bmc150-accel-core.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
  1. /*
  2. * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
  3. * - BMC150
  4. * - BMI055
  5. * - BMA255
  6. * - BMA250E
  7. * - BMA222E
  8. * - BMA280
  9. *
  10. * Copyright (c) 2014, Intel Corporation.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms and conditions of the GNU General Public License,
  14. * version 2, as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope it will be useful, but WITHOUT
  17. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  19. * more details.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/i2c.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <linux/pm.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/iio/iio.h>
  30. #include <linux/iio/sysfs.h>
  31. #include <linux/iio/buffer.h>
  32. #include <linux/iio/events.h>
  33. #include <linux/iio/trigger.h>
  34. #include <linux/iio/trigger_consumer.h>
  35. #include <linux/iio/triggered_buffer.h>
  36. #include <linux/regmap.h>
  37. #include "bmc150-accel.h"
  38. #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
  39. #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
  40. #define BMC150_ACCEL_REG_CHIP_ID 0x00
  41. #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
  42. #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
  43. #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
  44. #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
  45. #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
  46. #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
  47. #define BMC150_ACCEL_REG_PMU_LPW 0x11
  48. #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
  49. #define BMC150_ACCEL_PMU_MODE_SHIFT 5
  50. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
  51. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
  52. #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
  53. #define BMC150_ACCEL_DEF_RANGE_2G 0x03
  54. #define BMC150_ACCEL_DEF_RANGE_4G 0x05
  55. #define BMC150_ACCEL_DEF_RANGE_8G 0x08
  56. #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
  57. /* Default BW: 125Hz */
  58. #define BMC150_ACCEL_REG_PMU_BW 0x10
  59. #define BMC150_ACCEL_DEF_BW 125
  60. #define BMC150_ACCEL_REG_RESET 0x14
  61. #define BMC150_ACCEL_RESET_VAL 0xB6
  62. #define BMC150_ACCEL_REG_INT_MAP_0 0x19
  63. #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
  64. #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
  65. #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
  66. #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
  67. #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
  68. #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
  69. #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
  70. #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  71. #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
  72. #define BMC150_ACCEL_REG_INT_EN_0 0x16
  73. #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
  74. #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
  75. #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
  76. #define BMC150_ACCEL_REG_INT_EN_1 0x17
  77. #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
  78. #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
  79. #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
  80. #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
  81. #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
  82. #define BMC150_ACCEL_REG_INT_5 0x27
  83. #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
  84. #define BMC150_ACCEL_REG_INT_6 0x28
  85. #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
  86. /* Slope duration in terms of number of samples */
  87. #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
  88. /* in terms of multiples of g's/LSB, based on range */
  89. #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
  90. #define BMC150_ACCEL_REG_XOUT_L 0x02
  91. #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
  92. /* Sleep Duration values */
  93. #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
  94. #define BMC150_ACCEL_SLEEP_1_MS 0x06
  95. #define BMC150_ACCEL_SLEEP_2_MS 0x07
  96. #define BMC150_ACCEL_SLEEP_4_MS 0x08
  97. #define BMC150_ACCEL_SLEEP_6_MS 0x09
  98. #define BMC150_ACCEL_SLEEP_10_MS 0x0A
  99. #define BMC150_ACCEL_SLEEP_25_MS 0x0B
  100. #define BMC150_ACCEL_SLEEP_50_MS 0x0C
  101. #define BMC150_ACCEL_SLEEP_100_MS 0x0D
  102. #define BMC150_ACCEL_SLEEP_500_MS 0x0E
  103. #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
  104. #define BMC150_ACCEL_REG_TEMP 0x08
  105. #define BMC150_ACCEL_TEMP_CENTER_VAL 23
  106. #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
  107. #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
  108. #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
  109. #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
  110. #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
  111. #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
  112. #define BMC150_ACCEL_FIFO_LENGTH 32
  113. enum bmc150_accel_axis {
  114. AXIS_X,
  115. AXIS_Y,
  116. AXIS_Z,
  117. AXIS_MAX,
  118. };
  119. enum bmc150_power_modes {
  120. BMC150_ACCEL_SLEEP_MODE_NORMAL,
  121. BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
  122. BMC150_ACCEL_SLEEP_MODE_LPM,
  123. BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
  124. };
  125. struct bmc150_scale_info {
  126. int scale;
  127. u8 reg_range;
  128. };
  129. struct bmc150_accel_chip_info {
  130. const char *name;
  131. u8 chip_id;
  132. const struct iio_chan_spec *channels;
  133. int num_channels;
  134. const struct bmc150_scale_info scale_table[4];
  135. };
  136. struct bmc150_accel_interrupt {
  137. const struct bmc150_accel_interrupt_info *info;
  138. atomic_t users;
  139. };
  140. struct bmc150_accel_trigger {
  141. struct bmc150_accel_data *data;
  142. struct iio_trigger *indio_trig;
  143. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  144. int intr;
  145. bool enabled;
  146. };
  147. enum bmc150_accel_interrupt_id {
  148. BMC150_ACCEL_INT_DATA_READY,
  149. BMC150_ACCEL_INT_ANY_MOTION,
  150. BMC150_ACCEL_INT_WATERMARK,
  151. BMC150_ACCEL_INTERRUPTS,
  152. };
  153. enum bmc150_accel_trigger_id {
  154. BMC150_ACCEL_TRIGGER_DATA_READY,
  155. BMC150_ACCEL_TRIGGER_ANY_MOTION,
  156. BMC150_ACCEL_TRIGGERS,
  157. };
  158. struct bmc150_accel_data {
  159. struct regmap *regmap;
  160. int irq;
  161. struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
  162. struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
  163. struct mutex mutex;
  164. u8 fifo_mode, watermark;
  165. s16 buffer[8];
  166. /*
  167. * Ensure there is sufficient space and correct alignment for
  168. * the timestamp if enabled
  169. */
  170. struct {
  171. __le16 channels[3];
  172. s64 ts __aligned(8);
  173. } scan;
  174. u8 bw_bits;
  175. u32 slope_dur;
  176. u32 slope_thres;
  177. u32 range;
  178. int ev_enable_state;
  179. int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
  180. const struct bmc150_accel_chip_info *chip_info;
  181. };
  182. static const struct {
  183. int val;
  184. int val2;
  185. u8 bw_bits;
  186. } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
  187. {31, 260000, 0x09},
  188. {62, 500000, 0x0A},
  189. {125, 0, 0x0B},
  190. {250, 0, 0x0C},
  191. {500, 0, 0x0D},
  192. {1000, 0, 0x0E},
  193. {2000, 0, 0x0F} };
  194. static const struct {
  195. int bw_bits;
  196. int msec;
  197. } bmc150_accel_sample_upd_time[] = { {0x08, 64},
  198. {0x09, 32},
  199. {0x0A, 16},
  200. {0x0B, 8},
  201. {0x0C, 4},
  202. {0x0D, 2},
  203. {0x0E, 1},
  204. {0x0F, 1} };
  205. static const struct {
  206. int sleep_dur;
  207. u8 reg_value;
  208. } bmc150_accel_sleep_value_table[] = { {0, 0},
  209. {500, BMC150_ACCEL_SLEEP_500_MICRO},
  210. {1000, BMC150_ACCEL_SLEEP_1_MS},
  211. {2000, BMC150_ACCEL_SLEEP_2_MS},
  212. {4000, BMC150_ACCEL_SLEEP_4_MS},
  213. {6000, BMC150_ACCEL_SLEEP_6_MS},
  214. {10000, BMC150_ACCEL_SLEEP_10_MS},
  215. {25000, BMC150_ACCEL_SLEEP_25_MS},
  216. {50000, BMC150_ACCEL_SLEEP_50_MS},
  217. {100000, BMC150_ACCEL_SLEEP_100_MS},
  218. {500000, BMC150_ACCEL_SLEEP_500_MS},
  219. {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
  220. const struct regmap_config bmc150_regmap_conf = {
  221. .reg_bits = 8,
  222. .val_bits = 8,
  223. .max_register = 0x3f,
  224. };
  225. EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
  226. static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
  227. enum bmc150_power_modes mode,
  228. int dur_us)
  229. {
  230. struct device *dev = regmap_get_device(data->regmap);
  231. int i;
  232. int ret;
  233. u8 lpw_bits;
  234. int dur_val = -1;
  235. if (dur_us > 0) {
  236. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
  237. ++i) {
  238. if (bmc150_accel_sleep_value_table[i].sleep_dur ==
  239. dur_us)
  240. dur_val =
  241. bmc150_accel_sleep_value_table[i].reg_value;
  242. }
  243. } else {
  244. dur_val = 0;
  245. }
  246. if (dur_val < 0)
  247. return -EINVAL;
  248. lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
  249. lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
  250. dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
  251. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
  252. if (ret < 0) {
  253. dev_err(dev, "Error writing reg_pmu_lpw\n");
  254. return ret;
  255. }
  256. return 0;
  257. }
  258. static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
  259. int val2)
  260. {
  261. int i;
  262. int ret;
  263. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  264. if (bmc150_accel_samp_freq_table[i].val == val &&
  265. bmc150_accel_samp_freq_table[i].val2 == val2) {
  266. ret = regmap_write(data->regmap,
  267. BMC150_ACCEL_REG_PMU_BW,
  268. bmc150_accel_samp_freq_table[i].bw_bits);
  269. if (ret < 0)
  270. return ret;
  271. data->bw_bits =
  272. bmc150_accel_samp_freq_table[i].bw_bits;
  273. return 0;
  274. }
  275. }
  276. return -EINVAL;
  277. }
  278. static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
  279. {
  280. struct device *dev = regmap_get_device(data->regmap);
  281. int ret;
  282. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
  283. data->slope_thres);
  284. if (ret < 0) {
  285. dev_err(dev, "Error writing reg_int_6\n");
  286. return ret;
  287. }
  288. ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
  289. BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
  290. if (ret < 0) {
  291. dev_err(dev, "Error updating reg_int_5\n");
  292. return ret;
  293. }
  294. dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
  295. return ret;
  296. }
  297. static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
  298. bool state)
  299. {
  300. if (state)
  301. return bmc150_accel_update_slope(t->data);
  302. return 0;
  303. }
  304. static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
  305. int *val2)
  306. {
  307. int i;
  308. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  309. if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
  310. *val = bmc150_accel_samp_freq_table[i].val;
  311. *val2 = bmc150_accel_samp_freq_table[i].val2;
  312. return IIO_VAL_INT_PLUS_MICRO;
  313. }
  314. }
  315. return -EINVAL;
  316. }
  317. #ifdef CONFIG_PM
  318. static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
  319. {
  320. int i;
  321. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
  322. if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
  323. return bmc150_accel_sample_upd_time[i].msec;
  324. }
  325. return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
  326. }
  327. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  328. {
  329. struct device *dev = regmap_get_device(data->regmap);
  330. int ret;
  331. if (on) {
  332. ret = pm_runtime_get_sync(dev);
  333. } else {
  334. pm_runtime_mark_last_busy(dev);
  335. ret = pm_runtime_put_autosuspend(dev);
  336. }
  337. if (ret < 0) {
  338. dev_err(dev,
  339. "Failed: bmc150_accel_set_power_state for %d\n", on);
  340. if (on)
  341. pm_runtime_put_noidle(dev);
  342. return ret;
  343. }
  344. return 0;
  345. }
  346. #else
  347. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  348. {
  349. return 0;
  350. }
  351. #endif
  352. static const struct bmc150_accel_interrupt_info {
  353. u8 map_reg;
  354. u8 map_bitmask;
  355. u8 en_reg;
  356. u8 en_bitmask;
  357. } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
  358. { /* data ready interrupt */
  359. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  360. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
  361. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  362. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  363. },
  364. { /* motion interrupt */
  365. .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
  366. .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
  367. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  368. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  369. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  370. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  371. },
  372. { /* fifo watermark interrupt */
  373. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  374. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
  375. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  376. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  377. },
  378. };
  379. static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
  380. struct bmc150_accel_data *data)
  381. {
  382. int i;
  383. for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
  384. data->interrupts[i].info = &bmc150_accel_interrupts[i];
  385. }
  386. static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
  387. bool state)
  388. {
  389. struct device *dev = regmap_get_device(data->regmap);
  390. struct bmc150_accel_interrupt *intr = &data->interrupts[i];
  391. const struct bmc150_accel_interrupt_info *info = intr->info;
  392. int ret;
  393. if (state) {
  394. if (atomic_inc_return(&intr->users) > 1)
  395. return 0;
  396. } else {
  397. if (atomic_dec_return(&intr->users) > 0)
  398. return 0;
  399. }
  400. /*
  401. * We will expect the enable and disable to do operation in reverse
  402. * order. This will happen here anyway, as our resume operation uses
  403. * sync mode runtime pm calls. The suspend operation will be delayed
  404. * by autosuspend delay.
  405. * So the disable operation will still happen in reverse order of
  406. * enable operation. When runtime pm is disabled the mode is always on,
  407. * so sequence doesn't matter.
  408. */
  409. ret = bmc150_accel_set_power_state(data, state);
  410. if (ret < 0)
  411. return ret;
  412. /* map the interrupt to the appropriate pins */
  413. ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
  414. (state ? info->map_bitmask : 0));
  415. if (ret < 0) {
  416. dev_err(dev, "Error updating reg_int_map\n");
  417. goto out_fix_power_state;
  418. }
  419. /* enable/disable the interrupt */
  420. ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
  421. (state ? info->en_bitmask : 0));
  422. if (ret < 0) {
  423. dev_err(dev, "Error updating reg_int_en\n");
  424. goto out_fix_power_state;
  425. }
  426. return 0;
  427. out_fix_power_state:
  428. bmc150_accel_set_power_state(data, false);
  429. return ret;
  430. }
  431. static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
  432. {
  433. struct device *dev = regmap_get_device(data->regmap);
  434. int ret, i;
  435. for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
  436. if (data->chip_info->scale_table[i].scale == val) {
  437. ret = regmap_write(data->regmap,
  438. BMC150_ACCEL_REG_PMU_RANGE,
  439. data->chip_info->scale_table[i].reg_range);
  440. if (ret < 0) {
  441. dev_err(dev, "Error writing pmu_range\n");
  442. return ret;
  443. }
  444. data->range = data->chip_info->scale_table[i].reg_range;
  445. return 0;
  446. }
  447. }
  448. return -EINVAL;
  449. }
  450. static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
  451. {
  452. struct device *dev = regmap_get_device(data->regmap);
  453. int ret;
  454. unsigned int value;
  455. mutex_lock(&data->mutex);
  456. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
  457. if (ret < 0) {
  458. dev_err(dev, "Error reading reg_temp\n");
  459. mutex_unlock(&data->mutex);
  460. return ret;
  461. }
  462. *val = sign_extend32(value, 7);
  463. mutex_unlock(&data->mutex);
  464. return IIO_VAL_INT;
  465. }
  466. static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
  467. struct iio_chan_spec const *chan,
  468. int *val)
  469. {
  470. struct device *dev = regmap_get_device(data->regmap);
  471. int ret;
  472. int axis = chan->scan_index;
  473. __le16 raw_val;
  474. mutex_lock(&data->mutex);
  475. ret = bmc150_accel_set_power_state(data, true);
  476. if (ret < 0) {
  477. mutex_unlock(&data->mutex);
  478. return ret;
  479. }
  480. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
  481. &raw_val, sizeof(raw_val));
  482. if (ret < 0) {
  483. dev_err(dev, "Error reading axis %d\n", axis);
  484. bmc150_accel_set_power_state(data, false);
  485. mutex_unlock(&data->mutex);
  486. return ret;
  487. }
  488. *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
  489. chan->scan_type.realbits - 1);
  490. ret = bmc150_accel_set_power_state(data, false);
  491. mutex_unlock(&data->mutex);
  492. if (ret < 0)
  493. return ret;
  494. return IIO_VAL_INT;
  495. }
  496. static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
  497. struct iio_chan_spec const *chan,
  498. int *val, int *val2, long mask)
  499. {
  500. struct bmc150_accel_data *data = iio_priv(indio_dev);
  501. int ret;
  502. switch (mask) {
  503. case IIO_CHAN_INFO_RAW:
  504. switch (chan->type) {
  505. case IIO_TEMP:
  506. return bmc150_accel_get_temp(data, val);
  507. case IIO_ACCEL:
  508. if (iio_buffer_enabled(indio_dev))
  509. return -EBUSY;
  510. else
  511. return bmc150_accel_get_axis(data, chan, val);
  512. default:
  513. return -EINVAL;
  514. }
  515. case IIO_CHAN_INFO_OFFSET:
  516. if (chan->type == IIO_TEMP) {
  517. *val = BMC150_ACCEL_TEMP_CENTER_VAL;
  518. return IIO_VAL_INT;
  519. } else {
  520. return -EINVAL;
  521. }
  522. case IIO_CHAN_INFO_SCALE:
  523. *val = 0;
  524. switch (chan->type) {
  525. case IIO_TEMP:
  526. *val2 = 500000;
  527. return IIO_VAL_INT_PLUS_MICRO;
  528. case IIO_ACCEL:
  529. {
  530. int i;
  531. const struct bmc150_scale_info *si;
  532. int st_size = ARRAY_SIZE(data->chip_info->scale_table);
  533. for (i = 0; i < st_size; ++i) {
  534. si = &data->chip_info->scale_table[i];
  535. if (si->reg_range == data->range) {
  536. *val2 = si->scale;
  537. return IIO_VAL_INT_PLUS_MICRO;
  538. }
  539. }
  540. return -EINVAL;
  541. }
  542. default:
  543. return -EINVAL;
  544. }
  545. case IIO_CHAN_INFO_SAMP_FREQ:
  546. mutex_lock(&data->mutex);
  547. ret = bmc150_accel_get_bw(data, val, val2);
  548. mutex_unlock(&data->mutex);
  549. return ret;
  550. default:
  551. return -EINVAL;
  552. }
  553. }
  554. static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
  555. struct iio_chan_spec const *chan,
  556. int val, int val2, long mask)
  557. {
  558. struct bmc150_accel_data *data = iio_priv(indio_dev);
  559. int ret;
  560. switch (mask) {
  561. case IIO_CHAN_INFO_SAMP_FREQ:
  562. mutex_lock(&data->mutex);
  563. ret = bmc150_accel_set_bw(data, val, val2);
  564. mutex_unlock(&data->mutex);
  565. break;
  566. case IIO_CHAN_INFO_SCALE:
  567. if (val)
  568. return -EINVAL;
  569. mutex_lock(&data->mutex);
  570. ret = bmc150_accel_set_scale(data, val2);
  571. mutex_unlock(&data->mutex);
  572. return ret;
  573. default:
  574. ret = -EINVAL;
  575. }
  576. return ret;
  577. }
  578. static int bmc150_accel_read_event(struct iio_dev *indio_dev,
  579. const struct iio_chan_spec *chan,
  580. enum iio_event_type type,
  581. enum iio_event_direction dir,
  582. enum iio_event_info info,
  583. int *val, int *val2)
  584. {
  585. struct bmc150_accel_data *data = iio_priv(indio_dev);
  586. *val2 = 0;
  587. switch (info) {
  588. case IIO_EV_INFO_VALUE:
  589. *val = data->slope_thres;
  590. break;
  591. case IIO_EV_INFO_PERIOD:
  592. *val = data->slope_dur;
  593. break;
  594. default:
  595. return -EINVAL;
  596. }
  597. return IIO_VAL_INT;
  598. }
  599. static int bmc150_accel_write_event(struct iio_dev *indio_dev,
  600. const struct iio_chan_spec *chan,
  601. enum iio_event_type type,
  602. enum iio_event_direction dir,
  603. enum iio_event_info info,
  604. int val, int val2)
  605. {
  606. struct bmc150_accel_data *data = iio_priv(indio_dev);
  607. if (data->ev_enable_state)
  608. return -EBUSY;
  609. switch (info) {
  610. case IIO_EV_INFO_VALUE:
  611. data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
  612. break;
  613. case IIO_EV_INFO_PERIOD:
  614. data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
  615. break;
  616. default:
  617. return -EINVAL;
  618. }
  619. return 0;
  620. }
  621. static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
  622. const struct iio_chan_spec *chan,
  623. enum iio_event_type type,
  624. enum iio_event_direction dir)
  625. {
  626. struct bmc150_accel_data *data = iio_priv(indio_dev);
  627. return data->ev_enable_state;
  628. }
  629. static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
  630. const struct iio_chan_spec *chan,
  631. enum iio_event_type type,
  632. enum iio_event_direction dir,
  633. int state)
  634. {
  635. struct bmc150_accel_data *data = iio_priv(indio_dev);
  636. int ret;
  637. if (state == data->ev_enable_state)
  638. return 0;
  639. mutex_lock(&data->mutex);
  640. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
  641. state);
  642. if (ret < 0) {
  643. mutex_unlock(&data->mutex);
  644. return ret;
  645. }
  646. data->ev_enable_state = state;
  647. mutex_unlock(&data->mutex);
  648. return 0;
  649. }
  650. static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
  651. struct iio_trigger *trig)
  652. {
  653. struct bmc150_accel_data *data = iio_priv(indio_dev);
  654. int i;
  655. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  656. if (data->triggers[i].indio_trig == trig)
  657. return 0;
  658. }
  659. return -EINVAL;
  660. }
  661. static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
  662. struct device_attribute *attr,
  663. char *buf)
  664. {
  665. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  666. struct bmc150_accel_data *data = iio_priv(indio_dev);
  667. int wm;
  668. mutex_lock(&data->mutex);
  669. wm = data->watermark;
  670. mutex_unlock(&data->mutex);
  671. return sprintf(buf, "%d\n", wm);
  672. }
  673. static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
  674. struct device_attribute *attr,
  675. char *buf)
  676. {
  677. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  678. struct bmc150_accel_data *data = iio_priv(indio_dev);
  679. bool state;
  680. mutex_lock(&data->mutex);
  681. state = data->fifo_mode;
  682. mutex_unlock(&data->mutex);
  683. return sprintf(buf, "%d\n", state);
  684. }
  685. static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
  686. static IIO_CONST_ATTR(hwfifo_watermark_max,
  687. __stringify(BMC150_ACCEL_FIFO_LENGTH));
  688. static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
  689. bmc150_accel_get_fifo_state, NULL, 0);
  690. static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
  691. bmc150_accel_get_fifo_watermark, NULL, 0);
  692. static const struct attribute *bmc150_accel_fifo_attributes[] = {
  693. &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
  694. &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
  695. &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
  696. &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
  697. NULL,
  698. };
  699. static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
  700. {
  701. struct bmc150_accel_data *data = iio_priv(indio_dev);
  702. if (val > BMC150_ACCEL_FIFO_LENGTH)
  703. val = BMC150_ACCEL_FIFO_LENGTH;
  704. mutex_lock(&data->mutex);
  705. data->watermark = val;
  706. mutex_unlock(&data->mutex);
  707. return 0;
  708. }
  709. /*
  710. * We must read at least one full frame in one burst, otherwise the rest of the
  711. * frame data is discarded.
  712. */
  713. static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
  714. char *buffer, int samples)
  715. {
  716. struct device *dev = regmap_get_device(data->regmap);
  717. int sample_length = 3 * 2;
  718. int ret;
  719. int total_length = samples * sample_length;
  720. ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
  721. buffer, total_length);
  722. if (ret)
  723. dev_err(dev,
  724. "Error transferring data from fifo: %d\n", ret);
  725. return ret;
  726. }
  727. static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
  728. unsigned samples, bool irq)
  729. {
  730. struct bmc150_accel_data *data = iio_priv(indio_dev);
  731. struct device *dev = regmap_get_device(data->regmap);
  732. int ret, i;
  733. u8 count;
  734. u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
  735. int64_t tstamp;
  736. uint64_t sample_period;
  737. unsigned int val;
  738. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
  739. if (ret < 0) {
  740. dev_err(dev, "Error reading reg_fifo_status\n");
  741. return ret;
  742. }
  743. count = val & 0x7F;
  744. if (!count)
  745. return 0;
  746. /*
  747. * If we getting called from IRQ handler we know the stored timestamp is
  748. * fairly accurate for the last stored sample. Otherwise, if we are
  749. * called as a result of a read operation from userspace and hence
  750. * before the watermark interrupt was triggered, take a timestamp
  751. * now. We can fall anywhere in between two samples so the error in this
  752. * case is at most one sample period.
  753. */
  754. if (!irq) {
  755. data->old_timestamp = data->timestamp;
  756. data->timestamp = iio_get_time_ns(indio_dev);
  757. }
  758. /*
  759. * Approximate timestamps for each of the sample based on the sampling
  760. * frequency, timestamp for last sample and number of samples.
  761. *
  762. * Note that we can't use the current bandwidth settings to compute the
  763. * sample period because the sample rate varies with the device
  764. * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
  765. * small variation adds when we store a large number of samples and
  766. * creates significant jitter between the last and first samples in
  767. * different batches (e.g. 32ms vs 21ms).
  768. *
  769. * To avoid this issue we compute the actual sample period ourselves
  770. * based on the timestamp delta between the last two flush operations.
  771. */
  772. sample_period = (data->timestamp - data->old_timestamp);
  773. do_div(sample_period, count);
  774. tstamp = data->timestamp - (count - 1) * sample_period;
  775. if (samples && count > samples)
  776. count = samples;
  777. ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
  778. if (ret)
  779. return ret;
  780. /*
  781. * Ideally we want the IIO core to handle the demux when running in fifo
  782. * mode but not when running in triggered buffer mode. Unfortunately
  783. * this does not seem to be possible, so stick with driver demux for
  784. * now.
  785. */
  786. for (i = 0; i < count; i++) {
  787. int j, bit;
  788. j = 0;
  789. for_each_set_bit(bit, indio_dev->active_scan_mask,
  790. indio_dev->masklength)
  791. memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
  792. sizeof(data->scan.channels[0]));
  793. iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
  794. tstamp);
  795. tstamp += sample_period;
  796. }
  797. return count;
  798. }
  799. static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
  800. {
  801. struct bmc150_accel_data *data = iio_priv(indio_dev);
  802. int ret;
  803. mutex_lock(&data->mutex);
  804. ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
  805. mutex_unlock(&data->mutex);
  806. return ret;
  807. }
  808. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
  809. "15.620000 31.260000 62.50000 125 250 500 1000 2000");
  810. static struct attribute *bmc150_accel_attributes[] = {
  811. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  812. NULL,
  813. };
  814. static const struct attribute_group bmc150_accel_attrs_group = {
  815. .attrs = bmc150_accel_attributes,
  816. };
  817. static const struct iio_event_spec bmc150_accel_event = {
  818. .type = IIO_EV_TYPE_ROC,
  819. .dir = IIO_EV_DIR_EITHER,
  820. .mask_separate = BIT(IIO_EV_INFO_VALUE) |
  821. BIT(IIO_EV_INFO_ENABLE) |
  822. BIT(IIO_EV_INFO_PERIOD)
  823. };
  824. #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
  825. .type = IIO_ACCEL, \
  826. .modified = 1, \
  827. .channel2 = IIO_MOD_##_axis, \
  828. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  829. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  830. BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  831. .scan_index = AXIS_##_axis, \
  832. .scan_type = { \
  833. .sign = 's', \
  834. .realbits = (bits), \
  835. .storagebits = 16, \
  836. .shift = 16 - (bits), \
  837. .endianness = IIO_LE, \
  838. }, \
  839. .event_spec = &bmc150_accel_event, \
  840. .num_event_specs = 1 \
  841. }
  842. #define BMC150_ACCEL_CHANNELS(bits) { \
  843. { \
  844. .type = IIO_TEMP, \
  845. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  846. BIT(IIO_CHAN_INFO_SCALE) | \
  847. BIT(IIO_CHAN_INFO_OFFSET), \
  848. .scan_index = -1, \
  849. }, \
  850. BMC150_ACCEL_CHANNEL(X, bits), \
  851. BMC150_ACCEL_CHANNEL(Y, bits), \
  852. BMC150_ACCEL_CHANNEL(Z, bits), \
  853. IIO_CHAN_SOFT_TIMESTAMP(3), \
  854. }
  855. static const struct iio_chan_spec bma222e_accel_channels[] =
  856. BMC150_ACCEL_CHANNELS(8);
  857. static const struct iio_chan_spec bma250e_accel_channels[] =
  858. BMC150_ACCEL_CHANNELS(10);
  859. static const struct iio_chan_spec bmc150_accel_channels[] =
  860. BMC150_ACCEL_CHANNELS(12);
  861. static const struct iio_chan_spec bma280_accel_channels[] =
  862. BMC150_ACCEL_CHANNELS(14);
  863. static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
  864. [bmc150] = {
  865. .name = "BMC150A",
  866. .chip_id = 0xFA,
  867. .channels = bmc150_accel_channels,
  868. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  869. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  870. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  871. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  872. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  873. },
  874. [bmi055] = {
  875. .name = "BMI055A",
  876. .chip_id = 0xFA,
  877. .channels = bmc150_accel_channels,
  878. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  879. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  880. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  881. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  882. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  883. },
  884. [bma255] = {
  885. .name = "BMA0255",
  886. .chip_id = 0xFA,
  887. .channels = bmc150_accel_channels,
  888. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  889. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  890. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  891. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  892. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  893. },
  894. [bma250e] = {
  895. .name = "BMA250E",
  896. .chip_id = 0xF9,
  897. .channels = bma250e_accel_channels,
  898. .num_channels = ARRAY_SIZE(bma250e_accel_channels),
  899. .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
  900. {76590, BMC150_ACCEL_DEF_RANGE_4G},
  901. {153277, BMC150_ACCEL_DEF_RANGE_8G},
  902. {306457, BMC150_ACCEL_DEF_RANGE_16G} },
  903. },
  904. [bma222e] = {
  905. .name = "BMA222E",
  906. .chip_id = 0xF8,
  907. .channels = bma222e_accel_channels,
  908. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  909. .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
  910. {306457, BMC150_ACCEL_DEF_RANGE_4G},
  911. {612915, BMC150_ACCEL_DEF_RANGE_8G},
  912. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  913. },
  914. [bma280] = {
  915. .name = "BMA0280",
  916. .chip_id = 0xFB,
  917. .channels = bma280_accel_channels,
  918. .num_channels = ARRAY_SIZE(bma280_accel_channels),
  919. .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
  920. {4785, BMC150_ACCEL_DEF_RANGE_4G},
  921. {9581, BMC150_ACCEL_DEF_RANGE_8G},
  922. {19152, BMC150_ACCEL_DEF_RANGE_16G} },
  923. },
  924. };
  925. static const struct iio_info bmc150_accel_info = {
  926. .attrs = &bmc150_accel_attrs_group,
  927. .read_raw = bmc150_accel_read_raw,
  928. .write_raw = bmc150_accel_write_raw,
  929. .read_event_value = bmc150_accel_read_event,
  930. .write_event_value = bmc150_accel_write_event,
  931. .write_event_config = bmc150_accel_write_event_config,
  932. .read_event_config = bmc150_accel_read_event_config,
  933. };
  934. static const struct iio_info bmc150_accel_info_fifo = {
  935. .attrs = &bmc150_accel_attrs_group,
  936. .read_raw = bmc150_accel_read_raw,
  937. .write_raw = bmc150_accel_write_raw,
  938. .read_event_value = bmc150_accel_read_event,
  939. .write_event_value = bmc150_accel_write_event,
  940. .write_event_config = bmc150_accel_write_event_config,
  941. .read_event_config = bmc150_accel_read_event_config,
  942. .validate_trigger = bmc150_accel_validate_trigger,
  943. .hwfifo_set_watermark = bmc150_accel_set_watermark,
  944. .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
  945. };
  946. static const unsigned long bmc150_accel_scan_masks[] = {
  947. BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
  948. 0};
  949. static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
  950. {
  951. struct iio_poll_func *pf = p;
  952. struct iio_dev *indio_dev = pf->indio_dev;
  953. struct bmc150_accel_data *data = iio_priv(indio_dev);
  954. int ret;
  955. mutex_lock(&data->mutex);
  956. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
  957. data->buffer, AXIS_MAX * 2);
  958. mutex_unlock(&data->mutex);
  959. if (ret < 0)
  960. goto err_read;
  961. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  962. pf->timestamp);
  963. err_read:
  964. iio_trigger_notify_done(indio_dev->trig);
  965. return IRQ_HANDLED;
  966. }
  967. static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
  968. {
  969. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  970. struct bmc150_accel_data *data = t->data;
  971. struct device *dev = regmap_get_device(data->regmap);
  972. int ret;
  973. /* new data interrupts don't need ack */
  974. if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
  975. return 0;
  976. mutex_lock(&data->mutex);
  977. /* clear any latched interrupt */
  978. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  979. BMC150_ACCEL_INT_MODE_LATCH_INT |
  980. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  981. mutex_unlock(&data->mutex);
  982. if (ret < 0) {
  983. dev_err(dev, "Error writing reg_int_rst_latch\n");
  984. return ret;
  985. }
  986. return 0;
  987. }
  988. static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
  989. bool state)
  990. {
  991. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  992. struct bmc150_accel_data *data = t->data;
  993. int ret;
  994. mutex_lock(&data->mutex);
  995. if (t->enabled == state) {
  996. mutex_unlock(&data->mutex);
  997. return 0;
  998. }
  999. if (t->setup) {
  1000. ret = t->setup(t, state);
  1001. if (ret < 0) {
  1002. mutex_unlock(&data->mutex);
  1003. return ret;
  1004. }
  1005. }
  1006. ret = bmc150_accel_set_interrupt(data, t->intr, state);
  1007. if (ret < 0) {
  1008. mutex_unlock(&data->mutex);
  1009. return ret;
  1010. }
  1011. t->enabled = state;
  1012. mutex_unlock(&data->mutex);
  1013. return ret;
  1014. }
  1015. static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
  1016. .set_trigger_state = bmc150_accel_trigger_set_state,
  1017. .try_reenable = bmc150_accel_trig_try_reen,
  1018. };
  1019. static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
  1020. {
  1021. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1022. struct device *dev = regmap_get_device(data->regmap);
  1023. int dir;
  1024. int ret;
  1025. unsigned int val;
  1026. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
  1027. if (ret < 0) {
  1028. dev_err(dev, "Error reading reg_int_status_2\n");
  1029. return ret;
  1030. }
  1031. if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
  1032. dir = IIO_EV_DIR_FALLING;
  1033. else
  1034. dir = IIO_EV_DIR_RISING;
  1035. if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
  1036. iio_push_event(indio_dev,
  1037. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1038. 0,
  1039. IIO_MOD_X,
  1040. IIO_EV_TYPE_ROC,
  1041. dir),
  1042. data->timestamp);
  1043. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
  1044. iio_push_event(indio_dev,
  1045. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1046. 0,
  1047. IIO_MOD_Y,
  1048. IIO_EV_TYPE_ROC,
  1049. dir),
  1050. data->timestamp);
  1051. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
  1052. iio_push_event(indio_dev,
  1053. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1054. 0,
  1055. IIO_MOD_Z,
  1056. IIO_EV_TYPE_ROC,
  1057. dir),
  1058. data->timestamp);
  1059. return ret;
  1060. }
  1061. static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
  1062. {
  1063. struct iio_dev *indio_dev = private;
  1064. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1065. struct device *dev = regmap_get_device(data->regmap);
  1066. bool ack = false;
  1067. int ret;
  1068. mutex_lock(&data->mutex);
  1069. if (data->fifo_mode) {
  1070. ret = __bmc150_accel_fifo_flush(indio_dev,
  1071. BMC150_ACCEL_FIFO_LENGTH, true);
  1072. if (ret > 0)
  1073. ack = true;
  1074. }
  1075. if (data->ev_enable_state) {
  1076. ret = bmc150_accel_handle_roc_event(indio_dev);
  1077. if (ret > 0)
  1078. ack = true;
  1079. }
  1080. if (ack) {
  1081. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1082. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1083. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1084. if (ret)
  1085. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1086. ret = IRQ_HANDLED;
  1087. } else {
  1088. ret = IRQ_NONE;
  1089. }
  1090. mutex_unlock(&data->mutex);
  1091. return ret;
  1092. }
  1093. static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
  1094. {
  1095. struct iio_dev *indio_dev = private;
  1096. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1097. bool ack = false;
  1098. int i;
  1099. data->old_timestamp = data->timestamp;
  1100. data->timestamp = iio_get_time_ns(indio_dev);
  1101. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1102. if (data->triggers[i].enabled) {
  1103. iio_trigger_poll(data->triggers[i].indio_trig);
  1104. ack = true;
  1105. break;
  1106. }
  1107. }
  1108. if (data->ev_enable_state || data->fifo_mode)
  1109. return IRQ_WAKE_THREAD;
  1110. if (ack)
  1111. return IRQ_HANDLED;
  1112. return IRQ_NONE;
  1113. }
  1114. static const struct {
  1115. int intr;
  1116. const char *name;
  1117. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  1118. } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
  1119. {
  1120. .intr = 0,
  1121. .name = "%s-dev%d",
  1122. },
  1123. {
  1124. .intr = 1,
  1125. .name = "%s-any-motion-dev%d",
  1126. .setup = bmc150_accel_any_motion_setup,
  1127. },
  1128. };
  1129. static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
  1130. int from)
  1131. {
  1132. int i;
  1133. for (i = from; i >= 0; i--) {
  1134. if (data->triggers[i].indio_trig) {
  1135. iio_trigger_unregister(data->triggers[i].indio_trig);
  1136. data->triggers[i].indio_trig = NULL;
  1137. }
  1138. }
  1139. }
  1140. static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
  1141. struct bmc150_accel_data *data)
  1142. {
  1143. struct device *dev = regmap_get_device(data->regmap);
  1144. int i, ret;
  1145. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1146. struct bmc150_accel_trigger *t = &data->triggers[i];
  1147. t->indio_trig = devm_iio_trigger_alloc(dev,
  1148. bmc150_accel_triggers[i].name,
  1149. indio_dev->name,
  1150. indio_dev->id);
  1151. if (!t->indio_trig) {
  1152. ret = -ENOMEM;
  1153. break;
  1154. }
  1155. t->indio_trig->dev.parent = dev;
  1156. t->indio_trig->ops = &bmc150_accel_trigger_ops;
  1157. t->intr = bmc150_accel_triggers[i].intr;
  1158. t->data = data;
  1159. t->setup = bmc150_accel_triggers[i].setup;
  1160. iio_trigger_set_drvdata(t->indio_trig, t);
  1161. ret = iio_trigger_register(t->indio_trig);
  1162. if (ret)
  1163. break;
  1164. }
  1165. if (ret)
  1166. bmc150_accel_unregister_triggers(data, i - 1);
  1167. return ret;
  1168. }
  1169. #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
  1170. #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
  1171. #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
  1172. static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
  1173. {
  1174. struct device *dev = regmap_get_device(data->regmap);
  1175. u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
  1176. int ret;
  1177. ret = regmap_write(data->regmap, reg, data->fifo_mode);
  1178. if (ret < 0) {
  1179. dev_err(dev, "Error writing reg_fifo_config1\n");
  1180. return ret;
  1181. }
  1182. if (!data->fifo_mode)
  1183. return 0;
  1184. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
  1185. data->watermark);
  1186. if (ret < 0)
  1187. dev_err(dev, "Error writing reg_fifo_config0\n");
  1188. return ret;
  1189. }
  1190. static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
  1191. {
  1192. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1193. return bmc150_accel_set_power_state(data, true);
  1194. }
  1195. static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
  1196. {
  1197. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1198. int ret = 0;
  1199. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1200. return iio_triggered_buffer_postenable(indio_dev);
  1201. mutex_lock(&data->mutex);
  1202. if (!data->watermark)
  1203. goto out;
  1204. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1205. true);
  1206. if (ret)
  1207. goto out;
  1208. data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
  1209. ret = bmc150_accel_fifo_set_mode(data);
  1210. if (ret) {
  1211. data->fifo_mode = 0;
  1212. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1213. false);
  1214. }
  1215. out:
  1216. mutex_unlock(&data->mutex);
  1217. return ret;
  1218. }
  1219. static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
  1220. {
  1221. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1222. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1223. return iio_triggered_buffer_predisable(indio_dev);
  1224. mutex_lock(&data->mutex);
  1225. if (!data->fifo_mode)
  1226. goto out;
  1227. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
  1228. __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
  1229. data->fifo_mode = 0;
  1230. bmc150_accel_fifo_set_mode(data);
  1231. out:
  1232. mutex_unlock(&data->mutex);
  1233. return 0;
  1234. }
  1235. static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
  1236. {
  1237. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1238. return bmc150_accel_set_power_state(data, false);
  1239. }
  1240. static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
  1241. .preenable = bmc150_accel_buffer_preenable,
  1242. .postenable = bmc150_accel_buffer_postenable,
  1243. .predisable = bmc150_accel_buffer_predisable,
  1244. .postdisable = bmc150_accel_buffer_postdisable,
  1245. };
  1246. static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
  1247. {
  1248. struct device *dev = regmap_get_device(data->regmap);
  1249. int ret, i;
  1250. unsigned int val;
  1251. /*
  1252. * Reset chip to get it in a known good state. A delay of 1.8ms after
  1253. * reset is required according to the data sheets of supported chips.
  1254. */
  1255. regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
  1256. BMC150_ACCEL_RESET_VAL);
  1257. usleep_range(1800, 2500);
  1258. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
  1259. if (ret < 0) {
  1260. dev_err(dev, "Error: Reading chip id\n");
  1261. return ret;
  1262. }
  1263. dev_dbg(dev, "Chip Id %x\n", val);
  1264. for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
  1265. if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
  1266. data->chip_info = &bmc150_accel_chip_info_tbl[i];
  1267. break;
  1268. }
  1269. }
  1270. if (!data->chip_info) {
  1271. dev_err(dev, "Invalid chip %x\n", val);
  1272. return -ENODEV;
  1273. }
  1274. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1275. if (ret < 0)
  1276. return ret;
  1277. /* Set Bandwidth */
  1278. ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
  1279. if (ret < 0)
  1280. return ret;
  1281. /* Set Default Range */
  1282. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
  1283. BMC150_ACCEL_DEF_RANGE_4G);
  1284. if (ret < 0) {
  1285. dev_err(dev, "Error writing reg_pmu_range\n");
  1286. return ret;
  1287. }
  1288. data->range = BMC150_ACCEL_DEF_RANGE_4G;
  1289. /* Set default slope duration and thresholds */
  1290. data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
  1291. data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
  1292. ret = bmc150_accel_update_slope(data);
  1293. if (ret < 0)
  1294. return ret;
  1295. /* Set default as latched interrupts */
  1296. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1297. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1298. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1299. if (ret < 0) {
  1300. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1301. return ret;
  1302. }
  1303. return 0;
  1304. }
  1305. int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
  1306. const char *name, bool block_supported)
  1307. {
  1308. struct bmc150_accel_data *data;
  1309. struct iio_dev *indio_dev;
  1310. int ret;
  1311. indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
  1312. if (!indio_dev)
  1313. return -ENOMEM;
  1314. data = iio_priv(indio_dev);
  1315. dev_set_drvdata(dev, indio_dev);
  1316. data->irq = irq;
  1317. data->regmap = regmap;
  1318. ret = bmc150_accel_chip_init(data);
  1319. if (ret < 0)
  1320. return ret;
  1321. mutex_init(&data->mutex);
  1322. indio_dev->dev.parent = dev;
  1323. indio_dev->channels = data->chip_info->channels;
  1324. indio_dev->num_channels = data->chip_info->num_channels;
  1325. indio_dev->name = name ? name : data->chip_info->name;
  1326. indio_dev->available_scan_masks = bmc150_accel_scan_masks;
  1327. indio_dev->modes = INDIO_DIRECT_MODE;
  1328. indio_dev->info = &bmc150_accel_info;
  1329. ret = iio_triggered_buffer_setup(indio_dev,
  1330. &iio_pollfunc_store_time,
  1331. bmc150_accel_trigger_handler,
  1332. &bmc150_accel_buffer_ops);
  1333. if (ret < 0) {
  1334. dev_err(dev, "Failed: iio triggered buffer setup\n");
  1335. return ret;
  1336. }
  1337. if (data->irq > 0) {
  1338. ret = devm_request_threaded_irq(
  1339. dev, data->irq,
  1340. bmc150_accel_irq_handler,
  1341. bmc150_accel_irq_thread_handler,
  1342. IRQF_TRIGGER_RISING,
  1343. BMC150_ACCEL_IRQ_NAME,
  1344. indio_dev);
  1345. if (ret)
  1346. goto err_buffer_cleanup;
  1347. /*
  1348. * Set latched mode interrupt. While certain interrupts are
  1349. * non-latched regardless of this settings (e.g. new data) we
  1350. * want to use latch mode when we can to prevent interrupt
  1351. * flooding.
  1352. */
  1353. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1354. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1355. if (ret < 0) {
  1356. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1357. goto err_buffer_cleanup;
  1358. }
  1359. bmc150_accel_interrupts_setup(indio_dev, data);
  1360. ret = bmc150_accel_triggers_setup(indio_dev, data);
  1361. if (ret)
  1362. goto err_buffer_cleanup;
  1363. if (block_supported) {
  1364. indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
  1365. indio_dev->info = &bmc150_accel_info_fifo;
  1366. iio_buffer_set_attrs(indio_dev->buffer,
  1367. bmc150_accel_fifo_attributes);
  1368. }
  1369. }
  1370. ret = pm_runtime_set_active(dev);
  1371. if (ret)
  1372. goto err_trigger_unregister;
  1373. pm_runtime_enable(dev);
  1374. pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
  1375. pm_runtime_use_autosuspend(dev);
  1376. ret = iio_device_register(indio_dev);
  1377. if (ret < 0) {
  1378. dev_err(dev, "Unable to register iio device\n");
  1379. goto err_trigger_unregister;
  1380. }
  1381. return 0;
  1382. err_trigger_unregister:
  1383. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1384. err_buffer_cleanup:
  1385. iio_triggered_buffer_cleanup(indio_dev);
  1386. return ret;
  1387. }
  1388. EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
  1389. int bmc150_accel_core_remove(struct device *dev)
  1390. {
  1391. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1392. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1393. iio_device_unregister(indio_dev);
  1394. pm_runtime_disable(dev);
  1395. pm_runtime_set_suspended(dev);
  1396. pm_runtime_put_noidle(dev);
  1397. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1398. iio_triggered_buffer_cleanup(indio_dev);
  1399. mutex_lock(&data->mutex);
  1400. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
  1401. mutex_unlock(&data->mutex);
  1402. return 0;
  1403. }
  1404. EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
  1405. #ifdef CONFIG_PM_SLEEP
  1406. static int bmc150_accel_suspend(struct device *dev)
  1407. {
  1408. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1409. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1410. mutex_lock(&data->mutex);
  1411. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1412. mutex_unlock(&data->mutex);
  1413. return 0;
  1414. }
  1415. static int bmc150_accel_resume(struct device *dev)
  1416. {
  1417. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1418. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1419. mutex_lock(&data->mutex);
  1420. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1421. bmc150_accel_fifo_set_mode(data);
  1422. mutex_unlock(&data->mutex);
  1423. return 0;
  1424. }
  1425. #endif
  1426. #ifdef CONFIG_PM
  1427. static int bmc150_accel_runtime_suspend(struct device *dev)
  1428. {
  1429. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1430. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1431. int ret;
  1432. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1433. if (ret < 0)
  1434. return -EAGAIN;
  1435. return 0;
  1436. }
  1437. static int bmc150_accel_runtime_resume(struct device *dev)
  1438. {
  1439. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1440. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1441. int ret;
  1442. int sleep_val;
  1443. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1444. if (ret < 0)
  1445. return ret;
  1446. ret = bmc150_accel_fifo_set_mode(data);
  1447. if (ret < 0)
  1448. return ret;
  1449. sleep_val = bmc150_accel_get_startup_times(data);
  1450. if (sleep_val < 20)
  1451. usleep_range(sleep_val * 1000, 20000);
  1452. else
  1453. msleep_interruptible(sleep_val);
  1454. return 0;
  1455. }
  1456. #endif
  1457. const struct dev_pm_ops bmc150_accel_pm_ops = {
  1458. SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
  1459. SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
  1460. bmc150_accel_runtime_resume, NULL)
  1461. };
  1462. EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
  1463. MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
  1464. MODULE_LICENSE("GPL v2");
  1465. MODULE_DESCRIPTION("BMC150 accelerometer driver");