xilinx-xadc-core.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396
  1. /*
  2. * Xilinx XADC driver
  3. *
  4. * Copyright 2013-2014 Analog Devices Inc.
  5. * Author: Lars-Peter Clauen <lars@metafoo.de>
  6. *
  7. * Licensed under the GPL-2.
  8. *
  9. * Documentation for the parts can be found at:
  10. * - XADC hardmacro: Xilinx UG480
  11. * - ZYNQ XADC interface: Xilinx UG585
  12. * - AXI XADC interface: Xilinx PG019
  13. */
  14. #include <linux/clk.h>
  15. #include <linux/device.h>
  16. #include <linux/err.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/of.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/slab.h>
  24. #include <linux/sysfs.h>
  25. #include <linux/iio/buffer.h>
  26. #include <linux/iio/events.h>
  27. #include <linux/iio/iio.h>
  28. #include <linux/iio/sysfs.h>
  29. #include <linux/iio/trigger.h>
  30. #include <linux/iio/trigger_consumer.h>
  31. #include <linux/iio/triggered_buffer.h>
  32. #include "xilinx-xadc.h"
  33. static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  34. /* ZYNQ register definitions */
  35. #define XADC_ZYNQ_REG_CFG 0x00
  36. #define XADC_ZYNQ_REG_INTSTS 0x04
  37. #define XADC_ZYNQ_REG_INTMSK 0x08
  38. #define XADC_ZYNQ_REG_STATUS 0x0c
  39. #define XADC_ZYNQ_REG_CFIFO 0x10
  40. #define XADC_ZYNQ_REG_DFIFO 0x14
  41. #define XADC_ZYNQ_REG_CTL 0x18
  42. #define XADC_ZYNQ_CFG_ENABLE BIT(31)
  43. #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
  44. #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
  45. #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
  46. #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
  47. #define XADC_ZYNQ_CFG_WEDGE BIT(13)
  48. #define XADC_ZYNQ_CFG_REDGE BIT(12)
  49. #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
  50. #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
  51. #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
  52. #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
  53. #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
  54. #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
  55. #define XADC_ZYNQ_CFG_IGAP(x) (x)
  56. #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
  57. #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
  58. #define XADC_ZYNQ_INT_ALARM_MASK 0xff
  59. #define XADC_ZYNQ_INT_ALARM_OFFSET 0
  60. #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
  61. #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
  62. #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
  63. #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
  64. #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
  65. #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
  66. #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
  67. #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
  68. #define XADC_ZYNQ_STATUS_OT BIT(7)
  69. #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
  70. #define XADC_ZYNQ_CTL_RESET BIT(4)
  71. #define XADC_ZYNQ_CMD_NOP 0x00
  72. #define XADC_ZYNQ_CMD_READ 0x01
  73. #define XADC_ZYNQ_CMD_WRITE 0x02
  74. #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  75. /* AXI register definitions */
  76. #define XADC_AXI_REG_RESET 0x00
  77. #define XADC_AXI_REG_STATUS 0x04
  78. #define XADC_AXI_REG_ALARM_STATUS 0x08
  79. #define XADC_AXI_REG_CONVST 0x0c
  80. #define XADC_AXI_REG_XADC_RESET 0x10
  81. #define XADC_AXI_REG_GIER 0x5c
  82. #define XADC_AXI_REG_IPISR 0x60
  83. #define XADC_AXI_REG_IPIER 0x68
  84. #define XADC_AXI_ADC_REG_OFFSET 0x200
  85. #define XADC_AXI_RESET_MAGIC 0xa
  86. #define XADC_AXI_GIER_ENABLE BIT(31)
  87. #define XADC_AXI_INT_EOS BIT(4)
  88. #define XADC_AXI_INT_ALARM_MASK 0x3c0f
  89. #define XADC_FLAGS_BUFFERED BIT(0)
  90. /*
  91. * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
  92. * not have a hardware FIFO. Which means an interrupt is generated for each
  93. * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
  94. * overloaded by the interrupts that it soft-lockups. For this reason the driver
  95. * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
  96. * but still responsive.
  97. */
  98. #define XADC_MAX_SAMPLERATE 150000
  99. static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
  100. uint32_t val)
  101. {
  102. writel(val, xadc->base + reg);
  103. }
  104. static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
  105. uint32_t *val)
  106. {
  107. *val = readl(xadc->base + reg);
  108. }
  109. /*
  110. * The ZYNQ interface uses two asynchronous FIFOs for communication with the
  111. * XADC. Reads and writes to the XADC register are performed by submitting a
  112. * request to the command FIFO (CFIFO), once the request has been completed the
  113. * result can be read from the data FIFO (DFIFO). The method currently used in
  114. * this driver is to submit the request for a read/write operation, then go to
  115. * sleep and wait for an interrupt that signals that a response is available in
  116. * the data FIFO.
  117. */
  118. static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
  119. unsigned int n)
  120. {
  121. unsigned int i;
  122. for (i = 0; i < n; i++)
  123. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
  124. }
  125. static void xadc_zynq_drain_fifo(struct xadc *xadc)
  126. {
  127. uint32_t status, tmp;
  128. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
  129. while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
  130. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
  131. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
  132. }
  133. }
  134. static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
  135. unsigned int val)
  136. {
  137. xadc->zynq_intmask &= ~mask;
  138. xadc->zynq_intmask |= val;
  139. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
  140. xadc->zynq_intmask | xadc->zynq_masked_alarm);
  141. }
  142. static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
  143. uint16_t val)
  144. {
  145. uint32_t cmd[1];
  146. uint32_t tmp;
  147. int ret;
  148. spin_lock_irq(&xadc->lock);
  149. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  150. XADC_ZYNQ_INT_DFIFO_GTH);
  151. reinit_completion(&xadc->completion);
  152. cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
  153. xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
  154. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
  155. tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
  156. tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
  157. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
  158. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
  159. spin_unlock_irq(&xadc->lock);
  160. ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
  161. if (ret == 0)
  162. ret = -EIO;
  163. else
  164. ret = 0;
  165. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
  166. return ret;
  167. }
  168. static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
  169. uint16_t *val)
  170. {
  171. uint32_t cmd[2];
  172. uint32_t resp, tmp;
  173. int ret;
  174. cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
  175. cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
  176. spin_lock_irq(&xadc->lock);
  177. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  178. XADC_ZYNQ_INT_DFIFO_GTH);
  179. xadc_zynq_drain_fifo(xadc);
  180. reinit_completion(&xadc->completion);
  181. xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
  182. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
  183. tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
  184. tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
  185. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
  186. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
  187. spin_unlock_irq(&xadc->lock);
  188. ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
  189. if (ret == 0)
  190. ret = -EIO;
  191. if (ret < 0)
  192. return ret;
  193. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
  194. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
  195. *val = resp & 0xffff;
  196. return 0;
  197. }
  198. static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
  199. {
  200. return ((alarm & 0x80) >> 4) |
  201. ((alarm & 0x78) << 1) |
  202. (alarm & 0x07);
  203. }
  204. /*
  205. * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
  206. * threshold condition go way from within the interrupt handler, this means as
  207. * soon as a threshold condition is present we would enter the interrupt handler
  208. * again and again. To work around this we mask all active thresholds interrupts
  209. * in the interrupt handler and start a timer. In this timer we poll the
  210. * interrupt status and only if the interrupt is inactive we unmask it again.
  211. */
  212. static void xadc_zynq_unmask_worker(struct work_struct *work)
  213. {
  214. struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
  215. unsigned int misc_sts, unmask;
  216. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
  217. misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
  218. spin_lock_irq(&xadc->lock);
  219. /* Clear those bits which are not active anymore */
  220. unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
  221. xadc->zynq_masked_alarm &= misc_sts;
  222. /* Also clear those which are masked out anyway */
  223. xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
  224. /* Clear the interrupts before we unmask them */
  225. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
  226. xadc_zynq_update_intmsk(xadc, 0, 0);
  227. spin_unlock_irq(&xadc->lock);
  228. /* if still pending some alarm re-trigger the timer */
  229. if (xadc->zynq_masked_alarm) {
  230. schedule_delayed_work(&xadc->zynq_unmask_work,
  231. msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
  232. }
  233. }
  234. static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
  235. {
  236. struct iio_dev *indio_dev = devid;
  237. struct xadc *xadc = iio_priv(indio_dev);
  238. uint32_t status;
  239. xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
  240. status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
  241. if (!status)
  242. return IRQ_NONE;
  243. spin_lock(&xadc->lock);
  244. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
  245. if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
  246. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  247. XADC_ZYNQ_INT_DFIFO_GTH);
  248. complete(&xadc->completion);
  249. }
  250. status &= XADC_ZYNQ_INT_ALARM_MASK;
  251. if (status) {
  252. xadc->zynq_masked_alarm |= status;
  253. /*
  254. * mask the current event interrupt,
  255. * unmask it when the interrupt is no more active.
  256. */
  257. xadc_zynq_update_intmsk(xadc, 0, 0);
  258. xadc_handle_events(indio_dev,
  259. xadc_zynq_transform_alarm(status));
  260. /* unmask the required interrupts in timer. */
  261. schedule_delayed_work(&xadc->zynq_unmask_work,
  262. msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
  263. }
  264. spin_unlock(&xadc->lock);
  265. return IRQ_HANDLED;
  266. }
  267. #define XADC_ZYNQ_TCK_RATE_MAX 50000000
  268. #define XADC_ZYNQ_IGAP_DEFAULT 20
  269. #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
  270. static int xadc_zynq_setup(struct platform_device *pdev,
  271. struct iio_dev *indio_dev, int irq)
  272. {
  273. struct xadc *xadc = iio_priv(indio_dev);
  274. unsigned long pcap_rate;
  275. unsigned int tck_div;
  276. unsigned int div;
  277. unsigned int igap;
  278. unsigned int tck_rate;
  279. int ret;
  280. /* TODO: Figure out how to make igap and tck_rate configurable */
  281. igap = XADC_ZYNQ_IGAP_DEFAULT;
  282. tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
  283. xadc->zynq_intmask = ~0;
  284. pcap_rate = clk_get_rate(xadc->clk);
  285. if (!pcap_rate)
  286. return -EINVAL;
  287. if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
  288. ret = clk_set_rate(xadc->clk,
  289. (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
  290. if (ret)
  291. return ret;
  292. }
  293. if (tck_rate > pcap_rate / 2) {
  294. div = 2;
  295. } else {
  296. div = pcap_rate / tck_rate;
  297. if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
  298. div++;
  299. }
  300. if (div <= 3)
  301. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
  302. else if (div <= 7)
  303. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
  304. else if (div <= 15)
  305. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
  306. else
  307. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
  308. xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
  309. xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
  310. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
  311. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
  312. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
  313. XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
  314. tck_div | XADC_ZYNQ_CFG_IGAP(igap));
  315. if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
  316. ret = clk_set_rate(xadc->clk, pcap_rate);
  317. if (ret)
  318. return ret;
  319. }
  320. return 0;
  321. }
  322. static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
  323. {
  324. unsigned int div;
  325. uint32_t val;
  326. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
  327. switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
  328. case XADC_ZYNQ_CFG_TCKRATE_DIV4:
  329. div = 4;
  330. break;
  331. case XADC_ZYNQ_CFG_TCKRATE_DIV8:
  332. div = 8;
  333. break;
  334. case XADC_ZYNQ_CFG_TCKRATE_DIV16:
  335. div = 16;
  336. break;
  337. default:
  338. div = 2;
  339. break;
  340. }
  341. return clk_get_rate(xadc->clk) / div;
  342. }
  343. static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
  344. {
  345. unsigned long flags;
  346. uint32_t status;
  347. /* Move OT to bit 7 */
  348. alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
  349. spin_lock_irqsave(&xadc->lock, flags);
  350. /* Clear previous interrupts if any. */
  351. xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
  352. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
  353. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
  354. ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
  355. spin_unlock_irqrestore(&xadc->lock, flags);
  356. }
  357. static const struct xadc_ops xadc_zynq_ops = {
  358. .read = xadc_zynq_read_adc_reg,
  359. .write = xadc_zynq_write_adc_reg,
  360. .setup = xadc_zynq_setup,
  361. .get_dclk_rate = xadc_zynq_get_dclk_rate,
  362. .interrupt_handler = xadc_zynq_interrupt_handler,
  363. .update_alarm = xadc_zynq_update_alarm,
  364. };
  365. static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
  366. uint16_t *val)
  367. {
  368. uint32_t val32;
  369. xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
  370. *val = val32 & 0xffff;
  371. return 0;
  372. }
  373. static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
  374. uint16_t val)
  375. {
  376. xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
  377. return 0;
  378. }
  379. static int xadc_axi_setup(struct platform_device *pdev,
  380. struct iio_dev *indio_dev, int irq)
  381. {
  382. struct xadc *xadc = iio_priv(indio_dev);
  383. xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
  384. xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
  385. return 0;
  386. }
  387. static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
  388. {
  389. struct iio_dev *indio_dev = devid;
  390. struct xadc *xadc = iio_priv(indio_dev);
  391. uint32_t status, mask;
  392. unsigned int events;
  393. xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
  394. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
  395. status &= mask;
  396. if (!status)
  397. return IRQ_NONE;
  398. if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
  399. iio_trigger_poll(xadc->trigger);
  400. if (status & XADC_AXI_INT_ALARM_MASK) {
  401. /*
  402. * The order of the bits in the AXI-XADC status register does
  403. * not match the order of the bits in the XADC alarm enable
  404. * register. xadc_handle_events() expects the events to be in
  405. * the same order as the XADC alarm enable register.
  406. */
  407. events = (status & 0x000e) >> 1;
  408. events |= (status & 0x0001) << 3;
  409. events |= (status & 0x3c00) >> 6;
  410. xadc_handle_events(indio_dev, events);
  411. }
  412. xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
  413. return IRQ_HANDLED;
  414. }
  415. static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
  416. {
  417. uint32_t val;
  418. unsigned long flags;
  419. /*
  420. * The order of the bits in the AXI-XADC status register does not match
  421. * the order of the bits in the XADC alarm enable register. We get
  422. * passed the alarm mask in the same order as in the XADC alarm enable
  423. * register.
  424. */
  425. alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
  426. ((alarm & 0xf0) << 6);
  427. spin_lock_irqsave(&xadc->lock, flags);
  428. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
  429. val &= ~XADC_AXI_INT_ALARM_MASK;
  430. val |= alarm;
  431. xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
  432. spin_unlock_irqrestore(&xadc->lock, flags);
  433. }
  434. static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
  435. {
  436. return clk_get_rate(xadc->clk);
  437. }
  438. static const struct xadc_ops xadc_axi_ops = {
  439. .read = xadc_axi_read_adc_reg,
  440. .write = xadc_axi_write_adc_reg,
  441. .setup = xadc_axi_setup,
  442. .get_dclk_rate = xadc_axi_get_dclk,
  443. .update_alarm = xadc_axi_update_alarm,
  444. .interrupt_handler = xadc_axi_interrupt_handler,
  445. .flags = XADC_FLAGS_BUFFERED,
  446. };
  447. static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
  448. uint16_t mask, uint16_t val)
  449. {
  450. uint16_t tmp;
  451. int ret;
  452. ret = _xadc_read_adc_reg(xadc, reg, &tmp);
  453. if (ret)
  454. return ret;
  455. return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
  456. }
  457. static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
  458. uint16_t mask, uint16_t val)
  459. {
  460. int ret;
  461. mutex_lock(&xadc->mutex);
  462. ret = _xadc_update_adc_reg(xadc, reg, mask, val);
  463. mutex_unlock(&xadc->mutex);
  464. return ret;
  465. }
  466. static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
  467. {
  468. return xadc->ops->get_dclk_rate(xadc);
  469. }
  470. static int xadc_update_scan_mode(struct iio_dev *indio_dev,
  471. const unsigned long *mask)
  472. {
  473. struct xadc *xadc = iio_priv(indio_dev);
  474. unsigned int n;
  475. n = bitmap_weight(mask, indio_dev->masklength);
  476. kfree(xadc->data);
  477. xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
  478. if (!xadc->data)
  479. return -ENOMEM;
  480. return 0;
  481. }
  482. static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
  483. {
  484. switch (scan_index) {
  485. case 5:
  486. return XADC_REG_VCCPINT;
  487. case 6:
  488. return XADC_REG_VCCPAUX;
  489. case 7:
  490. return XADC_REG_VCCO_DDR;
  491. case 8:
  492. return XADC_REG_TEMP;
  493. case 9:
  494. return XADC_REG_VCCINT;
  495. case 10:
  496. return XADC_REG_VCCAUX;
  497. case 11:
  498. return XADC_REG_VPVN;
  499. case 12:
  500. return XADC_REG_VREFP;
  501. case 13:
  502. return XADC_REG_VREFN;
  503. case 14:
  504. return XADC_REG_VCCBRAM;
  505. default:
  506. return XADC_REG_VAUX(scan_index - 16);
  507. }
  508. }
  509. static irqreturn_t xadc_trigger_handler(int irq, void *p)
  510. {
  511. struct iio_poll_func *pf = p;
  512. struct iio_dev *indio_dev = pf->indio_dev;
  513. struct xadc *xadc = iio_priv(indio_dev);
  514. unsigned int chan;
  515. int i, j;
  516. if (!xadc->data)
  517. goto out;
  518. j = 0;
  519. for_each_set_bit(i, indio_dev->active_scan_mask,
  520. indio_dev->masklength) {
  521. chan = xadc_scan_index_to_channel(i);
  522. xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
  523. j++;
  524. }
  525. iio_push_to_buffers(indio_dev, xadc->data);
  526. out:
  527. iio_trigger_notify_done(indio_dev->trig);
  528. return IRQ_HANDLED;
  529. }
  530. static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
  531. {
  532. struct xadc *xadc = iio_trigger_get_drvdata(trigger);
  533. unsigned long flags;
  534. unsigned int convst;
  535. unsigned int val;
  536. int ret = 0;
  537. mutex_lock(&xadc->mutex);
  538. if (state) {
  539. /* Only one of the two triggers can be active at the a time. */
  540. if (xadc->trigger != NULL) {
  541. ret = -EBUSY;
  542. goto err_out;
  543. } else {
  544. xadc->trigger = trigger;
  545. if (trigger == xadc->convst_trigger)
  546. convst = XADC_CONF0_EC;
  547. else
  548. convst = 0;
  549. }
  550. ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
  551. convst);
  552. if (ret)
  553. goto err_out;
  554. } else {
  555. xadc->trigger = NULL;
  556. }
  557. spin_lock_irqsave(&xadc->lock, flags);
  558. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
  559. xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
  560. if (state)
  561. val |= XADC_AXI_INT_EOS;
  562. else
  563. val &= ~XADC_AXI_INT_EOS;
  564. xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
  565. spin_unlock_irqrestore(&xadc->lock, flags);
  566. err_out:
  567. mutex_unlock(&xadc->mutex);
  568. return ret;
  569. }
  570. static const struct iio_trigger_ops xadc_trigger_ops = {
  571. .set_trigger_state = &xadc_trigger_set_state,
  572. };
  573. static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
  574. const char *name)
  575. {
  576. struct iio_trigger *trig;
  577. int ret;
  578. trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
  579. indio_dev->id, name);
  580. if (trig == NULL)
  581. return ERR_PTR(-ENOMEM);
  582. trig->dev.parent = indio_dev->dev.parent;
  583. trig->ops = &xadc_trigger_ops;
  584. iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
  585. ret = iio_trigger_register(trig);
  586. if (ret)
  587. goto error_free_trig;
  588. return trig;
  589. error_free_trig:
  590. iio_trigger_free(trig);
  591. return ERR_PTR(ret);
  592. }
  593. static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
  594. {
  595. uint16_t val;
  596. /* Powerdown the ADC-B when it is not needed. */
  597. switch (seq_mode) {
  598. case XADC_CONF1_SEQ_SIMULTANEOUS:
  599. case XADC_CONF1_SEQ_INDEPENDENT:
  600. val = 0;
  601. break;
  602. default:
  603. val = XADC_CONF2_PD_ADC_B;
  604. break;
  605. }
  606. return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
  607. val);
  608. }
  609. static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
  610. {
  611. unsigned int aux_scan_mode = scan_mode >> 16;
  612. if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
  613. return XADC_CONF1_SEQ_SIMULTANEOUS;
  614. if ((aux_scan_mode & 0xff00) == 0 ||
  615. (aux_scan_mode & 0x00ff) == 0)
  616. return XADC_CONF1_SEQ_CONTINUOUS;
  617. return XADC_CONF1_SEQ_SIMULTANEOUS;
  618. }
  619. static int xadc_postdisable(struct iio_dev *indio_dev)
  620. {
  621. struct xadc *xadc = iio_priv(indio_dev);
  622. unsigned long scan_mask;
  623. int ret;
  624. int i;
  625. scan_mask = 1; /* Run calibration as part of the sequence */
  626. for (i = 0; i < indio_dev->num_channels; i++)
  627. scan_mask |= BIT(indio_dev->channels[i].scan_index);
  628. /* Enable all channels and calibration */
  629. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
  630. if (ret)
  631. return ret;
  632. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
  633. if (ret)
  634. return ret;
  635. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  636. XADC_CONF1_SEQ_CONTINUOUS);
  637. if (ret)
  638. return ret;
  639. return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
  640. }
  641. static int xadc_preenable(struct iio_dev *indio_dev)
  642. {
  643. struct xadc *xadc = iio_priv(indio_dev);
  644. unsigned long scan_mask;
  645. int seq_mode;
  646. int ret;
  647. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  648. XADC_CONF1_SEQ_DEFAULT);
  649. if (ret)
  650. goto err;
  651. scan_mask = *indio_dev->active_scan_mask;
  652. seq_mode = xadc_get_seq_mode(xadc, scan_mask);
  653. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
  654. if (ret)
  655. goto err;
  656. /*
  657. * In simultaneous mode the upper and lower aux channels are samples at
  658. * the same time. In this mode the upper 8 bits in the sequencer
  659. * register are don't care and the lower 8 bits control two channels
  660. * each. As such we must set the bit if either the channel in the lower
  661. * group or the upper group is enabled.
  662. */
  663. if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
  664. scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
  665. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
  666. if (ret)
  667. goto err;
  668. ret = xadc_power_adc_b(xadc, seq_mode);
  669. if (ret)
  670. goto err;
  671. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  672. seq_mode);
  673. if (ret)
  674. goto err;
  675. return 0;
  676. err:
  677. xadc_postdisable(indio_dev);
  678. return ret;
  679. }
  680. static const struct iio_buffer_setup_ops xadc_buffer_ops = {
  681. .preenable = &xadc_preenable,
  682. .postenable = &iio_triggered_buffer_postenable,
  683. .predisable = &iio_triggered_buffer_predisable,
  684. .postdisable = &xadc_postdisable,
  685. };
  686. static int xadc_read_samplerate(struct xadc *xadc)
  687. {
  688. unsigned int div;
  689. uint16_t val16;
  690. int ret;
  691. ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
  692. if (ret)
  693. return ret;
  694. div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
  695. if (div < 2)
  696. div = 2;
  697. return xadc_get_dclk_rate(xadc) / div / 26;
  698. }
  699. static int xadc_read_raw(struct iio_dev *indio_dev,
  700. struct iio_chan_spec const *chan, int *val, int *val2, long info)
  701. {
  702. struct xadc *xadc = iio_priv(indio_dev);
  703. uint16_t val16;
  704. int ret;
  705. switch (info) {
  706. case IIO_CHAN_INFO_RAW:
  707. if (iio_buffer_enabled(indio_dev))
  708. return -EBUSY;
  709. ret = xadc_read_adc_reg(xadc, chan->address, &val16);
  710. if (ret < 0)
  711. return ret;
  712. val16 >>= 4;
  713. if (chan->scan_type.sign == 'u')
  714. *val = val16;
  715. else
  716. *val = sign_extend32(val16, 11);
  717. return IIO_VAL_INT;
  718. case IIO_CHAN_INFO_SCALE:
  719. switch (chan->type) {
  720. case IIO_VOLTAGE:
  721. /* V = (val * 3.0) / 4096 */
  722. switch (chan->address) {
  723. case XADC_REG_VCCINT:
  724. case XADC_REG_VCCAUX:
  725. case XADC_REG_VREFP:
  726. case XADC_REG_VREFN:
  727. case XADC_REG_VCCBRAM:
  728. case XADC_REG_VCCPINT:
  729. case XADC_REG_VCCPAUX:
  730. case XADC_REG_VCCO_DDR:
  731. *val = 3000;
  732. break;
  733. default:
  734. *val = 1000;
  735. break;
  736. }
  737. *val2 = 12;
  738. return IIO_VAL_FRACTIONAL_LOG2;
  739. case IIO_TEMP:
  740. /* Temp in C = (val * 503.975) / 4096 - 273.15 */
  741. *val = 503975;
  742. *val2 = 12;
  743. return IIO_VAL_FRACTIONAL_LOG2;
  744. default:
  745. return -EINVAL;
  746. }
  747. case IIO_CHAN_INFO_OFFSET:
  748. /* Only the temperature channel has an offset */
  749. *val = -((273150 << 12) / 503975);
  750. return IIO_VAL_INT;
  751. case IIO_CHAN_INFO_SAMP_FREQ:
  752. ret = xadc_read_samplerate(xadc);
  753. if (ret < 0)
  754. return ret;
  755. *val = ret;
  756. return IIO_VAL_INT;
  757. default:
  758. return -EINVAL;
  759. }
  760. }
  761. static int xadc_write_samplerate(struct xadc *xadc, int val)
  762. {
  763. unsigned long clk_rate = xadc_get_dclk_rate(xadc);
  764. unsigned int div;
  765. if (!clk_rate)
  766. return -EINVAL;
  767. if (val <= 0)
  768. return -EINVAL;
  769. /* Max. 150 kSPS */
  770. if (val > XADC_MAX_SAMPLERATE)
  771. val = XADC_MAX_SAMPLERATE;
  772. val *= 26;
  773. /* Min 1MHz */
  774. if (val < 1000000)
  775. val = 1000000;
  776. /*
  777. * We want to round down, but only if we do not exceed the 150 kSPS
  778. * limit.
  779. */
  780. div = clk_rate / val;
  781. if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
  782. div++;
  783. if (div < 2)
  784. div = 2;
  785. else if (div > 0xff)
  786. div = 0xff;
  787. return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
  788. div << XADC_CONF2_DIV_OFFSET);
  789. }
  790. static int xadc_write_raw(struct iio_dev *indio_dev,
  791. struct iio_chan_spec const *chan, int val, int val2, long info)
  792. {
  793. struct xadc *xadc = iio_priv(indio_dev);
  794. if (info != IIO_CHAN_INFO_SAMP_FREQ)
  795. return -EINVAL;
  796. return xadc_write_samplerate(xadc, val);
  797. }
  798. static const struct iio_event_spec xadc_temp_events[] = {
  799. {
  800. .type = IIO_EV_TYPE_THRESH,
  801. .dir = IIO_EV_DIR_RISING,
  802. .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
  803. BIT(IIO_EV_INFO_VALUE) |
  804. BIT(IIO_EV_INFO_HYSTERESIS),
  805. },
  806. };
  807. /* Separate values for upper and lower thresholds, but only a shared enabled */
  808. static const struct iio_event_spec xadc_voltage_events[] = {
  809. {
  810. .type = IIO_EV_TYPE_THRESH,
  811. .dir = IIO_EV_DIR_RISING,
  812. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  813. }, {
  814. .type = IIO_EV_TYPE_THRESH,
  815. .dir = IIO_EV_DIR_FALLING,
  816. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  817. }, {
  818. .type = IIO_EV_TYPE_THRESH,
  819. .dir = IIO_EV_DIR_EITHER,
  820. .mask_separate = BIT(IIO_EV_INFO_ENABLE),
  821. },
  822. };
  823. #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
  824. .type = IIO_TEMP, \
  825. .indexed = 1, \
  826. .channel = (_chan), \
  827. .address = (_addr), \
  828. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  829. BIT(IIO_CHAN_INFO_SCALE) | \
  830. BIT(IIO_CHAN_INFO_OFFSET), \
  831. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  832. .event_spec = xadc_temp_events, \
  833. .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
  834. .scan_index = (_scan_index), \
  835. .scan_type = { \
  836. .sign = 'u', \
  837. .realbits = 12, \
  838. .storagebits = 16, \
  839. .shift = 4, \
  840. .endianness = IIO_CPU, \
  841. }, \
  842. }
  843. #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
  844. .type = IIO_VOLTAGE, \
  845. .indexed = 1, \
  846. .channel = (_chan), \
  847. .address = (_addr), \
  848. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  849. BIT(IIO_CHAN_INFO_SCALE), \
  850. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  851. .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
  852. .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
  853. .scan_index = (_scan_index), \
  854. .scan_type = { \
  855. .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
  856. .realbits = 12, \
  857. .storagebits = 16, \
  858. .shift = 4, \
  859. .endianness = IIO_CPU, \
  860. }, \
  861. .extend_name = _ext, \
  862. }
  863. static const struct iio_chan_spec xadc_channels[] = {
  864. XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
  865. XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
  866. XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
  867. XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
  868. XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
  869. XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
  870. XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
  871. XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
  872. XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
  873. XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
  874. XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
  875. XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
  876. XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
  877. XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
  878. XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
  879. XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
  880. XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
  881. XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
  882. XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
  883. XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
  884. XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
  885. XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
  886. XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
  887. XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
  888. XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
  889. XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
  890. };
  891. static const struct iio_info xadc_info = {
  892. .read_raw = &xadc_read_raw,
  893. .write_raw = &xadc_write_raw,
  894. .read_event_config = &xadc_read_event_config,
  895. .write_event_config = &xadc_write_event_config,
  896. .read_event_value = &xadc_read_event_value,
  897. .write_event_value = &xadc_write_event_value,
  898. .update_scan_mode = &xadc_update_scan_mode,
  899. };
  900. static const struct of_device_id xadc_of_match_table[] = {
  901. { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
  902. { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
  903. { },
  904. };
  905. MODULE_DEVICE_TABLE(of, xadc_of_match_table);
  906. static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
  907. unsigned int *conf)
  908. {
  909. struct xadc *xadc = iio_priv(indio_dev);
  910. struct iio_chan_spec *channels, *chan;
  911. struct device_node *chan_node, *child;
  912. unsigned int num_channels;
  913. const char *external_mux;
  914. u32 ext_mux_chan;
  915. u32 reg;
  916. int ret;
  917. *conf = 0;
  918. ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
  919. if (ret < 0 || strcasecmp(external_mux, "none") == 0)
  920. xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
  921. else if (strcasecmp(external_mux, "single") == 0)
  922. xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
  923. else if (strcasecmp(external_mux, "dual") == 0)
  924. xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
  925. else
  926. return -EINVAL;
  927. if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
  928. ret = of_property_read_u32(np, "xlnx,external-mux-channel",
  929. &ext_mux_chan);
  930. if (ret < 0)
  931. return ret;
  932. if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
  933. if (ext_mux_chan == 0)
  934. ext_mux_chan = XADC_REG_VPVN;
  935. else if (ext_mux_chan <= 16)
  936. ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
  937. else
  938. return -EINVAL;
  939. } else {
  940. if (ext_mux_chan > 0 && ext_mux_chan <= 8)
  941. ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
  942. else
  943. return -EINVAL;
  944. }
  945. *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
  946. }
  947. channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
  948. if (!channels)
  949. return -ENOMEM;
  950. num_channels = 9;
  951. chan = &channels[9];
  952. chan_node = of_get_child_by_name(np, "xlnx,channels");
  953. if (chan_node) {
  954. for_each_child_of_node(chan_node, child) {
  955. if (num_channels >= ARRAY_SIZE(xadc_channels)) {
  956. of_node_put(child);
  957. break;
  958. }
  959. ret = of_property_read_u32(child, "reg", &reg);
  960. if (ret || reg > 16)
  961. continue;
  962. if (of_property_read_bool(child, "xlnx,bipolar"))
  963. chan->scan_type.sign = 's';
  964. if (reg == 0) {
  965. chan->scan_index = 11;
  966. chan->address = XADC_REG_VPVN;
  967. } else {
  968. chan->scan_index = 15 + reg;
  969. chan->address = XADC_REG_VAUX(reg - 1);
  970. }
  971. num_channels++;
  972. chan++;
  973. }
  974. }
  975. of_node_put(chan_node);
  976. indio_dev->num_channels = num_channels;
  977. indio_dev->channels = krealloc(channels, sizeof(*channels) *
  978. num_channels, GFP_KERNEL);
  979. /* If we can't resize the channels array, just use the original */
  980. if (!indio_dev->channels)
  981. indio_dev->channels = channels;
  982. return 0;
  983. }
  984. static int xadc_probe(struct platform_device *pdev)
  985. {
  986. const struct of_device_id *id;
  987. struct iio_dev *indio_dev;
  988. unsigned int bipolar_mask;
  989. struct resource *mem;
  990. unsigned int conf0;
  991. struct xadc *xadc;
  992. int ret;
  993. int irq;
  994. int i;
  995. if (!pdev->dev.of_node)
  996. return -ENODEV;
  997. id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
  998. if (!id)
  999. return -EINVAL;
  1000. irq = platform_get_irq(pdev, 0);
  1001. if (irq <= 0)
  1002. return -ENXIO;
  1003. indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
  1004. if (!indio_dev)
  1005. return -ENOMEM;
  1006. xadc = iio_priv(indio_dev);
  1007. xadc->ops = id->data;
  1008. xadc->irq = irq;
  1009. init_completion(&xadc->completion);
  1010. mutex_init(&xadc->mutex);
  1011. spin_lock_init(&xadc->lock);
  1012. INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
  1013. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1014. xadc->base = devm_ioremap_resource(&pdev->dev, mem);
  1015. if (IS_ERR(xadc->base))
  1016. return PTR_ERR(xadc->base);
  1017. indio_dev->dev.parent = &pdev->dev;
  1018. indio_dev->dev.of_node = pdev->dev.of_node;
  1019. indio_dev->name = "xadc";
  1020. indio_dev->modes = INDIO_DIRECT_MODE;
  1021. indio_dev->info = &xadc_info;
  1022. ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
  1023. if (ret)
  1024. goto err_device_free;
  1025. if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
  1026. ret = iio_triggered_buffer_setup(indio_dev,
  1027. &iio_pollfunc_store_time, &xadc_trigger_handler,
  1028. &xadc_buffer_ops);
  1029. if (ret)
  1030. goto err_device_free;
  1031. xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
  1032. if (IS_ERR(xadc->convst_trigger)) {
  1033. ret = PTR_ERR(xadc->convst_trigger);
  1034. goto err_triggered_buffer_cleanup;
  1035. }
  1036. xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
  1037. "samplerate");
  1038. if (IS_ERR(xadc->samplerate_trigger)) {
  1039. ret = PTR_ERR(xadc->samplerate_trigger);
  1040. goto err_free_convst_trigger;
  1041. }
  1042. }
  1043. xadc->clk = devm_clk_get(&pdev->dev, NULL);
  1044. if (IS_ERR(xadc->clk)) {
  1045. ret = PTR_ERR(xadc->clk);
  1046. goto err_free_samplerate_trigger;
  1047. }
  1048. ret = clk_prepare_enable(xadc->clk);
  1049. if (ret)
  1050. goto err_free_samplerate_trigger;
  1051. /*
  1052. * Make sure not to exceed the maximum samplerate since otherwise the
  1053. * resulting interrupt storm will soft-lock the system.
  1054. */
  1055. if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
  1056. ret = xadc_read_samplerate(xadc);
  1057. if (ret < 0)
  1058. goto err_free_samplerate_trigger;
  1059. if (ret > XADC_MAX_SAMPLERATE) {
  1060. ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
  1061. if (ret < 0)
  1062. goto err_free_samplerate_trigger;
  1063. }
  1064. }
  1065. ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
  1066. dev_name(&pdev->dev), indio_dev);
  1067. if (ret)
  1068. goto err_clk_disable_unprepare;
  1069. ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
  1070. if (ret)
  1071. goto err_free_irq;
  1072. for (i = 0; i < 16; i++)
  1073. xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
  1074. &xadc->threshold[i]);
  1075. ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
  1076. if (ret)
  1077. goto err_free_irq;
  1078. bipolar_mask = 0;
  1079. for (i = 0; i < indio_dev->num_channels; i++) {
  1080. if (indio_dev->channels[i].scan_type.sign == 's')
  1081. bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
  1082. }
  1083. ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
  1084. if (ret)
  1085. goto err_free_irq;
  1086. ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
  1087. bipolar_mask >> 16);
  1088. if (ret)
  1089. goto err_free_irq;
  1090. /* Disable all alarms */
  1091. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
  1092. XADC_CONF1_ALARM_MASK);
  1093. if (ret)
  1094. goto err_free_irq;
  1095. /* Set thresholds to min/max */
  1096. for (i = 0; i < 16; i++) {
  1097. /*
  1098. * Set max voltage threshold and both temperature thresholds to
  1099. * 0xffff, min voltage threshold to 0.
  1100. */
  1101. if (i % 8 < 4 || i == 7)
  1102. xadc->threshold[i] = 0xffff;
  1103. else
  1104. xadc->threshold[i] = 0;
  1105. xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
  1106. xadc->threshold[i]);
  1107. }
  1108. /* Go to non-buffered mode */
  1109. xadc_postdisable(indio_dev);
  1110. ret = iio_device_register(indio_dev);
  1111. if (ret)
  1112. goto err_free_irq;
  1113. platform_set_drvdata(pdev, indio_dev);
  1114. return 0;
  1115. err_free_irq:
  1116. free_irq(xadc->irq, indio_dev);
  1117. cancel_delayed_work_sync(&xadc->zynq_unmask_work);
  1118. err_clk_disable_unprepare:
  1119. clk_disable_unprepare(xadc->clk);
  1120. err_free_samplerate_trigger:
  1121. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1122. iio_trigger_free(xadc->samplerate_trigger);
  1123. err_free_convst_trigger:
  1124. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1125. iio_trigger_free(xadc->convst_trigger);
  1126. err_triggered_buffer_cleanup:
  1127. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1128. iio_triggered_buffer_cleanup(indio_dev);
  1129. err_device_free:
  1130. kfree(indio_dev->channels);
  1131. return ret;
  1132. }
  1133. static int xadc_remove(struct platform_device *pdev)
  1134. {
  1135. struct iio_dev *indio_dev = platform_get_drvdata(pdev);
  1136. struct xadc *xadc = iio_priv(indio_dev);
  1137. iio_device_unregister(indio_dev);
  1138. if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
  1139. iio_trigger_free(xadc->samplerate_trigger);
  1140. iio_trigger_free(xadc->convst_trigger);
  1141. iio_triggered_buffer_cleanup(indio_dev);
  1142. }
  1143. free_irq(xadc->irq, indio_dev);
  1144. cancel_delayed_work_sync(&xadc->zynq_unmask_work);
  1145. clk_disable_unprepare(xadc->clk);
  1146. kfree(xadc->data);
  1147. kfree(indio_dev->channels);
  1148. return 0;
  1149. }
  1150. static struct platform_driver xadc_driver = {
  1151. .probe = xadc_probe,
  1152. .remove = xadc_remove,
  1153. .driver = {
  1154. .name = "xadc",
  1155. .of_match_table = xadc_of_match_table,
  1156. },
  1157. };
  1158. module_platform_driver(xadc_driver);
  1159. MODULE_LICENSE("GPL v2");
  1160. MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
  1161. MODULE_DESCRIPTION("Xilinx XADC IIO driver");