stm32-mdma.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703
  1. /*
  2. *
  3. * Copyright (C) STMicroelectronics SA 2017
  4. * Author(s): M'boumba Cedric Madianga <cedric.madianga@gmail.com>
  5. * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  6. *
  7. * License terms: GPL V2.0.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License version 2 as published by
  11. * the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
  16. * details.
  17. *
  18. * Driver for STM32 MDMA controller
  19. *
  20. * Inspired by stm32-dma.c and dma-jz4780.c
  21. *
  22. */
  23. #include <linux/clk.h>
  24. #include <linux/delay.h>
  25. #include <linux/dmaengine.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/dmapool.h>
  28. #include <linux/err.h>
  29. #include <linux/init.h>
  30. #include <linux/iopoll.h>
  31. #include <linux/jiffies.h>
  32. #include <linux/list.h>
  33. #include <linux/log2.h>
  34. #include <linux/module.h>
  35. #include <linux/of.h>
  36. #include <linux/of_device.h>
  37. #include <linux/of_dma.h>
  38. #include <linux/platform_device.h>
  39. #include <linux/reset.h>
  40. #include <linux/slab.h>
  41. #include "virt-dma.h"
  42. /* MDMA Generic getter/setter */
  43. #define STM32_MDMA_SHIFT(n) (ffs(n) - 1)
  44. #define STM32_MDMA_SET(n, mask) (((n) << STM32_MDMA_SHIFT(mask)) & \
  45. (mask))
  46. #define STM32_MDMA_GET(n, mask) (((n) & (mask)) >> \
  47. STM32_MDMA_SHIFT(mask))
  48. #define STM32_MDMA_GISR0 0x0000 /* MDMA Int Status Reg 1 */
  49. #define STM32_MDMA_GISR1 0x0004 /* MDMA Int Status Reg 2 */
  50. /* MDMA Channel x interrupt/status register */
  51. #define STM32_MDMA_CISR(x) (0x40 + 0x40 * (x)) /* x = 0..62 */
  52. #define STM32_MDMA_CISR_CRQA BIT(16)
  53. #define STM32_MDMA_CISR_TCIF BIT(4)
  54. #define STM32_MDMA_CISR_BTIF BIT(3)
  55. #define STM32_MDMA_CISR_BRTIF BIT(2)
  56. #define STM32_MDMA_CISR_CTCIF BIT(1)
  57. #define STM32_MDMA_CISR_TEIF BIT(0)
  58. /* MDMA Channel x interrupt flag clear register */
  59. #define STM32_MDMA_CIFCR(x) (0x44 + 0x40 * (x))
  60. #define STM32_MDMA_CIFCR_CLTCIF BIT(4)
  61. #define STM32_MDMA_CIFCR_CBTIF BIT(3)
  62. #define STM32_MDMA_CIFCR_CBRTIF BIT(2)
  63. #define STM32_MDMA_CIFCR_CCTCIF BIT(1)
  64. #define STM32_MDMA_CIFCR_CTEIF BIT(0)
  65. #define STM32_MDMA_CIFCR_CLEAR_ALL (STM32_MDMA_CIFCR_CLTCIF \
  66. | STM32_MDMA_CIFCR_CBTIF \
  67. | STM32_MDMA_CIFCR_CBRTIF \
  68. | STM32_MDMA_CIFCR_CCTCIF \
  69. | STM32_MDMA_CIFCR_CTEIF)
  70. /* MDMA Channel x error status register */
  71. #define STM32_MDMA_CESR(x) (0x48 + 0x40 * (x))
  72. #define STM32_MDMA_CESR_BSE BIT(11)
  73. #define STM32_MDMA_CESR_ASR BIT(10)
  74. #define STM32_MDMA_CESR_TEMD BIT(9)
  75. #define STM32_MDMA_CESR_TELD BIT(8)
  76. #define STM32_MDMA_CESR_TED BIT(7)
  77. #define STM32_MDMA_CESR_TEA_MASK GENMASK(6, 0)
  78. /* MDMA Channel x control register */
  79. #define STM32_MDMA_CCR(x) (0x4C + 0x40 * (x))
  80. #define STM32_MDMA_CCR_SWRQ BIT(16)
  81. #define STM32_MDMA_CCR_WEX BIT(14)
  82. #define STM32_MDMA_CCR_HEX BIT(13)
  83. #define STM32_MDMA_CCR_BEX BIT(12)
  84. #define STM32_MDMA_CCR_PL_MASK GENMASK(7, 6)
  85. #define STM32_MDMA_CCR_PL(n) STM32_MDMA_SET(n, \
  86. STM32_MDMA_CCR_PL_MASK)
  87. #define STM32_MDMA_CCR_TCIE BIT(5)
  88. #define STM32_MDMA_CCR_BTIE BIT(4)
  89. #define STM32_MDMA_CCR_BRTIE BIT(3)
  90. #define STM32_MDMA_CCR_CTCIE BIT(2)
  91. #define STM32_MDMA_CCR_TEIE BIT(1)
  92. #define STM32_MDMA_CCR_EN BIT(0)
  93. #define STM32_MDMA_CCR_IRQ_MASK (STM32_MDMA_CCR_TCIE \
  94. | STM32_MDMA_CCR_BTIE \
  95. | STM32_MDMA_CCR_BRTIE \
  96. | STM32_MDMA_CCR_CTCIE \
  97. | STM32_MDMA_CCR_TEIE)
  98. /* MDMA Channel x transfer configuration register */
  99. #define STM32_MDMA_CTCR(x) (0x50 + 0x40 * (x))
  100. #define STM32_MDMA_CTCR_BWM BIT(31)
  101. #define STM32_MDMA_CTCR_SWRM BIT(30)
  102. #define STM32_MDMA_CTCR_TRGM_MSK GENMASK(29, 28)
  103. #define STM32_MDMA_CTCR_TRGM(n) STM32_MDMA_SET((n), \
  104. STM32_MDMA_CTCR_TRGM_MSK)
  105. #define STM32_MDMA_CTCR_TRGM_GET(n) STM32_MDMA_GET((n), \
  106. STM32_MDMA_CTCR_TRGM_MSK)
  107. #define STM32_MDMA_CTCR_PAM_MASK GENMASK(27, 26)
  108. #define STM32_MDMA_CTCR_PAM(n) STM32_MDMA_SET(n, \
  109. STM32_MDMA_CTCR_PAM_MASK)
  110. #define STM32_MDMA_CTCR_PKE BIT(25)
  111. #define STM32_MDMA_CTCR_TLEN_MSK GENMASK(24, 18)
  112. #define STM32_MDMA_CTCR_TLEN(n) STM32_MDMA_SET((n), \
  113. STM32_MDMA_CTCR_TLEN_MSK)
  114. #define STM32_MDMA_CTCR_TLEN_GET(n) STM32_MDMA_GET((n), \
  115. STM32_MDMA_CTCR_TLEN_MSK)
  116. #define STM32_MDMA_CTCR_LEN2_MSK GENMASK(25, 18)
  117. #define STM32_MDMA_CTCR_LEN2(n) STM32_MDMA_SET((n), \
  118. STM32_MDMA_CTCR_LEN2_MSK)
  119. #define STM32_MDMA_CTCR_LEN2_GET(n) STM32_MDMA_GET((n), \
  120. STM32_MDMA_CTCR_LEN2_MSK)
  121. #define STM32_MDMA_CTCR_DBURST_MASK GENMASK(17, 15)
  122. #define STM32_MDMA_CTCR_DBURST(n) STM32_MDMA_SET(n, \
  123. STM32_MDMA_CTCR_DBURST_MASK)
  124. #define STM32_MDMA_CTCR_SBURST_MASK GENMASK(14, 12)
  125. #define STM32_MDMA_CTCR_SBURST(n) STM32_MDMA_SET(n, \
  126. STM32_MDMA_CTCR_SBURST_MASK)
  127. #define STM32_MDMA_CTCR_DINCOS_MASK GENMASK(11, 10)
  128. #define STM32_MDMA_CTCR_DINCOS(n) STM32_MDMA_SET((n), \
  129. STM32_MDMA_CTCR_DINCOS_MASK)
  130. #define STM32_MDMA_CTCR_SINCOS_MASK GENMASK(9, 8)
  131. #define STM32_MDMA_CTCR_SINCOS(n) STM32_MDMA_SET((n), \
  132. STM32_MDMA_CTCR_SINCOS_MASK)
  133. #define STM32_MDMA_CTCR_DSIZE_MASK GENMASK(7, 6)
  134. #define STM32_MDMA_CTCR_DSIZE(n) STM32_MDMA_SET(n, \
  135. STM32_MDMA_CTCR_DSIZE_MASK)
  136. #define STM32_MDMA_CTCR_SSIZE_MASK GENMASK(5, 4)
  137. #define STM32_MDMA_CTCR_SSIZE(n) STM32_MDMA_SET(n, \
  138. STM32_MDMA_CTCR_SSIZE_MASK)
  139. #define STM32_MDMA_CTCR_DINC_MASK GENMASK(3, 2)
  140. #define STM32_MDMA_CTCR_DINC(n) STM32_MDMA_SET((n), \
  141. STM32_MDMA_CTCR_DINC_MASK)
  142. #define STM32_MDMA_CTCR_SINC_MASK GENMASK(1, 0)
  143. #define STM32_MDMA_CTCR_SINC(n) STM32_MDMA_SET((n), \
  144. STM32_MDMA_CTCR_SINC_MASK)
  145. #define STM32_MDMA_CTCR_CFG_MASK (STM32_MDMA_CTCR_SINC_MASK \
  146. | STM32_MDMA_CTCR_DINC_MASK \
  147. | STM32_MDMA_CTCR_SINCOS_MASK \
  148. | STM32_MDMA_CTCR_DINCOS_MASK \
  149. | STM32_MDMA_CTCR_LEN2_MSK \
  150. | STM32_MDMA_CTCR_TRGM_MSK)
  151. /* MDMA Channel x block number of data register */
  152. #define STM32_MDMA_CBNDTR(x) (0x54 + 0x40 * (x))
  153. #define STM32_MDMA_CBNDTR_BRC_MK GENMASK(31, 20)
  154. #define STM32_MDMA_CBNDTR_BRC(n) STM32_MDMA_SET(n, \
  155. STM32_MDMA_CBNDTR_BRC_MK)
  156. #define STM32_MDMA_CBNDTR_BRC_GET(n) STM32_MDMA_GET((n), \
  157. STM32_MDMA_CBNDTR_BRC_MK)
  158. #define STM32_MDMA_CBNDTR_BRDUM BIT(19)
  159. #define STM32_MDMA_CBNDTR_BRSUM BIT(18)
  160. #define STM32_MDMA_CBNDTR_BNDT_MASK GENMASK(16, 0)
  161. #define STM32_MDMA_CBNDTR_BNDT(n) STM32_MDMA_SET(n, \
  162. STM32_MDMA_CBNDTR_BNDT_MASK)
  163. /* MDMA Channel x source address register */
  164. #define STM32_MDMA_CSAR(x) (0x58 + 0x40 * (x))
  165. /* MDMA Channel x destination address register */
  166. #define STM32_MDMA_CDAR(x) (0x5C + 0x40 * (x))
  167. /* MDMA Channel x block repeat address update register */
  168. #define STM32_MDMA_CBRUR(x) (0x60 + 0x40 * (x))
  169. #define STM32_MDMA_CBRUR_DUV_MASK GENMASK(31, 16)
  170. #define STM32_MDMA_CBRUR_DUV(n) STM32_MDMA_SET(n, \
  171. STM32_MDMA_CBRUR_DUV_MASK)
  172. #define STM32_MDMA_CBRUR_SUV_MASK GENMASK(15, 0)
  173. #define STM32_MDMA_CBRUR_SUV(n) STM32_MDMA_SET(n, \
  174. STM32_MDMA_CBRUR_SUV_MASK)
  175. /* MDMA Channel x link address register */
  176. #define STM32_MDMA_CLAR(x) (0x64 + 0x40 * (x))
  177. /* MDMA Channel x trigger and bus selection register */
  178. #define STM32_MDMA_CTBR(x) (0x68 + 0x40 * (x))
  179. #define STM32_MDMA_CTBR_DBUS BIT(17)
  180. #define STM32_MDMA_CTBR_SBUS BIT(16)
  181. #define STM32_MDMA_CTBR_TSEL_MASK GENMASK(7, 0)
  182. #define STM32_MDMA_CTBR_TSEL(n) STM32_MDMA_SET(n, \
  183. STM32_MDMA_CTBR_TSEL_MASK)
  184. /* MDMA Channel x mask address register */
  185. #define STM32_MDMA_CMAR(x) (0x70 + 0x40 * (x))
  186. /* MDMA Channel x mask data register */
  187. #define STM32_MDMA_CMDR(x) (0x74 + 0x40 * (x))
  188. #define STM32_MDMA_MAX_BUF_LEN 128
  189. #define STM32_MDMA_MAX_BLOCK_LEN 65536
  190. #define STM32_MDMA_MAX_CHANNELS 63
  191. #define STM32_MDMA_MAX_REQUESTS 256
  192. #define STM32_MDMA_MAX_BURST 128
  193. #define STM32_MDMA_VERY_HIGH_PRIORITY 0x11
  194. enum stm32_mdma_trigger_mode {
  195. STM32_MDMA_BUFFER,
  196. STM32_MDMA_BLOCK,
  197. STM32_MDMA_BLOCK_REP,
  198. STM32_MDMA_LINKED_LIST,
  199. };
  200. enum stm32_mdma_width {
  201. STM32_MDMA_BYTE,
  202. STM32_MDMA_HALF_WORD,
  203. STM32_MDMA_WORD,
  204. STM32_MDMA_DOUBLE_WORD,
  205. };
  206. enum stm32_mdma_inc_mode {
  207. STM32_MDMA_FIXED = 0,
  208. STM32_MDMA_INC = 2,
  209. STM32_MDMA_DEC = 3,
  210. };
  211. struct stm32_mdma_chan_config {
  212. u32 request;
  213. u32 priority_level;
  214. u32 transfer_config;
  215. u32 mask_addr;
  216. u32 mask_data;
  217. };
  218. struct stm32_mdma_hwdesc {
  219. u32 ctcr;
  220. u32 cbndtr;
  221. u32 csar;
  222. u32 cdar;
  223. u32 cbrur;
  224. u32 clar;
  225. u32 ctbr;
  226. u32 dummy;
  227. u32 cmar;
  228. u32 cmdr;
  229. } __aligned(64);
  230. struct stm32_mdma_desc_node {
  231. struct stm32_mdma_hwdesc *hwdesc;
  232. dma_addr_t hwdesc_phys;
  233. };
  234. struct stm32_mdma_desc {
  235. struct virt_dma_desc vdesc;
  236. u32 ccr;
  237. bool cyclic;
  238. u32 count;
  239. struct stm32_mdma_desc_node node[];
  240. };
  241. struct stm32_mdma_chan {
  242. struct virt_dma_chan vchan;
  243. struct dma_pool *desc_pool;
  244. u32 id;
  245. struct stm32_mdma_desc *desc;
  246. u32 curr_hwdesc;
  247. struct dma_slave_config dma_config;
  248. struct stm32_mdma_chan_config chan_config;
  249. bool busy;
  250. u32 mem_burst;
  251. u32 mem_width;
  252. };
  253. struct stm32_mdma_device {
  254. struct dma_device ddev;
  255. void __iomem *base;
  256. struct clk *clk;
  257. int irq;
  258. struct reset_control *rst;
  259. u32 nr_channels;
  260. u32 nr_requests;
  261. u32 nr_ahb_addr_masks;
  262. struct stm32_mdma_chan chan[STM32_MDMA_MAX_CHANNELS];
  263. u32 ahb_addr_masks[];
  264. };
  265. static struct stm32_mdma_device *stm32_mdma_get_dev(
  266. struct stm32_mdma_chan *chan)
  267. {
  268. return container_of(chan->vchan.chan.device, struct stm32_mdma_device,
  269. ddev);
  270. }
  271. static struct stm32_mdma_chan *to_stm32_mdma_chan(struct dma_chan *c)
  272. {
  273. return container_of(c, struct stm32_mdma_chan, vchan.chan);
  274. }
  275. static struct stm32_mdma_desc *to_stm32_mdma_desc(struct virt_dma_desc *vdesc)
  276. {
  277. return container_of(vdesc, struct stm32_mdma_desc, vdesc);
  278. }
  279. static struct device *chan2dev(struct stm32_mdma_chan *chan)
  280. {
  281. return &chan->vchan.chan.dev->device;
  282. }
  283. static struct device *mdma2dev(struct stm32_mdma_device *mdma_dev)
  284. {
  285. return mdma_dev->ddev.dev;
  286. }
  287. static u32 stm32_mdma_read(struct stm32_mdma_device *dmadev, u32 reg)
  288. {
  289. return readl_relaxed(dmadev->base + reg);
  290. }
  291. static void stm32_mdma_write(struct stm32_mdma_device *dmadev, u32 reg, u32 val)
  292. {
  293. writel_relaxed(val, dmadev->base + reg);
  294. }
  295. static void stm32_mdma_set_bits(struct stm32_mdma_device *dmadev, u32 reg,
  296. u32 mask)
  297. {
  298. void __iomem *addr = dmadev->base + reg;
  299. writel_relaxed(readl_relaxed(addr) | mask, addr);
  300. }
  301. static void stm32_mdma_clr_bits(struct stm32_mdma_device *dmadev, u32 reg,
  302. u32 mask)
  303. {
  304. void __iomem *addr = dmadev->base + reg;
  305. writel_relaxed(readl_relaxed(addr) & ~mask, addr);
  306. }
  307. static struct stm32_mdma_desc *stm32_mdma_alloc_desc(
  308. struct stm32_mdma_chan *chan, u32 count)
  309. {
  310. struct stm32_mdma_desc *desc;
  311. int i;
  312. desc = kzalloc(offsetof(typeof(*desc), node[count]), GFP_NOWAIT);
  313. if (!desc)
  314. return NULL;
  315. for (i = 0; i < count; i++) {
  316. desc->node[i].hwdesc =
  317. dma_pool_alloc(chan->desc_pool, GFP_NOWAIT,
  318. &desc->node[i].hwdesc_phys);
  319. if (!desc->node[i].hwdesc)
  320. goto err;
  321. }
  322. desc->count = count;
  323. return desc;
  324. err:
  325. dev_err(chan2dev(chan), "Failed to allocate descriptor\n");
  326. while (--i >= 0)
  327. dma_pool_free(chan->desc_pool, desc->node[i].hwdesc,
  328. desc->node[i].hwdesc_phys);
  329. kfree(desc);
  330. return NULL;
  331. }
  332. static void stm32_mdma_desc_free(struct virt_dma_desc *vdesc)
  333. {
  334. struct stm32_mdma_desc *desc = to_stm32_mdma_desc(vdesc);
  335. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(vdesc->tx.chan);
  336. int i;
  337. for (i = 0; i < desc->count; i++)
  338. dma_pool_free(chan->desc_pool, desc->node[i].hwdesc,
  339. desc->node[i].hwdesc_phys);
  340. kfree(desc);
  341. }
  342. static int stm32_mdma_get_width(struct stm32_mdma_chan *chan,
  343. enum dma_slave_buswidth width)
  344. {
  345. switch (width) {
  346. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  347. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  348. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  349. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  350. return ffs(width) - 1;
  351. default:
  352. dev_err(chan2dev(chan), "Dma bus width %i not supported\n",
  353. width);
  354. return -EINVAL;
  355. }
  356. }
  357. static enum dma_slave_buswidth stm32_mdma_get_max_width(dma_addr_t addr,
  358. u32 buf_len, u32 tlen)
  359. {
  360. enum dma_slave_buswidth max_width = DMA_SLAVE_BUSWIDTH_8_BYTES;
  361. for (max_width = DMA_SLAVE_BUSWIDTH_8_BYTES;
  362. max_width > DMA_SLAVE_BUSWIDTH_1_BYTE;
  363. max_width >>= 1) {
  364. /*
  365. * Address and buffer length both have to be aligned on
  366. * bus width
  367. */
  368. if ((((buf_len | addr) & (max_width - 1)) == 0) &&
  369. tlen >= max_width)
  370. break;
  371. }
  372. return max_width;
  373. }
  374. static u32 stm32_mdma_get_best_burst(u32 buf_len, u32 tlen, u32 max_burst,
  375. enum dma_slave_buswidth width)
  376. {
  377. u32 best_burst;
  378. best_burst = min((u32)1 << __ffs(tlen | buf_len),
  379. max_burst * width) / width;
  380. return (best_burst > 0) ? best_burst : 1;
  381. }
  382. static int stm32_mdma_disable_chan(struct stm32_mdma_chan *chan)
  383. {
  384. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  385. u32 ccr, cisr, id, reg;
  386. int ret;
  387. id = chan->id;
  388. reg = STM32_MDMA_CCR(id);
  389. /* Disable interrupts */
  390. stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_IRQ_MASK);
  391. ccr = stm32_mdma_read(dmadev, reg);
  392. if (ccr & STM32_MDMA_CCR_EN) {
  393. stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_EN);
  394. /* Ensure that any ongoing transfer has been completed */
  395. ret = readl_relaxed_poll_timeout_atomic(
  396. dmadev->base + STM32_MDMA_CISR(id), cisr,
  397. (cisr & STM32_MDMA_CISR_CTCIF), 10, 1000);
  398. if (ret) {
  399. dev_err(chan2dev(chan), "%s: timeout!\n", __func__);
  400. return -EBUSY;
  401. }
  402. }
  403. return 0;
  404. }
  405. static void stm32_mdma_stop(struct stm32_mdma_chan *chan)
  406. {
  407. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  408. u32 status;
  409. int ret;
  410. /* Disable DMA */
  411. ret = stm32_mdma_disable_chan(chan);
  412. if (ret < 0)
  413. return;
  414. /* Clear interrupt status if it is there */
  415. status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
  416. if (status) {
  417. dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
  418. __func__, status);
  419. stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status);
  420. }
  421. chan->busy = false;
  422. }
  423. static void stm32_mdma_set_bus(struct stm32_mdma_device *dmadev, u32 *ctbr,
  424. u32 ctbr_mask, u32 src_addr)
  425. {
  426. u32 mask;
  427. int i;
  428. /* Check if memory device is on AHB or AXI */
  429. *ctbr &= ~ctbr_mask;
  430. mask = src_addr & 0xF0000000;
  431. for (i = 0; i < dmadev->nr_ahb_addr_masks; i++) {
  432. if (mask == dmadev->ahb_addr_masks[i]) {
  433. *ctbr |= ctbr_mask;
  434. break;
  435. }
  436. }
  437. }
  438. static int stm32_mdma_set_xfer_param(struct stm32_mdma_chan *chan,
  439. enum dma_transfer_direction direction,
  440. u32 *mdma_ccr, u32 *mdma_ctcr,
  441. u32 *mdma_ctbr, dma_addr_t addr,
  442. u32 buf_len)
  443. {
  444. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  445. struct stm32_mdma_chan_config *chan_config = &chan->chan_config;
  446. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  447. phys_addr_t src_addr, dst_addr;
  448. int src_bus_width, dst_bus_width;
  449. u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
  450. u32 ccr, ctcr, ctbr, tlen;
  451. src_addr_width = chan->dma_config.src_addr_width;
  452. dst_addr_width = chan->dma_config.dst_addr_width;
  453. src_maxburst = chan->dma_config.src_maxburst;
  454. dst_maxburst = chan->dma_config.dst_maxburst;
  455. ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
  456. ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id));
  457. ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id));
  458. /* Enable HW request mode */
  459. ctcr &= ~STM32_MDMA_CTCR_SWRM;
  460. /* Set DINC, SINC, DINCOS, SINCOS, TRGM and TLEN retrieve from DT */
  461. ctcr &= ~STM32_MDMA_CTCR_CFG_MASK;
  462. ctcr |= chan_config->transfer_config & STM32_MDMA_CTCR_CFG_MASK;
  463. /*
  464. * For buffer transfer length (TLEN) we have to set
  465. * the number of bytes - 1 in CTCR register
  466. */
  467. tlen = STM32_MDMA_CTCR_LEN2_GET(ctcr);
  468. ctcr &= ~STM32_MDMA_CTCR_LEN2_MSK;
  469. ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1));
  470. /* Disable Pack Enable */
  471. ctcr &= ~STM32_MDMA_CTCR_PKE;
  472. /* Check burst size constraints */
  473. if (src_maxburst * src_addr_width > STM32_MDMA_MAX_BURST ||
  474. dst_maxburst * dst_addr_width > STM32_MDMA_MAX_BURST) {
  475. dev_err(chan2dev(chan),
  476. "burst size * bus width higher than %d bytes\n",
  477. STM32_MDMA_MAX_BURST);
  478. return -EINVAL;
  479. }
  480. if ((!is_power_of_2(src_maxburst) && src_maxburst > 0) ||
  481. (!is_power_of_2(dst_maxburst) && dst_maxburst > 0)) {
  482. dev_err(chan2dev(chan), "burst size must be a power of 2\n");
  483. return -EINVAL;
  484. }
  485. /*
  486. * Configure channel control:
  487. * - Clear SW request as in this case this is a HW one
  488. * - Clear WEX, HEX and BEX bits
  489. * - Set priority level
  490. */
  491. ccr &= ~(STM32_MDMA_CCR_SWRQ | STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX |
  492. STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK);
  493. ccr |= STM32_MDMA_CCR_PL(chan_config->priority_level);
  494. /* Configure Trigger selection */
  495. ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK;
  496. ctbr |= STM32_MDMA_CTBR_TSEL(chan_config->request);
  497. switch (direction) {
  498. case DMA_MEM_TO_DEV:
  499. dst_addr = chan->dma_config.dst_addr;
  500. /* Set device data size */
  501. dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width);
  502. if (dst_bus_width < 0)
  503. return dst_bus_width;
  504. ctcr &= ~STM32_MDMA_CTCR_DSIZE_MASK;
  505. ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width);
  506. /* Set device burst value */
  507. dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
  508. dst_maxburst,
  509. dst_addr_width);
  510. chan->mem_burst = dst_best_burst;
  511. ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK;
  512. ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst)));
  513. /* Set memory data size */
  514. src_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen);
  515. chan->mem_width = src_addr_width;
  516. src_bus_width = stm32_mdma_get_width(chan, src_addr_width);
  517. if (src_bus_width < 0)
  518. return src_bus_width;
  519. ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK |
  520. STM32_MDMA_CTCR_SINCOS_MASK;
  521. ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width) |
  522. STM32_MDMA_CTCR_SINCOS(src_bus_width);
  523. /* Set memory burst value */
  524. src_maxburst = STM32_MDMA_MAX_BUF_LEN / src_addr_width;
  525. src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
  526. src_maxburst,
  527. src_addr_width);
  528. chan->mem_burst = src_best_burst;
  529. ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK;
  530. ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst)));
  531. /* Select bus */
  532. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
  533. dst_addr);
  534. if (dst_bus_width != src_bus_width)
  535. ctcr |= STM32_MDMA_CTCR_PKE;
  536. /* Set destination address */
  537. stm32_mdma_write(dmadev, STM32_MDMA_CDAR(chan->id), dst_addr);
  538. break;
  539. case DMA_DEV_TO_MEM:
  540. src_addr = chan->dma_config.src_addr;
  541. /* Set device data size */
  542. src_bus_width = stm32_mdma_get_width(chan, src_addr_width);
  543. if (src_bus_width < 0)
  544. return src_bus_width;
  545. ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK;
  546. ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width);
  547. /* Set device burst value */
  548. src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
  549. src_maxburst,
  550. src_addr_width);
  551. ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK;
  552. ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst)));
  553. /* Set memory data size */
  554. dst_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen);
  555. chan->mem_width = dst_addr_width;
  556. dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width);
  557. if (dst_bus_width < 0)
  558. return dst_bus_width;
  559. ctcr &= ~(STM32_MDMA_CTCR_DSIZE_MASK |
  560. STM32_MDMA_CTCR_DINCOS_MASK);
  561. ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
  562. STM32_MDMA_CTCR_DINCOS(dst_bus_width);
  563. /* Set memory burst value */
  564. dst_maxburst = STM32_MDMA_MAX_BUF_LEN / dst_addr_width;
  565. dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
  566. dst_maxburst,
  567. dst_addr_width);
  568. ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK;
  569. ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst)));
  570. /* Select bus */
  571. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
  572. src_addr);
  573. if (dst_bus_width != src_bus_width)
  574. ctcr |= STM32_MDMA_CTCR_PKE;
  575. /* Set source address */
  576. stm32_mdma_write(dmadev, STM32_MDMA_CSAR(chan->id), src_addr);
  577. break;
  578. default:
  579. dev_err(chan2dev(chan), "Dma direction is not supported\n");
  580. return -EINVAL;
  581. }
  582. *mdma_ccr = ccr;
  583. *mdma_ctcr = ctcr;
  584. *mdma_ctbr = ctbr;
  585. return 0;
  586. }
  587. static void stm32_mdma_dump_hwdesc(struct stm32_mdma_chan *chan,
  588. struct stm32_mdma_desc_node *node)
  589. {
  590. dev_dbg(chan2dev(chan), "hwdesc: %pad\n", &node->hwdesc_phys);
  591. dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n", node->hwdesc->ctcr);
  592. dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n", node->hwdesc->cbndtr);
  593. dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n", node->hwdesc->csar);
  594. dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n", node->hwdesc->cdar);
  595. dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n", node->hwdesc->cbrur);
  596. dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n", node->hwdesc->clar);
  597. dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n", node->hwdesc->ctbr);
  598. dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n", node->hwdesc->cmar);
  599. dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n\n", node->hwdesc->cmdr);
  600. }
  601. static void stm32_mdma_setup_hwdesc(struct stm32_mdma_chan *chan,
  602. struct stm32_mdma_desc *desc,
  603. enum dma_transfer_direction dir, u32 count,
  604. dma_addr_t src_addr, dma_addr_t dst_addr,
  605. u32 len, u32 ctcr, u32 ctbr, bool is_last,
  606. bool is_first, bool is_cyclic)
  607. {
  608. struct stm32_mdma_chan_config *config = &chan->chan_config;
  609. struct stm32_mdma_hwdesc *hwdesc;
  610. u32 next = count + 1;
  611. hwdesc = desc->node[count].hwdesc;
  612. hwdesc->ctcr = ctcr;
  613. hwdesc->cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK |
  614. STM32_MDMA_CBNDTR_BRDUM |
  615. STM32_MDMA_CBNDTR_BRSUM |
  616. STM32_MDMA_CBNDTR_BNDT_MASK);
  617. hwdesc->cbndtr |= STM32_MDMA_CBNDTR_BNDT(len);
  618. hwdesc->csar = src_addr;
  619. hwdesc->cdar = dst_addr;
  620. hwdesc->cbrur = 0;
  621. hwdesc->ctbr = ctbr;
  622. hwdesc->cmar = config->mask_addr;
  623. hwdesc->cmdr = config->mask_data;
  624. if (is_last) {
  625. if (is_cyclic)
  626. hwdesc->clar = desc->node[0].hwdesc_phys;
  627. else
  628. hwdesc->clar = 0;
  629. } else {
  630. hwdesc->clar = desc->node[next].hwdesc_phys;
  631. }
  632. stm32_mdma_dump_hwdesc(chan, &desc->node[count]);
  633. }
  634. static int stm32_mdma_setup_xfer(struct stm32_mdma_chan *chan,
  635. struct stm32_mdma_desc *desc,
  636. struct scatterlist *sgl, u32 sg_len,
  637. enum dma_transfer_direction direction)
  638. {
  639. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  640. struct dma_slave_config *dma_config = &chan->dma_config;
  641. struct scatterlist *sg;
  642. dma_addr_t src_addr, dst_addr;
  643. u32 ccr, ctcr, ctbr;
  644. int i, ret = 0;
  645. for_each_sg(sgl, sg, sg_len, i) {
  646. if (sg_dma_len(sg) > STM32_MDMA_MAX_BLOCK_LEN) {
  647. dev_err(chan2dev(chan), "Invalid block len\n");
  648. return -EINVAL;
  649. }
  650. if (direction == DMA_MEM_TO_DEV) {
  651. src_addr = sg_dma_address(sg);
  652. dst_addr = dma_config->dst_addr;
  653. ret = stm32_mdma_set_xfer_param(chan, direction, &ccr,
  654. &ctcr, &ctbr, src_addr,
  655. sg_dma_len(sg));
  656. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
  657. src_addr);
  658. } else {
  659. src_addr = dma_config->src_addr;
  660. dst_addr = sg_dma_address(sg);
  661. ret = stm32_mdma_set_xfer_param(chan, direction, &ccr,
  662. &ctcr, &ctbr, dst_addr,
  663. sg_dma_len(sg));
  664. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
  665. dst_addr);
  666. }
  667. if (ret < 0)
  668. return ret;
  669. stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr,
  670. dst_addr, sg_dma_len(sg), ctcr, ctbr,
  671. i == sg_len - 1, i == 0, false);
  672. }
  673. /* Enable interrupts */
  674. ccr &= ~STM32_MDMA_CCR_IRQ_MASK;
  675. ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE;
  676. if (sg_len > 1)
  677. ccr |= STM32_MDMA_CCR_BTIE;
  678. desc->ccr = ccr;
  679. return 0;
  680. }
  681. static struct dma_async_tx_descriptor *
  682. stm32_mdma_prep_slave_sg(struct dma_chan *c, struct scatterlist *sgl,
  683. u32 sg_len, enum dma_transfer_direction direction,
  684. unsigned long flags, void *context)
  685. {
  686. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  687. struct stm32_mdma_desc *desc;
  688. int i, ret;
  689. /*
  690. * Once DMA is in setup cyclic mode the channel we cannot assign this
  691. * channel anymore. The DMA channel needs to be aborted or terminated
  692. * for allowing another request.
  693. */
  694. if (chan->desc && chan->desc->cyclic) {
  695. dev_err(chan2dev(chan),
  696. "Request not allowed when dma in cyclic mode\n");
  697. return NULL;
  698. }
  699. desc = stm32_mdma_alloc_desc(chan, sg_len);
  700. if (!desc)
  701. return NULL;
  702. ret = stm32_mdma_setup_xfer(chan, desc, sgl, sg_len, direction);
  703. if (ret < 0)
  704. goto xfer_setup_err;
  705. desc->cyclic = false;
  706. return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
  707. xfer_setup_err:
  708. for (i = 0; i < desc->count; i++)
  709. dma_pool_free(chan->desc_pool, desc->node[i].hwdesc,
  710. desc->node[i].hwdesc_phys);
  711. kfree(desc);
  712. return NULL;
  713. }
  714. static struct dma_async_tx_descriptor *
  715. stm32_mdma_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr,
  716. size_t buf_len, size_t period_len,
  717. enum dma_transfer_direction direction,
  718. unsigned long flags)
  719. {
  720. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  721. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  722. struct dma_slave_config *dma_config = &chan->dma_config;
  723. struct stm32_mdma_desc *desc;
  724. dma_addr_t src_addr, dst_addr;
  725. u32 ccr, ctcr, ctbr, count;
  726. int i, ret;
  727. /*
  728. * Once DMA is in setup cyclic mode the channel we cannot assign this
  729. * channel anymore. The DMA channel needs to be aborted or terminated
  730. * for allowing another request.
  731. */
  732. if (chan->desc && chan->desc->cyclic) {
  733. dev_err(chan2dev(chan),
  734. "Request not allowed when dma in cyclic mode\n");
  735. return NULL;
  736. }
  737. if (!buf_len || !period_len || period_len > STM32_MDMA_MAX_BLOCK_LEN) {
  738. dev_err(chan2dev(chan), "Invalid buffer/period len\n");
  739. return NULL;
  740. }
  741. if (buf_len % period_len) {
  742. dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
  743. return NULL;
  744. }
  745. count = buf_len / period_len;
  746. desc = stm32_mdma_alloc_desc(chan, count);
  747. if (!desc)
  748. return NULL;
  749. /* Select bus */
  750. if (direction == DMA_MEM_TO_DEV) {
  751. src_addr = buf_addr;
  752. ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr,
  753. &ctbr, src_addr, period_len);
  754. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
  755. src_addr);
  756. } else {
  757. dst_addr = buf_addr;
  758. ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr,
  759. &ctbr, dst_addr, period_len);
  760. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
  761. dst_addr);
  762. }
  763. if (ret < 0)
  764. goto xfer_setup_err;
  765. /* Enable interrupts */
  766. ccr &= ~STM32_MDMA_CCR_IRQ_MASK;
  767. ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE | STM32_MDMA_CCR_BTIE;
  768. desc->ccr = ccr;
  769. /* Configure hwdesc list */
  770. for (i = 0; i < count; i++) {
  771. if (direction == DMA_MEM_TO_DEV) {
  772. src_addr = buf_addr + i * period_len;
  773. dst_addr = dma_config->dst_addr;
  774. } else {
  775. src_addr = dma_config->src_addr;
  776. dst_addr = buf_addr + i * period_len;
  777. }
  778. stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr,
  779. dst_addr, period_len, ctcr, ctbr,
  780. i == count - 1, i == 0, true);
  781. }
  782. desc->cyclic = true;
  783. return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
  784. xfer_setup_err:
  785. for (i = 0; i < desc->count; i++)
  786. dma_pool_free(chan->desc_pool, desc->node[i].hwdesc,
  787. desc->node[i].hwdesc_phys);
  788. kfree(desc);
  789. return NULL;
  790. }
  791. static struct dma_async_tx_descriptor *
  792. stm32_mdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, dma_addr_t src,
  793. size_t len, unsigned long flags)
  794. {
  795. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  796. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  797. enum dma_slave_buswidth max_width;
  798. struct stm32_mdma_desc *desc;
  799. struct stm32_mdma_hwdesc *hwdesc;
  800. u32 ccr, ctcr, ctbr, cbndtr, count, max_burst, mdma_burst;
  801. u32 best_burst, tlen;
  802. size_t xfer_count, offset;
  803. int src_bus_width, dst_bus_width;
  804. int i;
  805. /*
  806. * Once DMA is in setup cyclic mode the channel we cannot assign this
  807. * channel anymore. The DMA channel needs to be aborted or terminated
  808. * to allow another request
  809. */
  810. if (chan->desc && chan->desc->cyclic) {
  811. dev_err(chan2dev(chan),
  812. "Request not allowed when dma in cyclic mode\n");
  813. return NULL;
  814. }
  815. count = DIV_ROUND_UP(len, STM32_MDMA_MAX_BLOCK_LEN);
  816. desc = stm32_mdma_alloc_desc(chan, count);
  817. if (!desc)
  818. return NULL;
  819. ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
  820. ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id));
  821. ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id));
  822. cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id));
  823. /* Enable sw req, some interrupts and clear other bits */
  824. ccr &= ~(STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX |
  825. STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK |
  826. STM32_MDMA_CCR_IRQ_MASK);
  827. ccr |= STM32_MDMA_CCR_TEIE;
  828. /* Enable SW request mode, dest/src inc and clear other bits */
  829. ctcr &= ~(STM32_MDMA_CTCR_BWM | STM32_MDMA_CTCR_TRGM_MSK |
  830. STM32_MDMA_CTCR_PAM_MASK | STM32_MDMA_CTCR_PKE |
  831. STM32_MDMA_CTCR_TLEN_MSK | STM32_MDMA_CTCR_DBURST_MASK |
  832. STM32_MDMA_CTCR_SBURST_MASK | STM32_MDMA_CTCR_DINCOS_MASK |
  833. STM32_MDMA_CTCR_SINCOS_MASK | STM32_MDMA_CTCR_DSIZE_MASK |
  834. STM32_MDMA_CTCR_SSIZE_MASK | STM32_MDMA_CTCR_DINC_MASK |
  835. STM32_MDMA_CTCR_SINC_MASK);
  836. ctcr |= STM32_MDMA_CTCR_SWRM | STM32_MDMA_CTCR_SINC(STM32_MDMA_INC) |
  837. STM32_MDMA_CTCR_DINC(STM32_MDMA_INC);
  838. /* Reset HW request */
  839. ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK;
  840. /* Select bus */
  841. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, src);
  842. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, dest);
  843. /* Clear CBNDTR registers */
  844. cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK | STM32_MDMA_CBNDTR_BRDUM |
  845. STM32_MDMA_CBNDTR_BRSUM | STM32_MDMA_CBNDTR_BNDT_MASK);
  846. if (len <= STM32_MDMA_MAX_BLOCK_LEN) {
  847. cbndtr |= STM32_MDMA_CBNDTR_BNDT(len);
  848. if (len <= STM32_MDMA_MAX_BUF_LEN) {
  849. /* Setup a buffer transfer */
  850. ccr |= STM32_MDMA_CCR_TCIE | STM32_MDMA_CCR_CTCIE;
  851. ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BUFFER);
  852. } else {
  853. /* Setup a block transfer */
  854. ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE;
  855. ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BLOCK);
  856. }
  857. tlen = STM32_MDMA_MAX_BUF_LEN;
  858. ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1));
  859. /* Set source best burst size */
  860. max_width = stm32_mdma_get_max_width(src, len, tlen);
  861. src_bus_width = stm32_mdma_get_width(chan, max_width);
  862. max_burst = tlen / max_width;
  863. best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst,
  864. max_width);
  865. mdma_burst = ilog2(best_burst);
  866. ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) |
  867. STM32_MDMA_CTCR_SSIZE(src_bus_width) |
  868. STM32_MDMA_CTCR_SINCOS(src_bus_width);
  869. /* Set destination best burst size */
  870. max_width = stm32_mdma_get_max_width(dest, len, tlen);
  871. dst_bus_width = stm32_mdma_get_width(chan, max_width);
  872. max_burst = tlen / max_width;
  873. best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst,
  874. max_width);
  875. mdma_burst = ilog2(best_burst);
  876. ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) |
  877. STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
  878. STM32_MDMA_CTCR_DINCOS(dst_bus_width);
  879. if (dst_bus_width != src_bus_width)
  880. ctcr |= STM32_MDMA_CTCR_PKE;
  881. /* Prepare hardware descriptor */
  882. hwdesc = desc->node[0].hwdesc;
  883. hwdesc->ctcr = ctcr;
  884. hwdesc->cbndtr = cbndtr;
  885. hwdesc->csar = src;
  886. hwdesc->cdar = dest;
  887. hwdesc->cbrur = 0;
  888. hwdesc->clar = 0;
  889. hwdesc->ctbr = ctbr;
  890. hwdesc->cmar = 0;
  891. hwdesc->cmdr = 0;
  892. stm32_mdma_dump_hwdesc(chan, &desc->node[0]);
  893. } else {
  894. /* Setup a LLI transfer */
  895. ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_LINKED_LIST) |
  896. STM32_MDMA_CTCR_TLEN((STM32_MDMA_MAX_BUF_LEN - 1));
  897. ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE;
  898. tlen = STM32_MDMA_MAX_BUF_LEN;
  899. for (i = 0, offset = 0; offset < len;
  900. i++, offset += xfer_count) {
  901. xfer_count = min_t(size_t, len - offset,
  902. STM32_MDMA_MAX_BLOCK_LEN);
  903. /* Set source best burst size */
  904. max_width = stm32_mdma_get_max_width(src, len, tlen);
  905. src_bus_width = stm32_mdma_get_width(chan, max_width);
  906. max_burst = tlen / max_width;
  907. best_burst = stm32_mdma_get_best_burst(len, tlen,
  908. max_burst,
  909. max_width);
  910. mdma_burst = ilog2(best_burst);
  911. ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) |
  912. STM32_MDMA_CTCR_SSIZE(src_bus_width) |
  913. STM32_MDMA_CTCR_SINCOS(src_bus_width);
  914. /* Set destination best burst size */
  915. max_width = stm32_mdma_get_max_width(dest, len, tlen);
  916. dst_bus_width = stm32_mdma_get_width(chan, max_width);
  917. max_burst = tlen / max_width;
  918. best_burst = stm32_mdma_get_best_burst(len, tlen,
  919. max_burst,
  920. max_width);
  921. mdma_burst = ilog2(best_burst);
  922. ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) |
  923. STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
  924. STM32_MDMA_CTCR_DINCOS(dst_bus_width);
  925. if (dst_bus_width != src_bus_width)
  926. ctcr |= STM32_MDMA_CTCR_PKE;
  927. /* Prepare hardware descriptor */
  928. stm32_mdma_setup_hwdesc(chan, desc, DMA_MEM_TO_MEM, i,
  929. src + offset, dest + offset,
  930. xfer_count, ctcr, ctbr,
  931. i == count - 1, i == 0, false);
  932. }
  933. }
  934. desc->ccr = ccr;
  935. desc->cyclic = false;
  936. return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
  937. }
  938. static void stm32_mdma_dump_reg(struct stm32_mdma_chan *chan)
  939. {
  940. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  941. dev_dbg(chan2dev(chan), "CCR: 0x%08x\n",
  942. stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id)));
  943. dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n",
  944. stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id)));
  945. dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n",
  946. stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id)));
  947. dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n",
  948. stm32_mdma_read(dmadev, STM32_MDMA_CSAR(chan->id)));
  949. dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n",
  950. stm32_mdma_read(dmadev, STM32_MDMA_CDAR(chan->id)));
  951. dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n",
  952. stm32_mdma_read(dmadev, STM32_MDMA_CBRUR(chan->id)));
  953. dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n",
  954. stm32_mdma_read(dmadev, STM32_MDMA_CLAR(chan->id)));
  955. dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n",
  956. stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id)));
  957. dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n",
  958. stm32_mdma_read(dmadev, STM32_MDMA_CMAR(chan->id)));
  959. dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n",
  960. stm32_mdma_read(dmadev, STM32_MDMA_CMDR(chan->id)));
  961. }
  962. static void stm32_mdma_start_transfer(struct stm32_mdma_chan *chan)
  963. {
  964. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  965. struct virt_dma_desc *vdesc;
  966. struct stm32_mdma_hwdesc *hwdesc;
  967. u32 id = chan->id;
  968. u32 status, reg;
  969. vdesc = vchan_next_desc(&chan->vchan);
  970. if (!vdesc) {
  971. chan->desc = NULL;
  972. return;
  973. }
  974. list_del(&vdesc->node);
  975. chan->desc = to_stm32_mdma_desc(vdesc);
  976. hwdesc = chan->desc->node[0].hwdesc;
  977. chan->curr_hwdesc = 0;
  978. stm32_mdma_write(dmadev, STM32_MDMA_CCR(id), chan->desc->ccr);
  979. stm32_mdma_write(dmadev, STM32_MDMA_CTCR(id), hwdesc->ctcr);
  980. stm32_mdma_write(dmadev, STM32_MDMA_CBNDTR(id), hwdesc->cbndtr);
  981. stm32_mdma_write(dmadev, STM32_MDMA_CSAR(id), hwdesc->csar);
  982. stm32_mdma_write(dmadev, STM32_MDMA_CDAR(id), hwdesc->cdar);
  983. stm32_mdma_write(dmadev, STM32_MDMA_CBRUR(id), hwdesc->cbrur);
  984. stm32_mdma_write(dmadev, STM32_MDMA_CLAR(id), hwdesc->clar);
  985. stm32_mdma_write(dmadev, STM32_MDMA_CTBR(id), hwdesc->ctbr);
  986. stm32_mdma_write(dmadev, STM32_MDMA_CMAR(id), hwdesc->cmar);
  987. stm32_mdma_write(dmadev, STM32_MDMA_CMDR(id), hwdesc->cmdr);
  988. /* Clear interrupt status if it is there */
  989. status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(id));
  990. if (status)
  991. stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(id), status);
  992. stm32_mdma_dump_reg(chan);
  993. /* Start DMA */
  994. stm32_mdma_set_bits(dmadev, STM32_MDMA_CCR(id), STM32_MDMA_CCR_EN);
  995. /* Set SW request in case of MEM2MEM transfer */
  996. if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM) {
  997. reg = STM32_MDMA_CCR(id);
  998. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ);
  999. }
  1000. chan->busy = true;
  1001. dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
  1002. }
  1003. static void stm32_mdma_issue_pending(struct dma_chan *c)
  1004. {
  1005. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1006. unsigned long flags;
  1007. spin_lock_irqsave(&chan->vchan.lock, flags);
  1008. if (!vchan_issue_pending(&chan->vchan))
  1009. goto end;
  1010. dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
  1011. if (!chan->desc && !chan->busy)
  1012. stm32_mdma_start_transfer(chan);
  1013. end:
  1014. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1015. }
  1016. static int stm32_mdma_pause(struct dma_chan *c)
  1017. {
  1018. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1019. unsigned long flags;
  1020. int ret;
  1021. spin_lock_irqsave(&chan->vchan.lock, flags);
  1022. ret = stm32_mdma_disable_chan(chan);
  1023. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1024. if (!ret)
  1025. dev_dbg(chan2dev(chan), "vchan %pK: pause\n", &chan->vchan);
  1026. return ret;
  1027. }
  1028. static int stm32_mdma_resume(struct dma_chan *c)
  1029. {
  1030. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1031. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  1032. struct stm32_mdma_hwdesc *hwdesc;
  1033. unsigned long flags;
  1034. u32 status, reg;
  1035. hwdesc = chan->desc->node[chan->curr_hwdesc].hwdesc;
  1036. spin_lock_irqsave(&chan->vchan.lock, flags);
  1037. /* Re-configure control register */
  1038. stm32_mdma_write(dmadev, STM32_MDMA_CCR(chan->id), chan->desc->ccr);
  1039. /* Clear interrupt status if it is there */
  1040. status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
  1041. if (status)
  1042. stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status);
  1043. stm32_mdma_dump_reg(chan);
  1044. /* Re-start DMA */
  1045. reg = STM32_MDMA_CCR(chan->id);
  1046. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_EN);
  1047. /* Set SW request in case of MEM2MEM transfer */
  1048. if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM)
  1049. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ);
  1050. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1051. dev_dbg(chan2dev(chan), "vchan %pK: resume\n", &chan->vchan);
  1052. return 0;
  1053. }
  1054. static int stm32_mdma_terminate_all(struct dma_chan *c)
  1055. {
  1056. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1057. unsigned long flags;
  1058. LIST_HEAD(head);
  1059. spin_lock_irqsave(&chan->vchan.lock, flags);
  1060. if (chan->desc) {
  1061. vchan_terminate_vdesc(&chan->desc->vdesc);
  1062. if (chan->busy)
  1063. stm32_mdma_stop(chan);
  1064. chan->desc = NULL;
  1065. }
  1066. vchan_get_all_descriptors(&chan->vchan, &head);
  1067. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1068. vchan_dma_desc_free_list(&chan->vchan, &head);
  1069. return 0;
  1070. }
  1071. static void stm32_mdma_synchronize(struct dma_chan *c)
  1072. {
  1073. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1074. vchan_synchronize(&chan->vchan);
  1075. }
  1076. static int stm32_mdma_slave_config(struct dma_chan *c,
  1077. struct dma_slave_config *config)
  1078. {
  1079. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1080. memcpy(&chan->dma_config, config, sizeof(*config));
  1081. return 0;
  1082. }
  1083. static size_t stm32_mdma_desc_residue(struct stm32_mdma_chan *chan,
  1084. struct stm32_mdma_desc *desc,
  1085. u32 curr_hwdesc)
  1086. {
  1087. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  1088. struct stm32_mdma_hwdesc *hwdesc = desc->node[0].hwdesc;
  1089. u32 cbndtr, residue, modulo, burst_size;
  1090. int i;
  1091. residue = 0;
  1092. for (i = curr_hwdesc + 1; i < desc->count; i++) {
  1093. hwdesc = desc->node[i].hwdesc;
  1094. residue += STM32_MDMA_CBNDTR_BNDT(hwdesc->cbndtr);
  1095. }
  1096. cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id));
  1097. residue += cbndtr & STM32_MDMA_CBNDTR_BNDT_MASK;
  1098. if (!chan->mem_burst)
  1099. return residue;
  1100. burst_size = chan->mem_burst * chan->mem_width;
  1101. modulo = residue % burst_size;
  1102. if (modulo)
  1103. residue = residue - modulo + burst_size;
  1104. return residue;
  1105. }
  1106. static enum dma_status stm32_mdma_tx_status(struct dma_chan *c,
  1107. dma_cookie_t cookie,
  1108. struct dma_tx_state *state)
  1109. {
  1110. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1111. struct virt_dma_desc *vdesc;
  1112. enum dma_status status;
  1113. unsigned long flags;
  1114. u32 residue = 0;
  1115. status = dma_cookie_status(c, cookie, state);
  1116. if ((status == DMA_COMPLETE) || (!state))
  1117. return status;
  1118. spin_lock_irqsave(&chan->vchan.lock, flags);
  1119. vdesc = vchan_find_desc(&chan->vchan, cookie);
  1120. if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
  1121. residue = stm32_mdma_desc_residue(chan, chan->desc,
  1122. chan->curr_hwdesc);
  1123. else if (vdesc)
  1124. residue = stm32_mdma_desc_residue(chan,
  1125. to_stm32_mdma_desc(vdesc), 0);
  1126. dma_set_residue(state, residue);
  1127. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1128. return status;
  1129. }
  1130. static void stm32_mdma_xfer_end(struct stm32_mdma_chan *chan)
  1131. {
  1132. vchan_cookie_complete(&chan->desc->vdesc);
  1133. chan->desc = NULL;
  1134. chan->busy = false;
  1135. /* Start the next transfer if this driver has a next desc */
  1136. stm32_mdma_start_transfer(chan);
  1137. }
  1138. static irqreturn_t stm32_mdma_irq_handler(int irq, void *devid)
  1139. {
  1140. struct stm32_mdma_device *dmadev = devid;
  1141. struct stm32_mdma_chan *chan = devid;
  1142. u32 reg, id, ien, status, flag;
  1143. /* Find out which channel generates the interrupt */
  1144. status = readl_relaxed(dmadev->base + STM32_MDMA_GISR0);
  1145. if (status) {
  1146. id = __ffs(status);
  1147. } else {
  1148. status = readl_relaxed(dmadev->base + STM32_MDMA_GISR1);
  1149. if (!status) {
  1150. dev_dbg(mdma2dev(dmadev), "spurious it\n");
  1151. return IRQ_NONE;
  1152. }
  1153. id = __ffs(status);
  1154. /*
  1155. * As GISR0 provides status for channel id from 0 to 31,
  1156. * so GISR1 provides status for channel id from 32 to 62
  1157. */
  1158. id += 32;
  1159. }
  1160. chan = &dmadev->chan[id];
  1161. if (!chan) {
  1162. dev_dbg(mdma2dev(dmadev), "MDMA channel not initialized\n");
  1163. goto exit;
  1164. }
  1165. /* Handle interrupt for the channel */
  1166. spin_lock(&chan->vchan.lock);
  1167. status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
  1168. ien = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
  1169. ien &= STM32_MDMA_CCR_IRQ_MASK;
  1170. ien >>= 1;
  1171. if (!(status & ien)) {
  1172. spin_unlock(&chan->vchan.lock);
  1173. dev_dbg(chan2dev(chan),
  1174. "spurious it (status=0x%04x, ien=0x%04x)\n",
  1175. status, ien);
  1176. return IRQ_NONE;
  1177. }
  1178. flag = __ffs(status & ien);
  1179. reg = STM32_MDMA_CIFCR(chan->id);
  1180. switch (1 << flag) {
  1181. case STM32_MDMA_CISR_TEIF:
  1182. id = chan->id;
  1183. status = readl_relaxed(dmadev->base + STM32_MDMA_CESR(id));
  1184. dev_err(chan2dev(chan), "Transfer Err: stat=0x%08x\n", status);
  1185. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CTEIF);
  1186. break;
  1187. case STM32_MDMA_CISR_CTCIF:
  1188. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CCTCIF);
  1189. stm32_mdma_xfer_end(chan);
  1190. break;
  1191. case STM32_MDMA_CISR_BRTIF:
  1192. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBRTIF);
  1193. break;
  1194. case STM32_MDMA_CISR_BTIF:
  1195. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBTIF);
  1196. chan->curr_hwdesc++;
  1197. if (chan->desc && chan->desc->cyclic) {
  1198. if (chan->curr_hwdesc == chan->desc->count)
  1199. chan->curr_hwdesc = 0;
  1200. vchan_cyclic_callback(&chan->desc->vdesc);
  1201. }
  1202. break;
  1203. case STM32_MDMA_CISR_TCIF:
  1204. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CLTCIF);
  1205. break;
  1206. default:
  1207. dev_err(chan2dev(chan), "it %d unhandled (status=0x%04x)\n",
  1208. 1 << flag, status);
  1209. }
  1210. spin_unlock(&chan->vchan.lock);
  1211. exit:
  1212. return IRQ_HANDLED;
  1213. }
  1214. static int stm32_mdma_alloc_chan_resources(struct dma_chan *c)
  1215. {
  1216. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1217. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  1218. int ret;
  1219. chan->desc_pool = dmam_pool_create(dev_name(&c->dev->device),
  1220. c->device->dev,
  1221. sizeof(struct stm32_mdma_hwdesc),
  1222. __alignof__(struct stm32_mdma_hwdesc),
  1223. 0);
  1224. if (!chan->desc_pool) {
  1225. dev_err(chan2dev(chan), "failed to allocate descriptor pool\n");
  1226. return -ENOMEM;
  1227. }
  1228. ret = clk_prepare_enable(dmadev->clk);
  1229. if (ret < 0) {
  1230. dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret);
  1231. return ret;
  1232. }
  1233. ret = stm32_mdma_disable_chan(chan);
  1234. if (ret < 0)
  1235. clk_disable_unprepare(dmadev->clk);
  1236. return ret;
  1237. }
  1238. static void stm32_mdma_free_chan_resources(struct dma_chan *c)
  1239. {
  1240. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1241. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  1242. unsigned long flags;
  1243. dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
  1244. if (chan->busy) {
  1245. spin_lock_irqsave(&chan->vchan.lock, flags);
  1246. stm32_mdma_stop(chan);
  1247. chan->desc = NULL;
  1248. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1249. }
  1250. clk_disable_unprepare(dmadev->clk);
  1251. vchan_free_chan_resources(to_virt_chan(c));
  1252. dmam_pool_destroy(chan->desc_pool);
  1253. chan->desc_pool = NULL;
  1254. }
  1255. static struct dma_chan *stm32_mdma_of_xlate(struct of_phandle_args *dma_spec,
  1256. struct of_dma *ofdma)
  1257. {
  1258. struct stm32_mdma_device *dmadev = ofdma->of_dma_data;
  1259. struct stm32_mdma_chan *chan;
  1260. struct dma_chan *c;
  1261. struct stm32_mdma_chan_config config;
  1262. if (dma_spec->args_count < 5) {
  1263. dev_err(mdma2dev(dmadev), "Bad number of args\n");
  1264. return NULL;
  1265. }
  1266. config.request = dma_spec->args[0];
  1267. config.priority_level = dma_spec->args[1];
  1268. config.transfer_config = dma_spec->args[2];
  1269. config.mask_addr = dma_spec->args[3];
  1270. config.mask_data = dma_spec->args[4];
  1271. if (config.request >= dmadev->nr_requests) {
  1272. dev_err(mdma2dev(dmadev), "Bad request line\n");
  1273. return NULL;
  1274. }
  1275. if (config.priority_level > STM32_MDMA_VERY_HIGH_PRIORITY) {
  1276. dev_err(mdma2dev(dmadev), "Priority level not supported\n");
  1277. return NULL;
  1278. }
  1279. c = dma_get_any_slave_channel(&dmadev->ddev);
  1280. if (!c) {
  1281. dev_err(mdma2dev(dmadev), "No more channels available\n");
  1282. return NULL;
  1283. }
  1284. chan = to_stm32_mdma_chan(c);
  1285. chan->chan_config = config;
  1286. return c;
  1287. }
  1288. static const struct of_device_id stm32_mdma_of_match[] = {
  1289. { .compatible = "st,stm32h7-mdma", },
  1290. { /* sentinel */ },
  1291. };
  1292. MODULE_DEVICE_TABLE(of, stm32_mdma_of_match);
  1293. static int stm32_mdma_probe(struct platform_device *pdev)
  1294. {
  1295. struct stm32_mdma_chan *chan;
  1296. struct stm32_mdma_device *dmadev;
  1297. struct dma_device *dd;
  1298. struct device_node *of_node;
  1299. struct resource *res;
  1300. u32 nr_channels, nr_requests;
  1301. int i, count, ret;
  1302. of_node = pdev->dev.of_node;
  1303. if (!of_node)
  1304. return -ENODEV;
  1305. ret = device_property_read_u32(&pdev->dev, "dma-channels",
  1306. &nr_channels);
  1307. if (ret) {
  1308. nr_channels = STM32_MDMA_MAX_CHANNELS;
  1309. dev_warn(&pdev->dev, "MDMA defaulting on %i channels\n",
  1310. nr_channels);
  1311. }
  1312. ret = device_property_read_u32(&pdev->dev, "dma-requests",
  1313. &nr_requests);
  1314. if (ret) {
  1315. nr_requests = STM32_MDMA_MAX_REQUESTS;
  1316. dev_warn(&pdev->dev, "MDMA defaulting on %i request lines\n",
  1317. nr_requests);
  1318. }
  1319. count = device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks",
  1320. NULL, 0);
  1321. if (count < 0)
  1322. count = 0;
  1323. dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev) + sizeof(u32) * count,
  1324. GFP_KERNEL);
  1325. if (!dmadev)
  1326. return -ENOMEM;
  1327. dmadev->nr_channels = nr_channels;
  1328. dmadev->nr_requests = nr_requests;
  1329. device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks",
  1330. dmadev->ahb_addr_masks,
  1331. count);
  1332. dmadev->nr_ahb_addr_masks = count;
  1333. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1334. dmadev->base = devm_ioremap_resource(&pdev->dev, res);
  1335. if (IS_ERR(dmadev->base))
  1336. return PTR_ERR(dmadev->base);
  1337. dmadev->clk = devm_clk_get(&pdev->dev, NULL);
  1338. if (IS_ERR(dmadev->clk)) {
  1339. ret = PTR_ERR(dmadev->clk);
  1340. if (ret == -EPROBE_DEFER)
  1341. dev_info(&pdev->dev, "Missing controller clock\n");
  1342. return ret;
  1343. }
  1344. dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
  1345. if (!IS_ERR(dmadev->rst)) {
  1346. reset_control_assert(dmadev->rst);
  1347. udelay(2);
  1348. reset_control_deassert(dmadev->rst);
  1349. }
  1350. dd = &dmadev->ddev;
  1351. dma_cap_set(DMA_SLAVE, dd->cap_mask);
  1352. dma_cap_set(DMA_PRIVATE, dd->cap_mask);
  1353. dma_cap_set(DMA_CYCLIC, dd->cap_mask);
  1354. dma_cap_set(DMA_MEMCPY, dd->cap_mask);
  1355. dd->device_alloc_chan_resources = stm32_mdma_alloc_chan_resources;
  1356. dd->device_free_chan_resources = stm32_mdma_free_chan_resources;
  1357. dd->device_tx_status = stm32_mdma_tx_status;
  1358. dd->device_issue_pending = stm32_mdma_issue_pending;
  1359. dd->device_prep_slave_sg = stm32_mdma_prep_slave_sg;
  1360. dd->device_prep_dma_cyclic = stm32_mdma_prep_dma_cyclic;
  1361. dd->device_prep_dma_memcpy = stm32_mdma_prep_dma_memcpy;
  1362. dd->device_config = stm32_mdma_slave_config;
  1363. dd->device_pause = stm32_mdma_pause;
  1364. dd->device_resume = stm32_mdma_resume;
  1365. dd->device_terminate_all = stm32_mdma_terminate_all;
  1366. dd->device_synchronize = stm32_mdma_synchronize;
  1367. dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
  1368. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
  1369. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
  1370. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
  1371. dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
  1372. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
  1373. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
  1374. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
  1375. dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
  1376. BIT(DMA_MEM_TO_MEM);
  1377. dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1378. dd->max_burst = STM32_MDMA_MAX_BURST;
  1379. dd->dev = &pdev->dev;
  1380. INIT_LIST_HEAD(&dd->channels);
  1381. for (i = 0; i < dmadev->nr_channels; i++) {
  1382. chan = &dmadev->chan[i];
  1383. chan->id = i;
  1384. chan->vchan.desc_free = stm32_mdma_desc_free;
  1385. vchan_init(&chan->vchan, dd);
  1386. }
  1387. dmadev->irq = platform_get_irq(pdev, 0);
  1388. if (dmadev->irq < 0) {
  1389. dev_err(&pdev->dev, "failed to get IRQ\n");
  1390. return dmadev->irq;
  1391. }
  1392. ret = devm_request_irq(&pdev->dev, dmadev->irq, stm32_mdma_irq_handler,
  1393. 0, dev_name(&pdev->dev), dmadev);
  1394. if (ret) {
  1395. dev_err(&pdev->dev, "failed to request IRQ\n");
  1396. return ret;
  1397. }
  1398. ret = dma_async_device_register(dd);
  1399. if (ret)
  1400. return ret;
  1401. ret = of_dma_controller_register(of_node, stm32_mdma_of_xlate, dmadev);
  1402. if (ret < 0) {
  1403. dev_err(&pdev->dev,
  1404. "STM32 MDMA DMA OF registration failed %d\n", ret);
  1405. goto err_unregister;
  1406. }
  1407. platform_set_drvdata(pdev, dmadev);
  1408. dev_info(&pdev->dev, "STM32 MDMA driver registered\n");
  1409. return 0;
  1410. err_unregister:
  1411. dma_async_device_unregister(dd);
  1412. return ret;
  1413. }
  1414. static struct platform_driver stm32_mdma_driver = {
  1415. .probe = stm32_mdma_probe,
  1416. .driver = {
  1417. .name = "stm32-mdma",
  1418. .of_match_table = stm32_mdma_of_match,
  1419. },
  1420. };
  1421. static int __init stm32_mdma_init(void)
  1422. {
  1423. return platform_driver_register(&stm32_mdma_driver);
  1424. }
  1425. subsys_initcall(stm32_mdma_init);
  1426. MODULE_DESCRIPTION("Driver for STM32 MDMA controller");
  1427. MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
  1428. MODULE_AUTHOR("Pierre-Yves Mordret <pierre-yves.mordret@st.com>");
  1429. MODULE_LICENSE("GPL v2");