i2c-exynos5.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900
  1. /**
  2. * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
  3. *
  4. * Copyright (C) 2013 Samsung Electronics Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/i2c.h>
  13. #include <linux/time.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/clk.h>
  20. #include <linux/slab.h>
  21. #include <linux/io.h>
  22. #include <linux/of_address.h>
  23. #include <linux/of_device.h>
  24. #include <linux/of_irq.h>
  25. #include <linux/spinlock.h>
  26. /*
  27. * HSI2C controller from Samsung supports 2 modes of operation
  28. * 1. Auto mode: Where in master automatically controls the whole transaction
  29. * 2. Manual mode: Software controls the transaction by issuing commands
  30. * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
  31. *
  32. * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
  33. *
  34. * Special bits are available for both modes of operation to set commands
  35. * and for checking transfer status
  36. */
  37. /* Register Map */
  38. #define HSI2C_CTL 0x00
  39. #define HSI2C_FIFO_CTL 0x04
  40. #define HSI2C_TRAILIG_CTL 0x08
  41. #define HSI2C_CLK_CTL 0x0C
  42. #define HSI2C_CLK_SLOT 0x10
  43. #define HSI2C_INT_ENABLE 0x20
  44. #define HSI2C_INT_STATUS 0x24
  45. #define HSI2C_ERR_STATUS 0x2C
  46. #define HSI2C_FIFO_STATUS 0x30
  47. #define HSI2C_TX_DATA 0x34
  48. #define HSI2C_RX_DATA 0x38
  49. #define HSI2C_CONF 0x40
  50. #define HSI2C_AUTO_CONF 0x44
  51. #define HSI2C_TIMEOUT 0x48
  52. #define HSI2C_MANUAL_CMD 0x4C
  53. #define HSI2C_TRANS_STATUS 0x50
  54. #define HSI2C_TIMING_HS1 0x54
  55. #define HSI2C_TIMING_HS2 0x58
  56. #define HSI2C_TIMING_HS3 0x5C
  57. #define HSI2C_TIMING_FS1 0x60
  58. #define HSI2C_TIMING_FS2 0x64
  59. #define HSI2C_TIMING_FS3 0x68
  60. #define HSI2C_TIMING_SLA 0x6C
  61. #define HSI2C_ADDR 0x70
  62. /* I2C_CTL Register bits */
  63. #define HSI2C_FUNC_MODE_I2C (1u << 0)
  64. #define HSI2C_MASTER (1u << 3)
  65. #define HSI2C_RXCHON (1u << 6)
  66. #define HSI2C_TXCHON (1u << 7)
  67. #define HSI2C_SW_RST (1u << 31)
  68. /* I2C_FIFO_CTL Register bits */
  69. #define HSI2C_RXFIFO_EN (1u << 0)
  70. #define HSI2C_TXFIFO_EN (1u << 1)
  71. #define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4)
  72. #define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16)
  73. /* I2C_TRAILING_CTL Register bits */
  74. #define HSI2C_TRAILING_COUNT (0xf)
  75. /* I2C_INT_EN Register bits */
  76. #define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
  77. #define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
  78. #define HSI2C_INT_TRAILING_EN (1u << 6)
  79. /* I2C_INT_STAT Register bits */
  80. #define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0)
  81. #define HSI2C_INT_RX_ALMOSTFULL (1u << 1)
  82. #define HSI2C_INT_TX_UNDERRUN (1u << 2)
  83. #define HSI2C_INT_TX_OVERRUN (1u << 3)
  84. #define HSI2C_INT_RX_UNDERRUN (1u << 4)
  85. #define HSI2C_INT_RX_OVERRUN (1u << 5)
  86. #define HSI2C_INT_TRAILING (1u << 6)
  87. #define HSI2C_INT_I2C (1u << 9)
  88. #define HSI2C_INT_TRANS_DONE (1u << 7)
  89. #define HSI2C_INT_TRANS_ABORT (1u << 8)
  90. #define HSI2C_INT_NO_DEV_ACK (1u << 9)
  91. #define HSI2C_INT_NO_DEV (1u << 10)
  92. #define HSI2C_INT_TIMEOUT (1u << 11)
  93. #define HSI2C_INT_I2C_TRANS (HSI2C_INT_TRANS_DONE | \
  94. HSI2C_INT_TRANS_ABORT | \
  95. HSI2C_INT_NO_DEV_ACK | \
  96. HSI2C_INT_NO_DEV | \
  97. HSI2C_INT_TIMEOUT)
  98. /* I2C_FIFO_STAT Register bits */
  99. #define HSI2C_RX_FIFO_EMPTY (1u << 24)
  100. #define HSI2C_RX_FIFO_FULL (1u << 23)
  101. #define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f)
  102. #define HSI2C_TX_FIFO_EMPTY (1u << 8)
  103. #define HSI2C_TX_FIFO_FULL (1u << 7)
  104. #define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f)
  105. /* I2C_CONF Register bits */
  106. #define HSI2C_AUTO_MODE (1u << 31)
  107. #define HSI2C_10BIT_ADDR_MODE (1u << 30)
  108. #define HSI2C_HS_MODE (1u << 29)
  109. /* I2C_AUTO_CONF Register bits */
  110. #define HSI2C_READ_WRITE (1u << 16)
  111. #define HSI2C_STOP_AFTER_TRANS (1u << 17)
  112. #define HSI2C_MASTER_RUN (1u << 31)
  113. /* I2C_TIMEOUT Register bits */
  114. #define HSI2C_TIMEOUT_EN (1u << 31)
  115. #define HSI2C_TIMEOUT_MASK 0xff
  116. /* I2C_MANUAL_CMD register bits */
  117. #define HSI2C_CMD_READ_DATA (1u << 4)
  118. #define HSI2C_CMD_SEND_STOP (1u << 2)
  119. /* I2C_TRANS_STATUS register bits */
  120. #define HSI2C_MASTER_BUSY (1u << 17)
  121. #define HSI2C_SLAVE_BUSY (1u << 16)
  122. /* I2C_TRANS_STATUS register bits for Exynos5 variant */
  123. #define HSI2C_TIMEOUT_AUTO (1u << 4)
  124. #define HSI2C_NO_DEV (1u << 3)
  125. #define HSI2C_NO_DEV_ACK (1u << 2)
  126. #define HSI2C_TRANS_ABORT (1u << 1)
  127. #define HSI2C_TRANS_DONE (1u << 0)
  128. /* I2C_TRANS_STATUS register bits for Exynos7 variant */
  129. #define HSI2C_MASTER_ST_MASK 0xf
  130. #define HSI2C_MASTER_ST_IDLE 0x0
  131. #define HSI2C_MASTER_ST_START 0x1
  132. #define HSI2C_MASTER_ST_RESTART 0x2
  133. #define HSI2C_MASTER_ST_STOP 0x3
  134. #define HSI2C_MASTER_ST_MASTER_ID 0x4
  135. #define HSI2C_MASTER_ST_ADDR0 0x5
  136. #define HSI2C_MASTER_ST_ADDR1 0x6
  137. #define HSI2C_MASTER_ST_ADDR2 0x7
  138. #define HSI2C_MASTER_ST_ADDR_SR 0x8
  139. #define HSI2C_MASTER_ST_READ 0x9
  140. #define HSI2C_MASTER_ST_WRITE 0xa
  141. #define HSI2C_MASTER_ST_NO_ACK 0xb
  142. #define HSI2C_MASTER_ST_LOSE 0xc
  143. #define HSI2C_MASTER_ST_WAIT 0xd
  144. #define HSI2C_MASTER_ST_WAIT_CMD 0xe
  145. /* I2C_ADDR register bits */
  146. #define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0)
  147. #define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
  148. #define HSI2C_MASTER_ID(x) ((x & 0xff) << 24)
  149. #define MASTER_ID(x) ((x & 0x7) + 0x08)
  150. /*
  151. * Controller operating frequency, timing values for operation
  152. * are calculated against this frequency
  153. */
  154. #define HSI2C_HS_TX_CLOCK 1000000
  155. #define HSI2C_FS_TX_CLOCK 100000
  156. #define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100))
  157. enum i2c_type_exynos {
  158. I2C_TYPE_EXYNOS5,
  159. I2C_TYPE_EXYNOS7,
  160. };
  161. struct exynos5_i2c {
  162. struct i2c_adapter adap;
  163. unsigned int suspended:1;
  164. struct i2c_msg *msg;
  165. struct completion msg_complete;
  166. unsigned int msg_ptr;
  167. unsigned int irq;
  168. void __iomem *regs;
  169. struct clk *clk;
  170. struct device *dev;
  171. int state;
  172. spinlock_t lock; /* IRQ synchronization */
  173. /*
  174. * Since the TRANS_DONE bit is cleared on read, and we may read it
  175. * either during an IRQ or after a transaction, keep track of its
  176. * state here.
  177. */
  178. int trans_done;
  179. /* Controller operating frequency */
  180. unsigned int op_clock;
  181. /* Version of HS-I2C Hardware */
  182. const struct exynos_hsi2c_variant *variant;
  183. };
  184. /**
  185. * struct exynos_hsi2c_variant - platform specific HSI2C driver data
  186. * @fifo_depth: the fifo depth supported by the HSI2C module
  187. * @hw: the hardware variant of Exynos I2C controller
  188. *
  189. * Specifies platform specific configuration of HSI2C module.
  190. * Note: A structure for driver specific platform data is used for future
  191. * expansion of its usage.
  192. */
  193. struct exynos_hsi2c_variant {
  194. unsigned int fifo_depth;
  195. enum i2c_type_exynos hw;
  196. };
  197. static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
  198. .fifo_depth = 64,
  199. .hw = I2C_TYPE_EXYNOS5,
  200. };
  201. static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
  202. .fifo_depth = 16,
  203. .hw = I2C_TYPE_EXYNOS5,
  204. };
  205. static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
  206. .fifo_depth = 16,
  207. .hw = I2C_TYPE_EXYNOS7,
  208. };
  209. static const struct of_device_id exynos5_i2c_match[] = {
  210. {
  211. .compatible = "samsung,exynos5-hsi2c",
  212. .data = &exynos5250_hsi2c_data
  213. }, {
  214. .compatible = "samsung,exynos5250-hsi2c",
  215. .data = &exynos5250_hsi2c_data
  216. }, {
  217. .compatible = "samsung,exynos5260-hsi2c",
  218. .data = &exynos5260_hsi2c_data
  219. }, {
  220. .compatible = "samsung,exynos7-hsi2c",
  221. .data = &exynos7_hsi2c_data
  222. }, {},
  223. };
  224. MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
  225. static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
  226. {
  227. writel(readl(i2c->regs + HSI2C_INT_STATUS),
  228. i2c->regs + HSI2C_INT_STATUS);
  229. }
  230. /*
  231. * exynos5_i2c_set_timing: updates the registers with appropriate
  232. * timing values calculated
  233. *
  234. * Returns 0 on success, -EINVAL if the cycle length cannot
  235. * be calculated.
  236. */
  237. static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings)
  238. {
  239. u32 i2c_timing_s1;
  240. u32 i2c_timing_s2;
  241. u32 i2c_timing_s3;
  242. u32 i2c_timing_sla;
  243. unsigned int t_start_su, t_start_hd;
  244. unsigned int t_stop_su;
  245. unsigned int t_data_su, t_data_hd;
  246. unsigned int t_scl_l, t_scl_h;
  247. unsigned int t_sr_release;
  248. unsigned int t_ftl_cycle;
  249. unsigned int clkin = clk_get_rate(i2c->clk);
  250. unsigned int op_clk = hs_timings ? i2c->op_clock :
  251. (i2c->op_clock >= HSI2C_HS_TX_CLOCK) ? HSI2C_FS_TX_CLOCK :
  252. i2c->op_clock;
  253. int div, clk_cycle, temp;
  254. /*
  255. * In case of HSI2C controller in Exynos5 series
  256. * FPCLK / FI2C =
  257. * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
  258. *
  259. * In case of HSI2C controllers in Exynos7 series
  260. * FPCLK / FI2C =
  261. * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
  262. *
  263. * clk_cycle := TSCLK_L + TSCLK_H
  264. * temp := (CLK_DIV + 1) * (clk_cycle + 2)
  265. *
  266. * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510
  267. *
  268. */
  269. t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
  270. temp = clkin / op_clk - 8 - t_ftl_cycle;
  271. if (i2c->variant->hw != I2C_TYPE_EXYNOS7)
  272. temp -= t_ftl_cycle;
  273. div = temp / 512;
  274. clk_cycle = temp / (div + 1) - 2;
  275. if (temp < 4 || div >= 256 || clk_cycle < 2) {
  276. dev_err(i2c->dev, "%s clock set-up failed\n",
  277. hs_timings ? "HS" : "FS");
  278. return -EINVAL;
  279. }
  280. t_scl_l = clk_cycle / 2;
  281. t_scl_h = clk_cycle / 2;
  282. t_start_su = t_scl_l;
  283. t_start_hd = t_scl_l;
  284. t_stop_su = t_scl_l;
  285. t_data_su = t_scl_l / 2;
  286. t_data_hd = t_scl_l / 2;
  287. t_sr_release = clk_cycle;
  288. i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
  289. i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
  290. i2c_timing_s3 = div << 16 | t_sr_release << 0;
  291. i2c_timing_sla = t_data_hd << 0;
  292. dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
  293. t_start_su, t_start_hd, t_stop_su);
  294. dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
  295. t_data_su, t_scl_l, t_scl_h);
  296. dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
  297. div, t_sr_release);
  298. dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
  299. if (hs_timings) {
  300. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
  301. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
  302. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
  303. } else {
  304. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
  305. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
  306. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
  307. }
  308. writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
  309. return 0;
  310. }
  311. static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
  312. {
  313. /* always set Fast Speed timings */
  314. int ret = exynos5_i2c_set_timing(i2c, false);
  315. if (ret < 0 || i2c->op_clock < HSI2C_HS_TX_CLOCK)
  316. return ret;
  317. return exynos5_i2c_set_timing(i2c, true);
  318. }
  319. /*
  320. * exynos5_i2c_init: configures the controller for I2C functionality
  321. * Programs I2C controller for Master mode operation
  322. */
  323. static void exynos5_i2c_init(struct exynos5_i2c *i2c)
  324. {
  325. u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
  326. u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
  327. /* Clear to disable Timeout */
  328. i2c_timeout &= ~HSI2C_TIMEOUT_EN;
  329. writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
  330. writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
  331. i2c->regs + HSI2C_CTL);
  332. writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
  333. if (i2c->op_clock >= HSI2C_HS_TX_CLOCK) {
  334. writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
  335. i2c->regs + HSI2C_ADDR);
  336. i2c_conf |= HSI2C_HS_MODE;
  337. }
  338. writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
  339. }
  340. static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
  341. {
  342. u32 i2c_ctl;
  343. /* Set and clear the bit for reset */
  344. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  345. i2c_ctl |= HSI2C_SW_RST;
  346. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  347. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  348. i2c_ctl &= ~HSI2C_SW_RST;
  349. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  350. /* We don't expect calculations to fail during the run */
  351. exynos5_hsi2c_clock_setup(i2c);
  352. /* Initialize the configure registers */
  353. exynos5_i2c_init(i2c);
  354. }
  355. /*
  356. * exynos5_i2c_irq: top level IRQ servicing routine
  357. *
  358. * INT_STATUS registers gives the interrupt details. Further,
  359. * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
  360. * state of the bus.
  361. */
  362. static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
  363. {
  364. struct exynos5_i2c *i2c = dev_id;
  365. u32 fifo_level, int_status, fifo_status, trans_status;
  366. unsigned char byte;
  367. int len = 0;
  368. i2c->state = -EINVAL;
  369. spin_lock(&i2c->lock);
  370. int_status = readl(i2c->regs + HSI2C_INT_STATUS);
  371. writel(int_status, i2c->regs + HSI2C_INT_STATUS);
  372. /* handle interrupt related to the transfer status */
  373. if (i2c->variant->hw == I2C_TYPE_EXYNOS7) {
  374. if (int_status & HSI2C_INT_TRANS_DONE) {
  375. i2c->trans_done = 1;
  376. i2c->state = 0;
  377. } else if (int_status & HSI2C_INT_TRANS_ABORT) {
  378. dev_dbg(i2c->dev, "Deal with arbitration lose\n");
  379. i2c->state = -EAGAIN;
  380. goto stop;
  381. } else if (int_status & HSI2C_INT_NO_DEV_ACK) {
  382. dev_dbg(i2c->dev, "No ACK from device\n");
  383. i2c->state = -ENXIO;
  384. goto stop;
  385. } else if (int_status & HSI2C_INT_NO_DEV) {
  386. dev_dbg(i2c->dev, "No device\n");
  387. i2c->state = -ENXIO;
  388. goto stop;
  389. } else if (int_status & HSI2C_INT_TIMEOUT) {
  390. dev_dbg(i2c->dev, "Accessing device timed out\n");
  391. i2c->state = -ETIMEDOUT;
  392. goto stop;
  393. }
  394. } else if (int_status & HSI2C_INT_I2C) {
  395. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  396. if (trans_status & HSI2C_NO_DEV_ACK) {
  397. dev_dbg(i2c->dev, "No ACK from device\n");
  398. i2c->state = -ENXIO;
  399. goto stop;
  400. } else if (trans_status & HSI2C_NO_DEV) {
  401. dev_dbg(i2c->dev, "No device\n");
  402. i2c->state = -ENXIO;
  403. goto stop;
  404. } else if (trans_status & HSI2C_TRANS_ABORT) {
  405. dev_dbg(i2c->dev, "Deal with arbitration lose\n");
  406. i2c->state = -EAGAIN;
  407. goto stop;
  408. } else if (trans_status & HSI2C_TIMEOUT_AUTO) {
  409. dev_dbg(i2c->dev, "Accessing device timed out\n");
  410. i2c->state = -ETIMEDOUT;
  411. goto stop;
  412. } else if (trans_status & HSI2C_TRANS_DONE) {
  413. i2c->trans_done = 1;
  414. i2c->state = 0;
  415. }
  416. }
  417. if ((i2c->msg->flags & I2C_M_RD) && (int_status &
  418. (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
  419. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  420. fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
  421. len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
  422. while (len > 0) {
  423. byte = (unsigned char)
  424. readl(i2c->regs + HSI2C_RX_DATA);
  425. i2c->msg->buf[i2c->msg_ptr++] = byte;
  426. len--;
  427. }
  428. i2c->state = 0;
  429. } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
  430. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  431. fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
  432. len = i2c->variant->fifo_depth - fifo_level;
  433. if (len > (i2c->msg->len - i2c->msg_ptr)) {
  434. u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
  435. int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
  436. writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
  437. len = i2c->msg->len - i2c->msg_ptr;
  438. }
  439. while (len > 0) {
  440. byte = i2c->msg->buf[i2c->msg_ptr++];
  441. writel(byte, i2c->regs + HSI2C_TX_DATA);
  442. len--;
  443. }
  444. i2c->state = 0;
  445. }
  446. stop:
  447. if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
  448. (i2c->state < 0)) {
  449. writel(0, i2c->regs + HSI2C_INT_ENABLE);
  450. exynos5_i2c_clr_pend_irq(i2c);
  451. complete(&i2c->msg_complete);
  452. }
  453. spin_unlock(&i2c->lock);
  454. return IRQ_HANDLED;
  455. }
  456. /*
  457. * exynos5_i2c_wait_bus_idle
  458. *
  459. * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
  460. * cleared.
  461. *
  462. * Returns -EBUSY if the bus cannot be bought to idle
  463. */
  464. static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
  465. {
  466. unsigned long stop_time;
  467. u32 trans_status;
  468. /* wait for 100 milli seconds for the bus to be idle */
  469. stop_time = jiffies + msecs_to_jiffies(100) + 1;
  470. do {
  471. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  472. if (!(trans_status & HSI2C_MASTER_BUSY))
  473. return 0;
  474. usleep_range(50, 200);
  475. } while (time_before(jiffies, stop_time));
  476. return -EBUSY;
  477. }
  478. static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c)
  479. {
  480. u32 val;
  481. val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON;
  482. writel(val, i2c->regs + HSI2C_CTL);
  483. val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE;
  484. writel(val, i2c->regs + HSI2C_CONF);
  485. /*
  486. * Specification says master should send nine clock pulses. It can be
  487. * emulated by sending manual read command (nine pulses for read eight
  488. * bits + one pulse for NACK).
  489. */
  490. writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD);
  491. exynos5_i2c_wait_bus_idle(i2c);
  492. writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD);
  493. exynos5_i2c_wait_bus_idle(i2c);
  494. val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON;
  495. writel(val, i2c->regs + HSI2C_CTL);
  496. val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE;
  497. writel(val, i2c->regs + HSI2C_CONF);
  498. }
  499. static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c)
  500. {
  501. unsigned long timeout;
  502. if (i2c->variant->hw != I2C_TYPE_EXYNOS7)
  503. return;
  504. /*
  505. * HSI2C_MASTER_ST_LOSE state in EXYNOS7 variant before transaction
  506. * indicates that bus is stuck (SDA is low). In such case bus recovery
  507. * can be performed.
  508. */
  509. timeout = jiffies + msecs_to_jiffies(100);
  510. for (;;) {
  511. u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS);
  512. if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE)
  513. return;
  514. if (time_is_before_jiffies(timeout))
  515. return;
  516. exynos5_i2c_bus_recover(i2c);
  517. }
  518. }
  519. /*
  520. * exynos5_i2c_message_start: Configures the bus and starts the xfer
  521. * i2c: struct exynos5_i2c pointer for the current bus
  522. * stop: Enables stop after transfer if set. Set for last transfer of
  523. * in the list of messages.
  524. *
  525. * Configures the bus for read/write function
  526. * Sets chip address to talk to, message length to be sent.
  527. * Enables appropriate interrupts and sends start xfer command.
  528. */
  529. static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
  530. {
  531. u32 i2c_ctl;
  532. u32 int_en = 0;
  533. u32 i2c_auto_conf = 0;
  534. u32 fifo_ctl;
  535. unsigned long flags;
  536. unsigned short trig_lvl;
  537. if (i2c->variant->hw == I2C_TYPE_EXYNOS7)
  538. int_en |= HSI2C_INT_I2C_TRANS;
  539. else
  540. int_en |= HSI2C_INT_I2C;
  541. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  542. i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
  543. fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
  544. if (i2c->msg->flags & I2C_M_RD) {
  545. i2c_ctl |= HSI2C_RXCHON;
  546. i2c_auto_conf |= HSI2C_READ_WRITE;
  547. trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
  548. (i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
  549. fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
  550. int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
  551. HSI2C_INT_TRAILING_EN);
  552. } else {
  553. i2c_ctl |= HSI2C_TXCHON;
  554. trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
  555. (i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
  556. fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
  557. int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
  558. }
  559. writel(HSI2C_SLV_ADDR_MAS(i2c->msg->addr), i2c->regs + HSI2C_ADDR);
  560. writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
  561. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  562. exynos5_i2c_bus_check(i2c);
  563. /*
  564. * Enable interrupts before starting the transfer so that we don't
  565. * miss any INT_I2C interrupts.
  566. */
  567. spin_lock_irqsave(&i2c->lock, flags);
  568. writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
  569. if (stop == 1)
  570. i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
  571. i2c_auto_conf |= i2c->msg->len;
  572. i2c_auto_conf |= HSI2C_MASTER_RUN;
  573. writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
  574. spin_unlock_irqrestore(&i2c->lock, flags);
  575. }
  576. static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
  577. struct i2c_msg *msgs, int stop)
  578. {
  579. unsigned long timeout;
  580. int ret;
  581. i2c->msg = msgs;
  582. i2c->msg_ptr = 0;
  583. i2c->trans_done = 0;
  584. reinit_completion(&i2c->msg_complete);
  585. exynos5_i2c_message_start(i2c, stop);
  586. timeout = wait_for_completion_timeout(&i2c->msg_complete,
  587. EXYNOS5_I2C_TIMEOUT);
  588. if (timeout == 0)
  589. ret = -ETIMEDOUT;
  590. else
  591. ret = i2c->state;
  592. /*
  593. * If this is the last message to be transfered (stop == 1)
  594. * Then check if the bus can be brought back to idle.
  595. */
  596. if (ret == 0 && stop)
  597. ret = exynos5_i2c_wait_bus_idle(i2c);
  598. if (ret < 0) {
  599. exynos5_i2c_reset(i2c);
  600. if (ret == -ETIMEDOUT)
  601. dev_warn(i2c->dev, "%s timeout\n",
  602. (msgs->flags & I2C_M_RD) ? "rx" : "tx");
  603. }
  604. /* Return the state as in interrupt routine */
  605. return ret;
  606. }
  607. static int exynos5_i2c_xfer(struct i2c_adapter *adap,
  608. struct i2c_msg *msgs, int num)
  609. {
  610. struct exynos5_i2c *i2c = adap->algo_data;
  611. int i, ret;
  612. if (i2c->suspended) {
  613. dev_err(i2c->dev, "HS-I2C is not initialized.\n");
  614. return -EIO;
  615. }
  616. ret = clk_enable(i2c->clk);
  617. if (ret)
  618. return ret;
  619. for (i = 0; i < num; ++i) {
  620. ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num);
  621. if (ret)
  622. break;
  623. }
  624. clk_disable(i2c->clk);
  625. return ret ?: num;
  626. }
  627. static u32 exynos5_i2c_func(struct i2c_adapter *adap)
  628. {
  629. return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
  630. }
  631. static const struct i2c_algorithm exynos5_i2c_algorithm = {
  632. .master_xfer = exynos5_i2c_xfer,
  633. .functionality = exynos5_i2c_func,
  634. };
  635. static int exynos5_i2c_probe(struct platform_device *pdev)
  636. {
  637. struct device_node *np = pdev->dev.of_node;
  638. struct exynos5_i2c *i2c;
  639. struct resource *mem;
  640. int ret;
  641. i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
  642. if (!i2c)
  643. return -ENOMEM;
  644. if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock))
  645. i2c->op_clock = HSI2C_FS_TX_CLOCK;
  646. strlcpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
  647. i2c->adap.owner = THIS_MODULE;
  648. i2c->adap.algo = &exynos5_i2c_algorithm;
  649. i2c->adap.retries = 3;
  650. i2c->dev = &pdev->dev;
  651. i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
  652. if (IS_ERR(i2c->clk)) {
  653. dev_err(&pdev->dev, "cannot get clock\n");
  654. return -ENOENT;
  655. }
  656. ret = clk_prepare_enable(i2c->clk);
  657. if (ret)
  658. return ret;
  659. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  660. i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
  661. if (IS_ERR(i2c->regs)) {
  662. ret = PTR_ERR(i2c->regs);
  663. goto err_clk;
  664. }
  665. i2c->adap.dev.of_node = np;
  666. i2c->adap.algo_data = i2c;
  667. i2c->adap.dev.parent = &pdev->dev;
  668. /* Clear pending interrupts from u-boot or misc causes */
  669. exynos5_i2c_clr_pend_irq(i2c);
  670. spin_lock_init(&i2c->lock);
  671. init_completion(&i2c->msg_complete);
  672. i2c->irq = ret = platform_get_irq(pdev, 0);
  673. if (ret <= 0) {
  674. dev_err(&pdev->dev, "cannot find HS-I2C IRQ\n");
  675. ret = -EINVAL;
  676. goto err_clk;
  677. }
  678. ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
  679. IRQF_NO_SUSPEND | IRQF_ONESHOT,
  680. dev_name(&pdev->dev), i2c);
  681. if (ret != 0) {
  682. dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
  683. goto err_clk;
  684. }
  685. i2c->variant = of_device_get_match_data(&pdev->dev);
  686. ret = exynos5_hsi2c_clock_setup(i2c);
  687. if (ret)
  688. goto err_clk;
  689. exynos5_i2c_reset(i2c);
  690. ret = i2c_add_adapter(&i2c->adap);
  691. if (ret < 0)
  692. goto err_clk;
  693. platform_set_drvdata(pdev, i2c);
  694. clk_disable(i2c->clk);
  695. return 0;
  696. err_clk:
  697. clk_disable_unprepare(i2c->clk);
  698. return ret;
  699. }
  700. static int exynos5_i2c_remove(struct platform_device *pdev)
  701. {
  702. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  703. i2c_del_adapter(&i2c->adap);
  704. clk_unprepare(i2c->clk);
  705. return 0;
  706. }
  707. #ifdef CONFIG_PM_SLEEP
  708. static int exynos5_i2c_suspend_noirq(struct device *dev)
  709. {
  710. struct exynos5_i2c *i2c = dev_get_drvdata(dev);
  711. i2c->suspended = 1;
  712. clk_unprepare(i2c->clk);
  713. return 0;
  714. }
  715. static int exynos5_i2c_resume_noirq(struct device *dev)
  716. {
  717. struct exynos5_i2c *i2c = dev_get_drvdata(dev);
  718. int ret = 0;
  719. ret = clk_prepare_enable(i2c->clk);
  720. if (ret)
  721. return ret;
  722. ret = exynos5_hsi2c_clock_setup(i2c);
  723. if (ret) {
  724. clk_disable_unprepare(i2c->clk);
  725. return ret;
  726. }
  727. exynos5_i2c_init(i2c);
  728. clk_disable(i2c->clk);
  729. i2c->suspended = 0;
  730. return 0;
  731. }
  732. #endif
  733. static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
  734. SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
  735. exynos5_i2c_resume_noirq)
  736. };
  737. static struct platform_driver exynos5_i2c_driver = {
  738. .probe = exynos5_i2c_probe,
  739. .remove = exynos5_i2c_remove,
  740. .driver = {
  741. .name = "exynos5-hsi2c",
  742. .pm = &exynos5_i2c_dev_pm_ops,
  743. .of_match_table = exynos5_i2c_match,
  744. },
  745. };
  746. module_platform_driver(exynos5_i2c_driver);
  747. MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
  748. MODULE_AUTHOR("Naveen Krishna Chatradhi, <ch.naveen@samsung.com>");
  749. MODULE_AUTHOR("Taekgyun Ko, <taeggyun.ko@samsung.com>");
  750. MODULE_LICENSE("GPL v2");