nbpfaxi.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528
  1. /*
  2. * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
  3. * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/bitmap.h>
  10. #include <linux/bitops.h>
  11. #include <linux/clk.h>
  12. #include <linux/dma-mapping.h>
  13. #include <linux/dmaengine.h>
  14. #include <linux/err.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/io.h>
  17. #include <linux/log2.h>
  18. #include <linux/module.h>
  19. #include <linux/of.h>
  20. #include <linux/of_device.h>
  21. #include <linux/of_dma.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/slab.h>
  24. #include <dt-bindings/dma/nbpfaxi.h>
  25. #include "dmaengine.h"
  26. #define NBPF_REG_CHAN_OFFSET 0
  27. #define NBPF_REG_CHAN_SIZE 0x40
  28. /* Channel Current Transaction Byte register */
  29. #define NBPF_CHAN_CUR_TR_BYTE 0x20
  30. /* Channel Status register */
  31. #define NBPF_CHAN_STAT 0x24
  32. #define NBPF_CHAN_STAT_EN 1
  33. #define NBPF_CHAN_STAT_TACT 4
  34. #define NBPF_CHAN_STAT_ERR 0x10
  35. #define NBPF_CHAN_STAT_END 0x20
  36. #define NBPF_CHAN_STAT_TC 0x40
  37. #define NBPF_CHAN_STAT_DER 0x400
  38. /* Channel Control register */
  39. #define NBPF_CHAN_CTRL 0x28
  40. #define NBPF_CHAN_CTRL_SETEN 1
  41. #define NBPF_CHAN_CTRL_CLREN 2
  42. #define NBPF_CHAN_CTRL_STG 4
  43. #define NBPF_CHAN_CTRL_SWRST 8
  44. #define NBPF_CHAN_CTRL_CLRRQ 0x10
  45. #define NBPF_CHAN_CTRL_CLREND 0x20
  46. #define NBPF_CHAN_CTRL_CLRTC 0x40
  47. #define NBPF_CHAN_CTRL_SETSUS 0x100
  48. #define NBPF_CHAN_CTRL_CLRSUS 0x200
  49. /* Channel Configuration register */
  50. #define NBPF_CHAN_CFG 0x2c
  51. #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
  52. #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
  53. #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
  54. #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
  55. #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
  56. #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
  57. #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
  58. #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
  59. #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
  60. #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
  61. #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
  62. #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
  63. #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
  64. #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
  65. #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
  66. #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
  67. #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
  68. #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
  69. #define NBPF_CHAN_NXLA 0x38
  70. #define NBPF_CHAN_CRLA 0x3c
  71. /* Link Header field */
  72. #define NBPF_HEADER_LV 1
  73. #define NBPF_HEADER_LE 2
  74. #define NBPF_HEADER_WBD 4
  75. #define NBPF_HEADER_DIM 8
  76. #define NBPF_CTRL 0x300
  77. #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
  78. #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
  79. #define NBPF_DSTAT_ER 0x314
  80. #define NBPF_DSTAT_END 0x318
  81. #define NBPF_DMA_BUSWIDTHS \
  82. (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  83. BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  84. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  85. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  86. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
  87. struct nbpf_config {
  88. int num_channels;
  89. int buffer_size;
  90. };
  91. /*
  92. * We've got 3 types of objects, used to describe DMA transfers:
  93. * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
  94. * in it, used to communicate with the user
  95. * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
  96. * queuing, these must be DMAable, using either the streaming DMA API or
  97. * allocated from coherent memory - one per SG segment
  98. * 3. one per SG segment descriptors, used to manage HW link descriptors from
  99. * (2). They do not have to be DMAable. They can either be (a) allocated
  100. * together with link descriptors as mixed (DMA / CPU) objects, or (b)
  101. * separately. Even if allocated separately it would be best to link them
  102. * to link descriptors once during channel resource allocation and always
  103. * use them as a single object.
  104. * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
  105. * treated as a single SG segment descriptor.
  106. */
  107. struct nbpf_link_reg {
  108. u32 header;
  109. u32 src_addr;
  110. u32 dst_addr;
  111. u32 transaction_size;
  112. u32 config;
  113. u32 interval;
  114. u32 extension;
  115. u32 next;
  116. } __packed;
  117. struct nbpf_device;
  118. struct nbpf_channel;
  119. struct nbpf_desc;
  120. struct nbpf_link_desc {
  121. struct nbpf_link_reg *hwdesc;
  122. dma_addr_t hwdesc_dma_addr;
  123. struct nbpf_desc *desc;
  124. struct list_head node;
  125. };
  126. /**
  127. * struct nbpf_desc - DMA transfer descriptor
  128. * @async_tx: dmaengine object
  129. * @user_wait: waiting for a user ack
  130. * @length: total transfer length
  131. * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
  132. * @node: member in channel descriptor lists
  133. */
  134. struct nbpf_desc {
  135. struct dma_async_tx_descriptor async_tx;
  136. bool user_wait;
  137. size_t length;
  138. struct nbpf_channel *chan;
  139. struct list_head sg;
  140. struct list_head node;
  141. };
  142. /* Take a wild guess: allocate 4 segments per descriptor */
  143. #define NBPF_SEGMENTS_PER_DESC 4
  144. #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
  145. (sizeof(struct nbpf_desc) + \
  146. NBPF_SEGMENTS_PER_DESC * \
  147. (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
  148. #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
  149. struct nbpf_desc_page {
  150. struct list_head node;
  151. struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
  152. struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
  153. struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
  154. };
  155. /**
  156. * struct nbpf_channel - one DMAC channel
  157. * @dma_chan: standard dmaengine channel object
  158. * @base: register address base
  159. * @nbpf: DMAC
  160. * @name: IRQ name
  161. * @irq: IRQ number
  162. * @slave_addr: address for slave DMA
  163. * @slave_width:slave data size in bytes
  164. * @slave_burst:maximum slave burst size in bytes
  165. * @terminal: DMA terminal, assigned to this channel
  166. * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
  167. * @flags: configuration flags from DT
  168. * @lock: protect descriptor lists
  169. * @free_links: list of free link descriptors
  170. * @free: list of free descriptors
  171. * @queued: list of queued descriptors
  172. * @active: list of descriptors, scheduled for processing
  173. * @done: list of completed descriptors, waiting post-processing
  174. * @desc_page: list of additionally allocated descriptor pages - if any
  175. */
  176. struct nbpf_channel {
  177. struct dma_chan dma_chan;
  178. struct tasklet_struct tasklet;
  179. void __iomem *base;
  180. struct nbpf_device *nbpf;
  181. char name[16];
  182. int irq;
  183. dma_addr_t slave_src_addr;
  184. size_t slave_src_width;
  185. size_t slave_src_burst;
  186. dma_addr_t slave_dst_addr;
  187. size_t slave_dst_width;
  188. size_t slave_dst_burst;
  189. unsigned int terminal;
  190. u32 dmarq_cfg;
  191. unsigned long flags;
  192. spinlock_t lock;
  193. struct list_head free_links;
  194. struct list_head free;
  195. struct list_head queued;
  196. struct list_head active;
  197. struct list_head done;
  198. struct list_head desc_page;
  199. struct nbpf_desc *running;
  200. bool paused;
  201. };
  202. struct nbpf_device {
  203. struct dma_device dma_dev;
  204. void __iomem *base;
  205. u32 max_burst_mem_read;
  206. u32 max_burst_mem_write;
  207. struct clk *clk;
  208. const struct nbpf_config *config;
  209. unsigned int eirq;
  210. struct nbpf_channel chan[];
  211. };
  212. enum nbpf_model {
  213. NBPF1B4,
  214. NBPF1B8,
  215. NBPF1B16,
  216. NBPF4B4,
  217. NBPF4B8,
  218. NBPF4B16,
  219. NBPF8B4,
  220. NBPF8B8,
  221. NBPF8B16,
  222. };
  223. static struct nbpf_config nbpf_cfg[] = {
  224. [NBPF1B4] = {
  225. .num_channels = 1,
  226. .buffer_size = 4,
  227. },
  228. [NBPF1B8] = {
  229. .num_channels = 1,
  230. .buffer_size = 8,
  231. },
  232. [NBPF1B16] = {
  233. .num_channels = 1,
  234. .buffer_size = 16,
  235. },
  236. [NBPF4B4] = {
  237. .num_channels = 4,
  238. .buffer_size = 4,
  239. },
  240. [NBPF4B8] = {
  241. .num_channels = 4,
  242. .buffer_size = 8,
  243. },
  244. [NBPF4B16] = {
  245. .num_channels = 4,
  246. .buffer_size = 16,
  247. },
  248. [NBPF8B4] = {
  249. .num_channels = 8,
  250. .buffer_size = 4,
  251. },
  252. [NBPF8B8] = {
  253. .num_channels = 8,
  254. .buffer_size = 8,
  255. },
  256. [NBPF8B16] = {
  257. .num_channels = 8,
  258. .buffer_size = 16,
  259. },
  260. };
  261. #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
  262. /*
  263. * dmaengine drivers seem to have a lot in common and instead of sharing more
  264. * code, they reimplement those common algorithms independently. In this driver
  265. * we try to separate the hardware-specific part from the (largely) generic
  266. * part. This improves code readability and makes it possible in the future to
  267. * reuse the generic code in form of a helper library. That generic code should
  268. * be suitable for various DMA controllers, using transfer descriptors in RAM
  269. * and pushing one SG list at a time to the DMA controller.
  270. */
  271. /* Hardware-specific part */
  272. static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
  273. unsigned int offset)
  274. {
  275. u32 data = ioread32(chan->base + offset);
  276. dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
  277. __func__, chan->base, offset, data);
  278. return data;
  279. }
  280. static inline void nbpf_chan_write(struct nbpf_channel *chan,
  281. unsigned int offset, u32 data)
  282. {
  283. iowrite32(data, chan->base + offset);
  284. dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
  285. __func__, chan->base, offset, data);
  286. }
  287. static inline u32 nbpf_read(struct nbpf_device *nbpf,
  288. unsigned int offset)
  289. {
  290. u32 data = ioread32(nbpf->base + offset);
  291. dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
  292. __func__, nbpf->base, offset, data);
  293. return data;
  294. }
  295. static inline void nbpf_write(struct nbpf_device *nbpf,
  296. unsigned int offset, u32 data)
  297. {
  298. iowrite32(data, nbpf->base + offset);
  299. dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
  300. __func__, nbpf->base, offset, data);
  301. }
  302. static void nbpf_chan_halt(struct nbpf_channel *chan)
  303. {
  304. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
  305. }
  306. static bool nbpf_status_get(struct nbpf_channel *chan)
  307. {
  308. u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
  309. return status & BIT(chan - chan->nbpf->chan);
  310. }
  311. static void nbpf_status_ack(struct nbpf_channel *chan)
  312. {
  313. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
  314. }
  315. static u32 nbpf_error_get(struct nbpf_device *nbpf)
  316. {
  317. return nbpf_read(nbpf, NBPF_DSTAT_ER);
  318. }
  319. static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
  320. {
  321. return nbpf->chan + __ffs(error);
  322. }
  323. static void nbpf_error_clear(struct nbpf_channel *chan)
  324. {
  325. u32 status;
  326. int i;
  327. /* Stop the channel, make sure DMA has been aborted */
  328. nbpf_chan_halt(chan);
  329. for (i = 1000; i; i--) {
  330. status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
  331. if (!(status & NBPF_CHAN_STAT_TACT))
  332. break;
  333. cpu_relax();
  334. }
  335. if (!i)
  336. dev_err(chan->dma_chan.device->dev,
  337. "%s(): abort timeout, channel status 0x%x\n", __func__, status);
  338. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
  339. }
  340. static int nbpf_start(struct nbpf_desc *desc)
  341. {
  342. struct nbpf_channel *chan = desc->chan;
  343. struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
  344. nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
  345. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
  346. chan->paused = false;
  347. /* Software trigger MEMCPY - only MEMCPY uses the block mode */
  348. if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
  349. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
  350. dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
  351. nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
  352. return 0;
  353. }
  354. static void nbpf_chan_prepare(struct nbpf_channel *chan)
  355. {
  356. chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
  357. (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
  358. (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
  359. NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
  360. chan->terminal;
  361. }
  362. static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
  363. {
  364. /* Don't output DMAACK */
  365. chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
  366. chan->terminal = 0;
  367. chan->flags = 0;
  368. }
  369. static void nbpf_chan_configure(struct nbpf_channel *chan)
  370. {
  371. /*
  372. * We assume, that only the link mode and DMA request line configuration
  373. * have to be set in the configuration register manually. Dynamic
  374. * per-transfer configuration will be loaded from transfer descriptors.
  375. */
  376. nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
  377. }
  378. static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
  379. enum dma_transfer_direction direction)
  380. {
  381. int max_burst = nbpf->config->buffer_size * 8;
  382. if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
  383. switch (direction) {
  384. case DMA_MEM_TO_MEM:
  385. max_burst = min_not_zero(nbpf->max_burst_mem_read,
  386. nbpf->max_burst_mem_write);
  387. break;
  388. case DMA_MEM_TO_DEV:
  389. if (nbpf->max_burst_mem_read)
  390. max_burst = nbpf->max_burst_mem_read;
  391. break;
  392. case DMA_DEV_TO_MEM:
  393. if (nbpf->max_burst_mem_write)
  394. max_burst = nbpf->max_burst_mem_write;
  395. break;
  396. case DMA_DEV_TO_DEV:
  397. default:
  398. break;
  399. }
  400. }
  401. /* Maximum supported bursts depend on the buffer size */
  402. return min_t(int, __ffs(size), ilog2(max_burst));
  403. }
  404. static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
  405. enum dma_slave_buswidth width, u32 burst)
  406. {
  407. size_t size;
  408. if (!burst)
  409. burst = 1;
  410. switch (width) {
  411. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  412. size = 8 * burst;
  413. break;
  414. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  415. size = 4 * burst;
  416. break;
  417. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  418. size = 2 * burst;
  419. break;
  420. default:
  421. pr_warn("%s(): invalid bus width %u\n", __func__, width);
  422. /* fall through */
  423. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  424. size = burst;
  425. }
  426. return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
  427. }
  428. /*
  429. * We need a way to recognise slaves, whose data is sent "raw" over the bus,
  430. * i.e. it isn't known in advance how many bytes will be received. Therefore
  431. * the slave driver has to provide a "large enough" buffer and either read the
  432. * buffer, when it is full, or detect, that some data has arrived, then wait for
  433. * a timeout, if no more data arrives - receive what's already there. We want to
  434. * handle such slaves in a special way to allow an optimised mode for other
  435. * users, for whom the amount of data is known in advance. So far there's no way
  436. * to recognise such slaves. We use a data-width check to distinguish between
  437. * the SD host and the PL011 UART.
  438. */
  439. static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
  440. enum dma_transfer_direction direction,
  441. dma_addr_t src, dma_addr_t dst, size_t size, bool last)
  442. {
  443. struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
  444. struct nbpf_desc *desc = ldesc->desc;
  445. struct nbpf_channel *chan = desc->chan;
  446. struct device *dev = chan->dma_chan.device->dev;
  447. size_t mem_xfer, slave_xfer;
  448. bool can_burst;
  449. hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
  450. (last ? NBPF_HEADER_LE : 0);
  451. hwdesc->src_addr = src;
  452. hwdesc->dst_addr = dst;
  453. hwdesc->transaction_size = size;
  454. /*
  455. * set config: SAD, DAD, DDS, SDS, etc.
  456. * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
  457. * but it is important to have transaction size a multiple of both
  458. * receiver and transmitter transfer sizes. It is also possible to use
  459. * different RAM and device transfer sizes, and it does work well with
  460. * some devices, e.g. with V08R07S01E SD host controllers, which can use
  461. * 128 byte transfers. But this doesn't work with other devices,
  462. * especially when the transaction size is unknown. This is the case,
  463. * e.g. with serial drivers like amba-pl011.c. For reception it sets up
  464. * the transaction size of 4K and if fewer bytes are received, it
  465. * pauses DMA and reads out data received via DMA as well as those left
  466. * in the Rx FIFO. For this to work with the RAM side using burst
  467. * transfers we enable the SBE bit and terminate the transfer in our
  468. * .device_pause handler.
  469. */
  470. mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
  471. switch (direction) {
  472. case DMA_DEV_TO_MEM:
  473. can_burst = chan->slave_src_width >= 3;
  474. slave_xfer = min(mem_xfer, can_burst ?
  475. chan->slave_src_burst : chan->slave_src_width);
  476. /*
  477. * Is the slave narrower than 64 bits, i.e. isn't using the full
  478. * bus width and cannot use bursts?
  479. */
  480. if (mem_xfer > chan->slave_src_burst && !can_burst)
  481. mem_xfer = chan->slave_src_burst;
  482. /* Device-to-RAM DMA is unreliable without REQD set */
  483. hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
  484. (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
  485. NBPF_CHAN_CFG_SBE;
  486. break;
  487. case DMA_MEM_TO_DEV:
  488. slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
  489. chan->slave_dst_burst : chan->slave_dst_width);
  490. hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
  491. (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
  492. break;
  493. case DMA_MEM_TO_MEM:
  494. hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
  495. (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
  496. (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
  497. break;
  498. default:
  499. return -EINVAL;
  500. }
  501. hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
  502. NBPF_CHAN_CFG_DMS;
  503. dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
  504. __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
  505. hwdesc->config, size, &src, &dst);
  506. dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
  507. DMA_TO_DEVICE);
  508. return 0;
  509. }
  510. static size_t nbpf_bytes_left(struct nbpf_channel *chan)
  511. {
  512. return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
  513. }
  514. static void nbpf_configure(struct nbpf_device *nbpf)
  515. {
  516. nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
  517. }
  518. /* Generic part */
  519. /* DMA ENGINE functions */
  520. static void nbpf_issue_pending(struct dma_chan *dchan)
  521. {
  522. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  523. unsigned long flags;
  524. dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
  525. spin_lock_irqsave(&chan->lock, flags);
  526. if (list_empty(&chan->queued))
  527. goto unlock;
  528. list_splice_tail_init(&chan->queued, &chan->active);
  529. if (!chan->running) {
  530. struct nbpf_desc *desc = list_first_entry(&chan->active,
  531. struct nbpf_desc, node);
  532. if (!nbpf_start(desc))
  533. chan->running = desc;
  534. }
  535. unlock:
  536. spin_unlock_irqrestore(&chan->lock, flags);
  537. }
  538. static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
  539. dma_cookie_t cookie, struct dma_tx_state *state)
  540. {
  541. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  542. enum dma_status status = dma_cookie_status(dchan, cookie, state);
  543. if (state) {
  544. dma_cookie_t running;
  545. unsigned long flags;
  546. spin_lock_irqsave(&chan->lock, flags);
  547. running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
  548. if (cookie == running) {
  549. state->residue = nbpf_bytes_left(chan);
  550. dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
  551. state->residue);
  552. } else if (status == DMA_IN_PROGRESS) {
  553. struct nbpf_desc *desc;
  554. bool found = false;
  555. list_for_each_entry(desc, &chan->active, node)
  556. if (desc->async_tx.cookie == cookie) {
  557. found = true;
  558. break;
  559. }
  560. if (!found)
  561. list_for_each_entry(desc, &chan->queued, node)
  562. if (desc->async_tx.cookie == cookie) {
  563. found = true;
  564. break;
  565. }
  566. state->residue = found ? desc->length : 0;
  567. }
  568. spin_unlock_irqrestore(&chan->lock, flags);
  569. }
  570. if (chan->paused)
  571. status = DMA_PAUSED;
  572. return status;
  573. }
  574. static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
  575. {
  576. struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
  577. struct nbpf_channel *chan = desc->chan;
  578. unsigned long flags;
  579. dma_cookie_t cookie;
  580. spin_lock_irqsave(&chan->lock, flags);
  581. cookie = dma_cookie_assign(tx);
  582. list_add_tail(&desc->node, &chan->queued);
  583. spin_unlock_irqrestore(&chan->lock, flags);
  584. dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
  585. return cookie;
  586. }
  587. static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
  588. {
  589. struct dma_chan *dchan = &chan->dma_chan;
  590. struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
  591. struct nbpf_link_desc *ldesc;
  592. struct nbpf_link_reg *hwdesc;
  593. struct nbpf_desc *desc;
  594. LIST_HEAD(head);
  595. LIST_HEAD(lhead);
  596. int i;
  597. struct device *dev = dchan->device->dev;
  598. if (!dpage)
  599. return -ENOMEM;
  600. dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
  601. __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
  602. for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
  603. i < ARRAY_SIZE(dpage->ldesc);
  604. i++, ldesc++, hwdesc++) {
  605. ldesc->hwdesc = hwdesc;
  606. list_add_tail(&ldesc->node, &lhead);
  607. ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
  608. hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
  609. dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
  610. hwdesc, &ldesc->hwdesc_dma_addr);
  611. }
  612. for (i = 0, desc = dpage->desc;
  613. i < ARRAY_SIZE(dpage->desc);
  614. i++, desc++) {
  615. dma_async_tx_descriptor_init(&desc->async_tx, dchan);
  616. desc->async_tx.tx_submit = nbpf_tx_submit;
  617. desc->chan = chan;
  618. INIT_LIST_HEAD(&desc->sg);
  619. list_add_tail(&desc->node, &head);
  620. }
  621. /*
  622. * This function cannot be called from interrupt context, so, no need to
  623. * save flags
  624. */
  625. spin_lock_irq(&chan->lock);
  626. list_splice_tail(&lhead, &chan->free_links);
  627. list_splice_tail(&head, &chan->free);
  628. list_add(&dpage->node, &chan->desc_page);
  629. spin_unlock_irq(&chan->lock);
  630. return ARRAY_SIZE(dpage->desc);
  631. }
  632. static void nbpf_desc_put(struct nbpf_desc *desc)
  633. {
  634. struct nbpf_channel *chan = desc->chan;
  635. struct nbpf_link_desc *ldesc, *tmp;
  636. unsigned long flags;
  637. spin_lock_irqsave(&chan->lock, flags);
  638. list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
  639. list_move(&ldesc->node, &chan->free_links);
  640. list_add(&desc->node, &chan->free);
  641. spin_unlock_irqrestore(&chan->lock, flags);
  642. }
  643. static void nbpf_scan_acked(struct nbpf_channel *chan)
  644. {
  645. struct nbpf_desc *desc, *tmp;
  646. unsigned long flags;
  647. LIST_HEAD(head);
  648. spin_lock_irqsave(&chan->lock, flags);
  649. list_for_each_entry_safe(desc, tmp, &chan->done, node)
  650. if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
  651. list_move(&desc->node, &head);
  652. desc->user_wait = false;
  653. }
  654. spin_unlock_irqrestore(&chan->lock, flags);
  655. list_for_each_entry_safe(desc, tmp, &head, node) {
  656. list_del(&desc->node);
  657. nbpf_desc_put(desc);
  658. }
  659. }
  660. /*
  661. * We have to allocate descriptors with the channel lock dropped. This means,
  662. * before we re-acquire the lock buffers can be taken already, so we have to
  663. * re-check after re-acquiring the lock and possibly retry, if buffers are gone
  664. * again.
  665. */
  666. static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
  667. {
  668. struct nbpf_desc *desc = NULL;
  669. struct nbpf_link_desc *ldesc, *prev = NULL;
  670. nbpf_scan_acked(chan);
  671. spin_lock_irq(&chan->lock);
  672. do {
  673. int i = 0, ret;
  674. if (list_empty(&chan->free)) {
  675. /* No more free descriptors */
  676. spin_unlock_irq(&chan->lock);
  677. ret = nbpf_desc_page_alloc(chan);
  678. if (ret < 0)
  679. return NULL;
  680. spin_lock_irq(&chan->lock);
  681. continue;
  682. }
  683. desc = list_first_entry(&chan->free, struct nbpf_desc, node);
  684. list_del(&desc->node);
  685. do {
  686. if (list_empty(&chan->free_links)) {
  687. /* No more free link descriptors */
  688. spin_unlock_irq(&chan->lock);
  689. ret = nbpf_desc_page_alloc(chan);
  690. if (ret < 0) {
  691. nbpf_desc_put(desc);
  692. return NULL;
  693. }
  694. spin_lock_irq(&chan->lock);
  695. continue;
  696. }
  697. ldesc = list_first_entry(&chan->free_links,
  698. struct nbpf_link_desc, node);
  699. ldesc->desc = desc;
  700. if (prev)
  701. prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
  702. prev = ldesc;
  703. list_move_tail(&ldesc->node, &desc->sg);
  704. i++;
  705. } while (i < len);
  706. } while (!desc);
  707. prev->hwdesc->next = 0;
  708. spin_unlock_irq(&chan->lock);
  709. return desc;
  710. }
  711. static void nbpf_chan_idle(struct nbpf_channel *chan)
  712. {
  713. struct nbpf_desc *desc, *tmp;
  714. unsigned long flags;
  715. LIST_HEAD(head);
  716. spin_lock_irqsave(&chan->lock, flags);
  717. list_splice_init(&chan->done, &head);
  718. list_splice_init(&chan->active, &head);
  719. list_splice_init(&chan->queued, &head);
  720. chan->running = NULL;
  721. spin_unlock_irqrestore(&chan->lock, flags);
  722. list_for_each_entry_safe(desc, tmp, &head, node) {
  723. dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
  724. __func__, desc, desc->async_tx.cookie);
  725. list_del(&desc->node);
  726. nbpf_desc_put(desc);
  727. }
  728. }
  729. static int nbpf_pause(struct dma_chan *dchan)
  730. {
  731. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  732. dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
  733. chan->paused = true;
  734. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
  735. /* See comment in nbpf_prep_one() */
  736. nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
  737. return 0;
  738. }
  739. static int nbpf_terminate_all(struct dma_chan *dchan)
  740. {
  741. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  742. dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
  743. dev_dbg(dchan->device->dev, "Terminating\n");
  744. nbpf_chan_halt(chan);
  745. nbpf_chan_idle(chan);
  746. return 0;
  747. }
  748. static int nbpf_config(struct dma_chan *dchan,
  749. struct dma_slave_config *config)
  750. {
  751. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  752. dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
  753. /*
  754. * We could check config->slave_id to match chan->terminal here,
  755. * but with DT they would be coming from the same source, so
  756. * such a check would be superflous
  757. */
  758. chan->slave_dst_addr = config->dst_addr;
  759. chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
  760. config->dst_addr_width, 1);
  761. chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
  762. config->dst_addr_width,
  763. config->dst_maxburst);
  764. chan->slave_src_addr = config->src_addr;
  765. chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
  766. config->src_addr_width, 1);
  767. chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
  768. config->src_addr_width,
  769. config->src_maxburst);
  770. return 0;
  771. }
  772. static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
  773. struct scatterlist *src_sg, struct scatterlist *dst_sg,
  774. size_t len, enum dma_transfer_direction direction,
  775. unsigned long flags)
  776. {
  777. struct nbpf_link_desc *ldesc;
  778. struct scatterlist *mem_sg;
  779. struct nbpf_desc *desc;
  780. bool inc_src, inc_dst;
  781. size_t data_len = 0;
  782. int i = 0;
  783. switch (direction) {
  784. case DMA_DEV_TO_MEM:
  785. mem_sg = dst_sg;
  786. inc_src = false;
  787. inc_dst = true;
  788. break;
  789. case DMA_MEM_TO_DEV:
  790. mem_sg = src_sg;
  791. inc_src = true;
  792. inc_dst = false;
  793. break;
  794. default:
  795. case DMA_MEM_TO_MEM:
  796. mem_sg = src_sg;
  797. inc_src = true;
  798. inc_dst = true;
  799. }
  800. desc = nbpf_desc_get(chan, len);
  801. if (!desc)
  802. return NULL;
  803. desc->async_tx.flags = flags;
  804. desc->async_tx.cookie = -EBUSY;
  805. desc->user_wait = false;
  806. /*
  807. * This is a private descriptor list, and we own the descriptor. No need
  808. * to lock.
  809. */
  810. list_for_each_entry(ldesc, &desc->sg, node) {
  811. int ret = nbpf_prep_one(ldesc, direction,
  812. sg_dma_address(src_sg),
  813. sg_dma_address(dst_sg),
  814. sg_dma_len(mem_sg),
  815. i == len - 1);
  816. if (ret < 0) {
  817. nbpf_desc_put(desc);
  818. return NULL;
  819. }
  820. data_len += sg_dma_len(mem_sg);
  821. if (inc_src)
  822. src_sg = sg_next(src_sg);
  823. if (inc_dst)
  824. dst_sg = sg_next(dst_sg);
  825. mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
  826. i++;
  827. }
  828. desc->length = data_len;
  829. /* The user has to return the descriptor to us ASAP via .tx_submit() */
  830. return &desc->async_tx;
  831. }
  832. static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
  833. struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
  834. size_t len, unsigned long flags)
  835. {
  836. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  837. struct scatterlist dst_sg;
  838. struct scatterlist src_sg;
  839. sg_init_table(&dst_sg, 1);
  840. sg_init_table(&src_sg, 1);
  841. sg_dma_address(&dst_sg) = dst;
  842. sg_dma_address(&src_sg) = src;
  843. sg_dma_len(&dst_sg) = len;
  844. sg_dma_len(&src_sg) = len;
  845. dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
  846. __func__, len, &src, &dst);
  847. return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
  848. DMA_MEM_TO_MEM, flags);
  849. }
  850. static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
  851. struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
  852. enum dma_transfer_direction direction, unsigned long flags, void *context)
  853. {
  854. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  855. struct scatterlist slave_sg;
  856. dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
  857. sg_init_table(&slave_sg, 1);
  858. switch (direction) {
  859. case DMA_MEM_TO_DEV:
  860. sg_dma_address(&slave_sg) = chan->slave_dst_addr;
  861. return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
  862. direction, flags);
  863. case DMA_DEV_TO_MEM:
  864. sg_dma_address(&slave_sg) = chan->slave_src_addr;
  865. return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
  866. direction, flags);
  867. default:
  868. return NULL;
  869. }
  870. }
  871. static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
  872. {
  873. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  874. int ret;
  875. INIT_LIST_HEAD(&chan->free);
  876. INIT_LIST_HEAD(&chan->free_links);
  877. INIT_LIST_HEAD(&chan->queued);
  878. INIT_LIST_HEAD(&chan->active);
  879. INIT_LIST_HEAD(&chan->done);
  880. ret = nbpf_desc_page_alloc(chan);
  881. if (ret < 0)
  882. return ret;
  883. dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
  884. chan->terminal);
  885. nbpf_chan_configure(chan);
  886. return ret;
  887. }
  888. static void nbpf_free_chan_resources(struct dma_chan *dchan)
  889. {
  890. struct nbpf_channel *chan = nbpf_to_chan(dchan);
  891. struct nbpf_desc_page *dpage, *tmp;
  892. dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
  893. nbpf_chan_halt(chan);
  894. nbpf_chan_idle(chan);
  895. /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
  896. nbpf_chan_prepare_default(chan);
  897. list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
  898. struct nbpf_link_desc *ldesc;
  899. int i;
  900. list_del(&dpage->node);
  901. for (i = 0, ldesc = dpage->ldesc;
  902. i < ARRAY_SIZE(dpage->ldesc);
  903. i++, ldesc++)
  904. dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
  905. sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
  906. free_page((unsigned long)dpage);
  907. }
  908. }
  909. static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
  910. struct of_dma *ofdma)
  911. {
  912. struct nbpf_device *nbpf = ofdma->of_dma_data;
  913. struct dma_chan *dchan;
  914. struct nbpf_channel *chan;
  915. if (dma_spec->args_count != 2)
  916. return NULL;
  917. dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
  918. if (!dchan)
  919. return NULL;
  920. dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
  921. dma_spec->np->name);
  922. chan = nbpf_to_chan(dchan);
  923. chan->terminal = dma_spec->args[0];
  924. chan->flags = dma_spec->args[1];
  925. nbpf_chan_prepare(chan);
  926. nbpf_chan_configure(chan);
  927. return dchan;
  928. }
  929. static void nbpf_chan_tasklet(unsigned long data)
  930. {
  931. struct nbpf_channel *chan = (struct nbpf_channel *)data;
  932. struct nbpf_desc *desc, *tmp;
  933. struct dmaengine_desc_callback cb;
  934. while (!list_empty(&chan->done)) {
  935. bool found = false, must_put, recycling = false;
  936. spin_lock_irq(&chan->lock);
  937. list_for_each_entry_safe(desc, tmp, &chan->done, node) {
  938. if (!desc->user_wait) {
  939. /* Newly completed descriptor, have to process */
  940. found = true;
  941. break;
  942. } else if (async_tx_test_ack(&desc->async_tx)) {
  943. /*
  944. * This descriptor was waiting for a user ACK,
  945. * it can be recycled now.
  946. */
  947. list_del(&desc->node);
  948. spin_unlock_irq(&chan->lock);
  949. nbpf_desc_put(desc);
  950. recycling = true;
  951. break;
  952. }
  953. }
  954. if (recycling)
  955. continue;
  956. if (!found) {
  957. /* This can happen if TERMINATE_ALL has been called */
  958. spin_unlock_irq(&chan->lock);
  959. break;
  960. }
  961. dma_cookie_complete(&desc->async_tx);
  962. /*
  963. * With released lock we cannot dereference desc, maybe it's
  964. * still on the "done" list
  965. */
  966. if (async_tx_test_ack(&desc->async_tx)) {
  967. list_del(&desc->node);
  968. must_put = true;
  969. } else {
  970. desc->user_wait = true;
  971. must_put = false;
  972. }
  973. dmaengine_desc_get_callback(&desc->async_tx, &cb);
  974. /* ack and callback completed descriptor */
  975. spin_unlock_irq(&chan->lock);
  976. dmaengine_desc_callback_invoke(&cb, NULL);
  977. if (must_put)
  978. nbpf_desc_put(desc);
  979. }
  980. }
  981. static irqreturn_t nbpf_chan_irq(int irq, void *dev)
  982. {
  983. struct nbpf_channel *chan = dev;
  984. bool done = nbpf_status_get(chan);
  985. struct nbpf_desc *desc;
  986. irqreturn_t ret;
  987. bool bh = false;
  988. if (!done)
  989. return IRQ_NONE;
  990. nbpf_status_ack(chan);
  991. dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
  992. spin_lock(&chan->lock);
  993. desc = chan->running;
  994. if (WARN_ON(!desc)) {
  995. ret = IRQ_NONE;
  996. goto unlock;
  997. } else {
  998. ret = IRQ_HANDLED;
  999. bh = true;
  1000. }
  1001. list_move_tail(&desc->node, &chan->done);
  1002. chan->running = NULL;
  1003. if (!list_empty(&chan->active)) {
  1004. desc = list_first_entry(&chan->active,
  1005. struct nbpf_desc, node);
  1006. if (!nbpf_start(desc))
  1007. chan->running = desc;
  1008. }
  1009. unlock:
  1010. spin_unlock(&chan->lock);
  1011. if (bh)
  1012. tasklet_schedule(&chan->tasklet);
  1013. return ret;
  1014. }
  1015. static irqreturn_t nbpf_err_irq(int irq, void *dev)
  1016. {
  1017. struct nbpf_device *nbpf = dev;
  1018. u32 error = nbpf_error_get(nbpf);
  1019. dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
  1020. if (!error)
  1021. return IRQ_NONE;
  1022. do {
  1023. struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
  1024. /* On error: abort all queued transfers, no callback */
  1025. nbpf_error_clear(chan);
  1026. nbpf_chan_idle(chan);
  1027. error = nbpf_error_get(nbpf);
  1028. } while (error);
  1029. return IRQ_HANDLED;
  1030. }
  1031. static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
  1032. {
  1033. struct dma_device *dma_dev = &nbpf->dma_dev;
  1034. struct nbpf_channel *chan = nbpf->chan + n;
  1035. int ret;
  1036. chan->nbpf = nbpf;
  1037. chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
  1038. INIT_LIST_HEAD(&chan->desc_page);
  1039. spin_lock_init(&chan->lock);
  1040. chan->dma_chan.device = dma_dev;
  1041. dma_cookie_init(&chan->dma_chan);
  1042. nbpf_chan_prepare_default(chan);
  1043. dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
  1044. snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
  1045. tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
  1046. ret = devm_request_irq(dma_dev->dev, chan->irq,
  1047. nbpf_chan_irq, IRQF_SHARED,
  1048. chan->name, chan);
  1049. if (ret < 0)
  1050. return ret;
  1051. /* Add the channel to DMA device channel list */
  1052. list_add_tail(&chan->dma_chan.device_node,
  1053. &dma_dev->channels);
  1054. return 0;
  1055. }
  1056. static const struct of_device_id nbpf_match[] = {
  1057. {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
  1058. {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
  1059. {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
  1060. {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
  1061. {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
  1062. {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
  1063. {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
  1064. {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
  1065. {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
  1066. {}
  1067. };
  1068. MODULE_DEVICE_TABLE(of, nbpf_match);
  1069. static int nbpf_probe(struct platform_device *pdev)
  1070. {
  1071. struct device *dev = &pdev->dev;
  1072. struct device_node *np = dev->of_node;
  1073. struct nbpf_device *nbpf;
  1074. struct dma_device *dma_dev;
  1075. struct resource *iomem, *irq_res;
  1076. const struct nbpf_config *cfg;
  1077. int num_channels;
  1078. int ret, irq, eirq, i;
  1079. int irqbuf[9] /* maximum 8 channels + error IRQ */;
  1080. unsigned int irqs = 0;
  1081. BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
  1082. /* DT only */
  1083. if (!np)
  1084. return -ENODEV;
  1085. cfg = of_device_get_match_data(dev);
  1086. num_channels = cfg->num_channels;
  1087. nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
  1088. GFP_KERNEL);
  1089. if (!nbpf)
  1090. return -ENOMEM;
  1091. dma_dev = &nbpf->dma_dev;
  1092. dma_dev->dev = dev;
  1093. iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1094. nbpf->base = devm_ioremap_resource(dev, iomem);
  1095. if (IS_ERR(nbpf->base))
  1096. return PTR_ERR(nbpf->base);
  1097. nbpf->clk = devm_clk_get(dev, NULL);
  1098. if (IS_ERR(nbpf->clk))
  1099. return PTR_ERR(nbpf->clk);
  1100. of_property_read_u32(np, "max-burst-mem-read",
  1101. &nbpf->max_burst_mem_read);
  1102. of_property_read_u32(np, "max-burst-mem-write",
  1103. &nbpf->max_burst_mem_write);
  1104. nbpf->config = cfg;
  1105. for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
  1106. irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
  1107. if (!irq_res)
  1108. break;
  1109. for (irq = irq_res->start; irq <= irq_res->end;
  1110. irq++, irqs++)
  1111. irqbuf[irqs] = irq;
  1112. }
  1113. /*
  1114. * 3 IRQ resource schemes are supported:
  1115. * 1. 1 shared IRQ for error and all channels
  1116. * 2. 2 IRQs: one for error and one shared for all channels
  1117. * 3. 1 IRQ for error and an own IRQ for each channel
  1118. */
  1119. if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
  1120. return -ENXIO;
  1121. if (irqs == 1) {
  1122. eirq = irqbuf[0];
  1123. for (i = 0; i <= num_channels; i++)
  1124. nbpf->chan[i].irq = irqbuf[0];
  1125. } else {
  1126. eirq = platform_get_irq_byname(pdev, "error");
  1127. if (eirq < 0)
  1128. return eirq;
  1129. if (irqs == num_channels + 1) {
  1130. struct nbpf_channel *chan;
  1131. for (i = 0, chan = nbpf->chan; i <= num_channels;
  1132. i++, chan++) {
  1133. /* Skip the error IRQ */
  1134. if (irqbuf[i] == eirq)
  1135. i++;
  1136. chan->irq = irqbuf[i];
  1137. }
  1138. if (chan != nbpf->chan + num_channels)
  1139. return -EINVAL;
  1140. } else {
  1141. /* 2 IRQs and more than one channel */
  1142. if (irqbuf[0] == eirq)
  1143. irq = irqbuf[1];
  1144. else
  1145. irq = irqbuf[0];
  1146. for (i = 0; i <= num_channels; i++)
  1147. nbpf->chan[i].irq = irq;
  1148. }
  1149. }
  1150. ret = devm_request_irq(dev, eirq, nbpf_err_irq,
  1151. IRQF_SHARED, "dma error", nbpf);
  1152. if (ret < 0)
  1153. return ret;
  1154. nbpf->eirq = eirq;
  1155. INIT_LIST_HEAD(&dma_dev->channels);
  1156. /* Create DMA Channel */
  1157. for (i = 0; i < num_channels; i++) {
  1158. ret = nbpf_chan_probe(nbpf, i);
  1159. if (ret < 0)
  1160. return ret;
  1161. }
  1162. dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
  1163. dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
  1164. dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
  1165. /* Common and MEMCPY operations */
  1166. dma_dev->device_alloc_chan_resources
  1167. = nbpf_alloc_chan_resources;
  1168. dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
  1169. dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
  1170. dma_dev->device_tx_status = nbpf_tx_status;
  1171. dma_dev->device_issue_pending = nbpf_issue_pending;
  1172. /*
  1173. * If we drop support for unaligned MEMCPY buffer addresses and / or
  1174. * lengths by setting
  1175. * dma_dev->copy_align = 4;
  1176. * then we can set transfer length to 4 bytes in nbpf_prep_one() for
  1177. * DMA_MEM_TO_MEM
  1178. */
  1179. /* Compulsory for DMA_SLAVE fields */
  1180. dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
  1181. dma_dev->device_config = nbpf_config;
  1182. dma_dev->device_pause = nbpf_pause;
  1183. dma_dev->device_terminate_all = nbpf_terminate_all;
  1184. dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
  1185. dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
  1186. dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  1187. platform_set_drvdata(pdev, nbpf);
  1188. ret = clk_prepare_enable(nbpf->clk);
  1189. if (ret < 0)
  1190. return ret;
  1191. nbpf_configure(nbpf);
  1192. ret = dma_async_device_register(dma_dev);
  1193. if (ret < 0)
  1194. goto e_clk_off;
  1195. ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
  1196. if (ret < 0)
  1197. goto e_dma_dev_unreg;
  1198. return 0;
  1199. e_dma_dev_unreg:
  1200. dma_async_device_unregister(dma_dev);
  1201. e_clk_off:
  1202. clk_disable_unprepare(nbpf->clk);
  1203. return ret;
  1204. }
  1205. static int nbpf_remove(struct platform_device *pdev)
  1206. {
  1207. struct nbpf_device *nbpf = platform_get_drvdata(pdev);
  1208. int i;
  1209. devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
  1210. for (i = 0; i < nbpf->config->num_channels; i++) {
  1211. struct nbpf_channel *chan = nbpf->chan + i;
  1212. devm_free_irq(&pdev->dev, chan->irq, chan);
  1213. tasklet_kill(&chan->tasklet);
  1214. }
  1215. of_dma_controller_free(pdev->dev.of_node);
  1216. dma_async_device_unregister(&nbpf->dma_dev);
  1217. clk_disable_unprepare(nbpf->clk);
  1218. return 0;
  1219. }
  1220. static const struct platform_device_id nbpf_ids[] = {
  1221. {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
  1222. {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
  1223. {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
  1224. {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
  1225. {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
  1226. {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
  1227. {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
  1228. {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
  1229. {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
  1230. {},
  1231. };
  1232. MODULE_DEVICE_TABLE(platform, nbpf_ids);
  1233. #ifdef CONFIG_PM
  1234. static int nbpf_runtime_suspend(struct device *dev)
  1235. {
  1236. struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
  1237. clk_disable_unprepare(nbpf->clk);
  1238. return 0;
  1239. }
  1240. static int nbpf_runtime_resume(struct device *dev)
  1241. {
  1242. struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
  1243. return clk_prepare_enable(nbpf->clk);
  1244. }
  1245. #endif
  1246. static const struct dev_pm_ops nbpf_pm_ops = {
  1247. SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
  1248. };
  1249. static struct platform_driver nbpf_driver = {
  1250. .driver = {
  1251. .name = "dma-nbpf",
  1252. .of_match_table = nbpf_match,
  1253. .pm = &nbpf_pm_ops,
  1254. },
  1255. .id_table = nbpf_ids,
  1256. .probe = nbpf_probe,
  1257. .remove = nbpf_remove,
  1258. };
  1259. module_platform_driver(nbpf_driver);
  1260. MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
  1261. MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
  1262. MODULE_LICENSE("GPL v2");