_count != 0) {
  535. error = fsl_mc_device_get_mmio_regions(mc_dev,
  536. parent_mc_dev);
  537. if (error < 0)
  538. goto error_cleanup_dev;
  539. }
  540. /* Objects are coherent, unless 'no shareability' flag set. */
  541. if (!(obj_desc->flags & FSL_MC_OBJ_FLAG_NO_MEM_SHAREABILITY))
  542. arch_setup_dma_ops(&mc_dev->dev, 0, 0, NULL, true);
  543. /*
  544. * The device-specific probe callback will get invoked by device_add()
  545. */
  546. error = device_add(&mc_dev->dev);
  547. if (error < 0) {
  548. dev_err(parent_dev,
  549. "device_add() failed for device %s: %d\n",
  550. dev_name(&mc_dev->dev), error);
  551. goto error_cleanup_dev;
  552. }
  553. dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev));
  554. *new_mc_dev = mc_dev;
  555. return 0;
  556. error_cleanup_dev:
  557. kfree(mc_dev->regions);
  558. kfree(mc_bus);
  559. kfree(mc_dev);
  560. return error;
  561. }
  562. EXPORT_SYMBOL_GPL(fsl_mc_device_add);
  563. /**
  564. * fsl_mc_device_remove - Remove an fsl-mc device from being visible to
  565. * Linux
  566. *
  567. * @mc_dev: Pointer to an fsl-mc device
  568. */
  569. void fsl_mc_device_remove(struct fsl_mc_device *mc_dev)
  570. {
  571. /*
  572. * The device-specific remove callback will get invoked by device_del()
  573. */
  574. device_del(&mc_dev->dev);
  575. put_device(&mc_dev->dev);
  576. }
  577. EXPORT_SYMBOL_GPL(fsl_mc_device_remove);
  578. static int parse_mc_ranges(struct device *dev,
  579. int *paddr_cells,
  580. int *mc_addr_cells,
  581. int *mc_size_cells,
  582. const __be32 **ranges_start)
  583. {
  584. const __be32 *prop;
  585. int range_tuple_cell_count;
  586. int ranges_len;
  587. int tuple_len;
  588. struct device_node *mc_node = dev->of_node;
  589. *ranges_start = of_get_property(mc_node, "ranges", &ranges_len);
  590. if (!(*ranges_start) || !ranges_len) {
  591. dev_warn(dev,
  592. "missing or empty ranges property for device tree node '%s'\n",
  593. mc_node->name);
  594. return 0;
  595. }
  596. *paddr_cells = of_n_addr_cells(mc_node);
  597. prop = of_get_property(mc_node, "#address-cells", NULL);
  598. if (prop)
  599. *mc_addr_cells = be32_to_cpup(prop);
  600. else
  601. *mc_addr_cells = *paddr_cells;
  602. prop = of_get_property(mc_node, "#size-cells", NULL);
  603. if (prop)
  604. *mc_size_cells = be32_to_cpup(prop);
  605. else
  606. *mc_size_cells = of_n_size_cells(mc_node);
  607. range_tuple_cell_count = *paddr_cells + *mc_addr_cells +
  608. *mc_size_cells;
  609. tuple_len = range_tuple_cell_count * sizeof(__be32);
  610. if (ranges_len % tuple_len != 0) {
  611. dev_err(dev, "malformed ranges property '%s'\n", mc_node->name);
  612. return -EINVAL;
  613. }
  614. return ranges_len / tuple_len;
  615. }
  616. static int get_mc_addr_translation_ranges(struct device *dev,
  617. struct fsl_mc_addr_translation_range
  618. **ranges,
  619. u8 *num_ranges)
  620. {
  621. int ret;
  622. int paddr_cells;
  623. int mc_addr_cells;
  624. int mc_size_cells;
  625. int i;
  626. const __be32 *ranges_start;
  627. const __be32 *cell;
  628. ret = parse_mc_ranges(dev,
  629. &paddr_cells,
  630. &mc_addr_cells,
  631. &mc_size_cells,
  632. &ranges_start);
  633. if (ret < 0)
  634. return ret;
  635. *num_ranges = ret;
  636. if (!ret) {
  637. /*
  638. * Missing or empty ranges property ("ranges;") for the
  639. * 'fsl,qoriq-mc' node. In this case, identity mapping
  640. * will be used.
  641. */
  642. *ranges = NULL;
  643. return 0;
  644. }
  645. *ranges = devm_kcalloc(dev, *num_ranges,
  646. sizeof(struct fsl_mc_addr_translation_range),
  647. GFP_KERNEL);
  648. if (!(*ranges))
  649. return -ENOMEM;
  650. cell = ranges_start;
  651. for (i = 0; i < *num_ranges; ++i) {
  652. struct fsl_mc_addr_translation_range *range = &(*ranges)[i];
  653. range->mc_region_type = of_read_number(cell, 1);
  654. range->start_mc_offset = of_read_number(cell + 1,
  655. mc_addr_cells - 1);
  656. cell += mc_addr_cells;
  657. range->start_phys_addr = of_read_number(cell, paddr_cells);
  658. cell += paddr_cells;
  659. range->end_mc_offset = range->start_mc_offset +
  660. of_read_number(cell, mc_size_cells);
  661. cell += mc_size_cells;
  662. }
  663. return 0;
  664. }
  665. /**
  666. * fsl_mc_bus_probe - callback invoked when the root MC bus is being
  667. * added
  668. */
  669. static int fsl_mc_bus_probe(struct platform_device *pdev)
  670. {
  671. struct fsl_mc_obj_desc obj_desc;
  672. int error;
  673. struct fsl_mc *mc;
  674. struct fsl_mc_device *mc_bus_dev = NULL;
  675. struct fsl_mc_io *mc_io = NULL;
  676. int container_id;
  677. phys_addr_t mc_portal_phys_addr;
  678. u32 mc_portal_size;
  679. struct mc_version mc_version;
  680. struct resource res;
  681. mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
  682. if (!mc)
  683. return -ENOMEM;
  684. platform_set_drvdata(pdev, mc);
  685. /*
  686. * Get physical address of MC portal for the root DPRC:
  687. */
  688. error = of_address_to_resource(pdev->dev.of_node, 0, &res);
  689. if (error < 0) {
  690. dev_err(&pdev->dev,
  691. "of_address_to_resource() failed for %pOF\n",
  692. pdev->dev.of_node);
  693. return error;
  694. }
  695. mc_portal_phys_addr = res.start;
  696. mc_portal_size = resource_size(&res);
  697. error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr,
  698. mc_portal_size, NULL,
  699. FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io);
  700. if (error < 0)
  701. return error;
  702. error = mc_get_version(mc_io, 0, &mc_version);
  703. if (error != 0) {
  704. dev_err(&pdev->dev,
  705. "mc_get_version() failed with error %d\n", error);
  706. goto error_cleanup_mc_io;
  707. }
  708. dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n",
  709. mc_version.major, mc_version.minor, mc_version.revision);
  710. error = get_mc_addr_translation_ranges(&pdev->dev,
  711. &mc->translation_ranges,
  712. &mc->num_translation_ranges);
  713. if (error < 0)
  714. goto error_cleanup_mc_io;
  715. error = dprc_get_container_id(mc_io, 0, &container_id);
  716. if (error < 0) {
  717. dev_err(&pdev->dev,
  718. "dprc_get_container_id() failed: %d\n", error);
  719. goto error_cleanup_mc_io;
  720. }
  721. memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc));
  722. error = dprc_get_api_version(mc_io, 0,
  723. &obj_desc.ver_major,
  724. &obj_desc.ver_minor);
  725. if (error < 0)
  726. goto error_cleanup_mc_io;
  727. obj_desc.vendor = FSL_MC_VENDOR_FREESCALE;
  728. strcpy(obj_desc.type, "dprc");
  729. obj_desc.id = container_id;
  730. obj_desc.irq_count = 1;
  731. obj_desc.region_count = 0;
  732. error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev);
  733. if (error < 0)
  734. goto error_cleanup_mc_io;
  735. mc->root_mc_bus_dev = mc_bus_dev;
  736. return 0;
  737. error_cleanup_mc_io:
  738. fsl_destroy_mc_io(mc_io);
  739. return error;
  740. }
  741. /**
  742. * fsl_mc_bus_remove - callback invoked when the root MC bus is being
  743. * removed
  744. */
  745. static int fsl_mc_bus_remove(struct platform_device *pdev)
  746. {
  747. struct fsl_mc *mc = platform_get_drvdata(pdev);
  748. if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev))
  749. return -EINVAL;
  750. fsl_mc_device_remove(mc->root_mc_bus_dev);
  751. fsl_destroy_mc_io(mc->root_mc_bus_dev->mc_io);
  752. mc->root_mc_bus_dev->mc_io = NULL;
  753. return 0;
  754. }
  755. static const struct of_device_id fsl_mc_bus_match_table[] = {
  756. {.compatible = "fsl,qoriq-mc",},
  757. {},
  758. };
  759. MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table);
  760. static struct platform_driver fsl_mc_bus_driver = {
  761. .driver = {
  762. .name = "fsl_mc_bus",
  763. .pm = NULL,
  764. .of_match_table = fsl_mc_bus_match_table,
  765. },
  766. .probe = fsl_mc_bus_probe,
  767. .remove = fsl_mc_bus_remove,
  768. };
  769. static int __init fsl_mc_bus_driver_init(void)
  770. {
  771. int error;
  772. error = bus_register(&fsl_mc_bus_type);
  773. if (error < 0) {
  774. pr_err("bus type registration failed: %d\n", error);
  775. goto error_cleanup_cache;
  776. }
  777. error = platform_driver_register(&fsl_mc_bus_driver);
  778. if (error < 0) {
  779. pr_err("platform_driver_register() failed: %d\n", error);
  780. goto error_cleanup_bus;
  781. }
  782. error = dprc_driver_init();
  783. if (error < 0)
  784. goto error_cleanup_driver;
  785. error = fsl_mc_allocator_driver_init();
  786. if (error < 0)
  787. goto error_cleanup_dprc_driver;
  788. return 0;
  789. error_cleanup_dprc_driver:
  790. dprc_driver_exit();
  791. error_cleanup_driver:
  792. platform_driver_unregister(&fsl_mc_bus_driver);
  793. error_cleanup_bus:
  794. bus_unregister(&fsl_mc_bus_type);
  795. error_cleanup_cache:
  796. return error;
  797. }
  798. postcore_initcall(fsl_mc_bus_driver_init);