rk3288_crypto_ahash.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. /*
  2. * Crypto acceleration support for Rockchip RK3288
  3. *
  4. * Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd
  5. *
  6. * Author: Zain Wang <zain.wang@rock-chips.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * Some ideas are from marvell/cesa.c and s5p-sss.c driver.
  13. */
  14. #include "rk3288_crypto.h"
  15. /*
  16. * IC can not process zero message hash,
  17. * so we put the fixed hash out when met zero message.
  18. */
  19. static int zero_message_process(struct ahash_request *req)
  20. {
  21. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  22. int rk_digest_size = crypto_ahash_digestsize(tfm);
  23. switch (rk_digest_size) {
  24. case SHA1_DIGEST_SIZE:
  25. memcpy(req->result, sha1_zero_message_hash, rk_digest_size);
  26. break;
  27. case SHA256_DIGEST_SIZE:
  28. memcpy(req->result, sha256_zero_message_hash, rk_digest_size);
  29. break;
  30. case MD5_DIGEST_SIZE:
  31. memcpy(req->result, md5_zero_message_hash, rk_digest_size);
  32. break;
  33. default:
  34. return -EINVAL;
  35. }
  36. return 0;
  37. }
  38. static void rk_ahash_crypto_complete(struct crypto_async_request *base, int err)
  39. {
  40. if (base->complete)
  41. base->complete(base, err);
  42. }
  43. static void rk_ahash_reg_init(struct rk_crypto_info *dev)
  44. {
  45. struct ahash_request *req = ahash_request_cast(dev->async_req);
  46. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  47. int reg_status = 0;
  48. reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL) |
  49. RK_CRYPTO_HASH_FLUSH | _SBF(0xffff, 16);
  50. CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
  51. reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL);
  52. reg_status &= (~RK_CRYPTO_HASH_FLUSH);
  53. reg_status |= _SBF(0xffff, 16);
  54. CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
  55. memset_io(dev->reg + RK_CRYPTO_HASH_DOUT_0, 0, 32);
  56. CRYPTO_WRITE(dev, RK_CRYPTO_INTENA, RK_CRYPTO_HRDMA_ERR_ENA |
  57. RK_CRYPTO_HRDMA_DONE_ENA);
  58. CRYPTO_WRITE(dev, RK_CRYPTO_INTSTS, RK_CRYPTO_HRDMA_ERR_INT |
  59. RK_CRYPTO_HRDMA_DONE_INT);
  60. CRYPTO_WRITE(dev, RK_CRYPTO_HASH_CTRL, rctx->mode |
  61. RK_CRYPTO_HASH_SWAP_DO);
  62. CRYPTO_WRITE(dev, RK_CRYPTO_CONF, RK_CRYPTO_BYTESWAP_HRFIFO |
  63. RK_CRYPTO_BYTESWAP_BRFIFO |
  64. RK_CRYPTO_BYTESWAP_BTFIFO);
  65. CRYPTO_WRITE(dev, RK_CRYPTO_HASH_MSG_LEN, dev->total);
  66. }
  67. static int rk_ahash_init(struct ahash_request *req)
  68. {
  69. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  70. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  71. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  72. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  73. rctx->fallback_req.base.flags = req->base.flags &
  74. CRYPTO_TFM_REQ_MAY_SLEEP;
  75. return crypto_ahash_init(&rctx->fallback_req);
  76. }
  77. static int rk_ahash_update(struct ahash_request *req)
  78. {
  79. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  80. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  81. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  82. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  83. rctx->fallback_req.base.flags = req->base.flags &
  84. CRYPTO_TFM_REQ_MAY_SLEEP;
  85. rctx->fallback_req.nbytes = req->nbytes;
  86. rctx->fallback_req.src = req->src;
  87. return crypto_ahash_update(&rctx->fallback_req);
  88. }
  89. static int rk_ahash_final(struct ahash_request *req)
  90. {
  91. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  92. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  93. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  94. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  95. rctx->fallback_req.base.flags = req->base.flags &
  96. CRYPTO_TFM_REQ_MAY_SLEEP;
  97. rctx->fallback_req.result = req->result;
  98. return crypto_ahash_final(&rctx->fallback_req);
  99. }
  100. static int rk_ahash_finup(struct ahash_request *req)
  101. {
  102. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  103. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  104. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  105. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  106. rctx->fallback_req.base.flags = req->base.flags &
  107. CRYPTO_TFM_REQ_MAY_SLEEP;
  108. rctx->fallback_req.nbytes = req->nbytes;
  109. rctx->fallback_req.src = req->src;
  110. rctx->fallback_req.result = req->result;
  111. return crypto_ahash_finup(&rctx->fallback_req);
  112. }
  113. static int rk_ahash_import(struct ahash_request *req, const void *in)
  114. {
  115. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  116. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  117. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  118. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  119. rctx->fallback_req.base.flags = req->base.flags &
  120. CRYPTO_TFM_REQ_MAY_SLEEP;
  121. return crypto_ahash_import(&rctx->fallback_req, in);
  122. }
  123. static int rk_ahash_export(struct ahash_request *req, void *out)
  124. {
  125. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  126. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  127. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  128. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  129. rctx->fallback_req.base.flags = req->base.flags &
  130. CRYPTO_TFM_REQ_MAY_SLEEP;
  131. return crypto_ahash_export(&rctx->fallback_req, out);
  132. }
  133. static int rk_ahash_digest(struct ahash_request *req)
  134. {
  135. struct rk_ahash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  136. struct rk_crypto_info *dev = tctx->dev;
  137. if (!req->nbytes)
  138. return zero_message_process(req);
  139. else
  140. return dev->enqueue(dev, &req->base);
  141. }
  142. static void crypto_ahash_dma_start(struct rk_crypto_info *dev)
  143. {
  144. CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAS, dev->addr_in);
  145. CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAL, (dev->count + 3) / 4);
  146. CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, RK_CRYPTO_HASH_START |
  147. (RK_CRYPTO_HASH_START << 16));
  148. }
  149. static int rk_ahash_set_data_start(struct rk_crypto_info *dev)
  150. {
  151. int err;
  152. err = dev->load_data(dev, dev->sg_src, NULL);
  153. if (!err)
  154. crypto_ahash_dma_start(dev);
  155. return err;
  156. }
  157. static int rk_ahash_start(struct rk_crypto_info *dev)
  158. {
  159. struct ahash_request *req = ahash_request_cast(dev->async_req);
  160. struct crypto_ahash *tfm;
  161. struct rk_ahash_rctx *rctx;
  162. dev->total = req->nbytes;
  163. dev->left_bytes = req->nbytes;
  164. dev->aligned = 0;
  165. dev->align_size = 4;
  166. dev->sg_dst = NULL;
  167. dev->sg_src = req->src;
  168. dev->first = req->src;
  169. dev->src_nents = sg_nents(req->src);
  170. rctx = ahash_request_ctx(req);
  171. rctx->mode = 0;
  172. tfm = crypto_ahash_reqtfm(req);
  173. switch (crypto_ahash_digestsize(tfm)) {
  174. case SHA1_DIGEST_SIZE:
  175. rctx->mode = RK_CRYPTO_HASH_SHA1;
  176. break;
  177. case SHA256_DIGEST_SIZE:
  178. rctx->mode = RK_CRYPTO_HASH_SHA256;
  179. break;
  180. case MD5_DIGEST_SIZE:
  181. rctx->mode = RK_CRYPTO_HASH_MD5;
  182. break;
  183. default:
  184. return -EINVAL;
  185. }
  186. rk_ahash_reg_init(dev);
  187. return rk_ahash_set_data_start(dev);
  188. }
  189. static int rk_ahash_crypto_rx(struct rk_crypto_info *dev)
  190. {
  191. int err = 0;
  192. struct ahash_request *req = ahash_request_cast(dev->async_req);
  193. struct crypto_ahash *tfm;
  194. dev->unload_data(dev);
  195. if (dev->left_bytes) {
  196. if (dev->aligned) {
  197. if (sg_is_last(dev->sg_src)) {
  198. dev_warn(dev->dev, "[%s:%d], Lack of data\n",
  199. __func__, __LINE__);
  200. err = -ENOMEM;
  201. goto out_rx;
  202. }
  203. dev->sg_src = sg_next(dev->sg_src);
  204. }
  205. err = rk_ahash_set_data_start(dev);
  206. } else {
  207. /*
  208. * it will take some time to process date after last dma
  209. * transmission.
  210. *
  211. * waiting time is relative with the last date len,
  212. * so cannot set a fixed time here.
  213. * 10us makes system not call here frequently wasting
  214. * efficiency, and make it response quickly when dma
  215. * complete.
  216. */
  217. while (!CRYPTO_READ(dev, RK_CRYPTO_HASH_STS))
  218. udelay(10);
  219. tfm = crypto_ahash_reqtfm(req);
  220. memcpy_fromio(req->result, dev->reg + RK_CRYPTO_HASH_DOUT_0,
  221. crypto_ahash_digestsize(tfm));
  222. dev->complete(dev->async_req, 0);
  223. tasklet_schedule(&dev->queue_task);
  224. }
  225. out_rx:
  226. return err;
  227. }
  228. static int rk_cra_hash_init(struct crypto_tfm *tfm)
  229. {
  230. struct rk_ahash_ctx *tctx = crypto_tfm_ctx(tfm);
  231. struct rk_crypto_tmp *algt;
  232. struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
  233. const char *alg_name = crypto_tfm_alg_name(tfm);
  234. algt = container_of(alg, struct rk_crypto_tmp, alg.hash);
  235. tctx->dev = algt->dev;
  236. tctx->dev->addr_vir = (void *)__get_free_page(GFP_KERNEL);
  237. if (!tctx->dev->addr_vir) {
  238. dev_err(tctx->dev->dev, "failed to kmalloc for addr_vir\n");
  239. return -ENOMEM;
  240. }
  241. tctx->dev->start = rk_ahash_start;
  242. tctx->dev->update = rk_ahash_crypto_rx;
  243. tctx->dev->complete = rk_ahash_crypto_complete;
  244. /* for fallback */
  245. tctx->fallback_tfm = crypto_alloc_ahash(alg_name, 0,
  246. CRYPTO_ALG_NEED_FALLBACK);
  247. if (IS_ERR(tctx->fallback_tfm)) {
  248. dev_err(tctx->dev->dev, "Could not load fallback driver.\n");
  249. return PTR_ERR(tctx->fallback_tfm);
  250. }
  251. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  252. sizeof(struct rk_ahash_rctx) +
  253. crypto_ahash_reqsize(tctx->fallback_tfm));
  254. return tctx->dev->enable_clk(tctx->dev);
  255. }
  256. static void rk_cra_hash_exit(struct crypto_tfm *tfm)
  257. {
  258. struct rk_ahash_ctx *tctx = crypto_tfm_ctx(tfm);
  259. free_page((unsigned long)tctx->dev->addr_vir);
  260. return tctx->dev->disable_clk(tctx->dev);
  261. }
  262. struct rk_crypto_tmp rk_ahash_sha1 = {
  263. .type = ALG_TYPE_HASH,
  264. .alg.hash = {
  265. .init = rk_ahash_init,
  266. .update = rk_ahash_update,
  267. .final = rk_ahash_final,
  268. .finup = rk_ahash_finup,
  269. .export = rk_ahash_export,
  270. .import = rk_ahash_import,
  271. .digest = rk_ahash_digest,
  272. .halg = {
  273. .digestsize = SHA1_DIGEST_SIZE,
  274. .statesize = sizeof(struct sha1_state),
  275. .base = {
  276. .cra_name = "sha1",
  277. .cra_driver_name = "rk-sha1",
  278. .cra_priority = 300,
  279. .cra_flags = CRYPTO_ALG_ASYNC |
  280. CRYPTO_ALG_NEED_FALLBACK,
  281. .cra_blocksize = SHA1_BLOCK_SIZE,
  282. .cra_ctxsize = sizeof(struct rk_ahash_ctx),
  283. .cra_alignmask = 3,
  284. .cra_init = rk_cra_hash_init,
  285. .cra_exit = rk_cra_hash_exit,
  286. .cra_module = THIS_MODULE,
  287. }
  288. }
  289. }
  290. };
  291. struct rk_crypto_tmp rk_ahash_sha256 = {
  292. .type = ALG_TYPE_HASH,
  293. .alg.hash = {
  294. .init = rk_ahash_init,
  295. .update = rk_ahash_update,
  296. .final = rk_ahash_final,
  297. .finup = rk_ahash_finup,
  298. .export = rk_ahash_export,
  299. .import = rk_ahash_import,
  300. .digest = rk_ahash_digest,
  301. .halg = {
  302. .digestsize = SHA256_DIGEST_SIZE,
  303. .statesize = sizeof(struct sha256_state),
  304. .base = {
  305. .cra_name = "sha256",
  306. .cra_driver_name = "rk-sha256",
  307. .cra_priority = 300,
  308. .cra_flags = CRYPTO_ALG_ASYNC |
  309. CRYPTO_ALG_NEED_FALLBACK,
  310. .cra_blocksize = SHA256_BLOCK_SIZE,
  311. .cra_ctxsize = sizeof(struct rk_ahash_ctx),
  312. .cra_alignmask = 3,
  313. .cra_init = rk_cra_hash_init,
  314. .cra_exit = rk_cra_hash_exit,
  315. .cra_module = THIS_MODULE,
  316. }
  317. }
  318. }
  319. };
  320. struct rk_crypto_tmp rk_ahash_md5 = {
  321. .type = ALG_TYPE_HASH,
  322. .alg.hash = {
  323. .init = rk_ahash_init,
  324. .update = rk_ahash_update,
  325. .final = rk_ahash_final,
  326. .finup = rk_ahash_finup,
  327. .export = rk_ahash_export,
  328. .import = rk_ahash_import,
  329. .digest = rk_ahash_digest,
  330. .halg = {
  331. .digestsize = MD5_DIGEST_SIZE,
  332. .statesize = sizeof(struct md5_state),
  333. .base = {
  334. .cra_name = "md5",
  335. .cra_driver_name = "rk-md5",
  336. .cra_priority = 300,
  337. .cra_flags = CRYPTO_ALG_ASYNC |
  338. CRYPTO_ALG_NEED_FALLBACK,
  339. .cra_blocksize = SHA1_BLOCK_SIZE,
  340. .cra_ctxsize = sizeof(struct rk_ahash_ctx),
  341. .cra_alignmask = 3,
  342. .cra_init = rk_cra_hash_init,
  343. .cra_exit = rk_cra_hash_exit,
  344. .cra_module = THIS_MODULE,
  345. }
  346. }
  347. }
  348. };