cs553x_nand.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*
  2. * (C) 2005, 2006 Red Hat Inc.
  3. *
  4. * Author: David Woodhouse <dwmw2@infradead.org>
  5. * Tom Sylla <tom.sylla@amd.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * Overview:
  12. * This is a device driver for the NAND flash controller found on
  13. * the AMD CS5535/CS5536 companion chipsets for the Geode processor.
  14. * mtd-id for command line partitioning is cs553x_nand_cs[0-3]
  15. * where 0-3 reflects the chip select for NAND.
  16. *
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/slab.h>
  20. #include <linux/init.h>
  21. #include <linux/module.h>
  22. #include <linux/delay.h>
  23. #include <linux/mtd/mtd.h>
  24. #include <linux/mtd/rawnand.h>
  25. #include <linux/mtd/nand_ecc.h>
  26. #include <linux/mtd/partitions.h>
  27. #include <asm/msr.h>
  28. #include <asm/io.h>
  29. #define NR_CS553X_CONTROLLERS 4
  30. #define MSR_DIVIL_GLD_CAP 0x51400000 /* DIVIL capabilitiies */
  31. #define CAP_CS5535 0x2df000ULL
  32. #define CAP_CS5536 0x5df500ULL
  33. /* NAND Timing MSRs */
  34. #define MSR_NANDF_DATA 0x5140001b /* NAND Flash Data Timing MSR */
  35. #define MSR_NANDF_CTL 0x5140001c /* NAND Flash Control Timing */
  36. #define MSR_NANDF_RSVD 0x5140001d /* Reserved */
  37. /* NAND BAR MSRs */
  38. #define MSR_DIVIL_LBAR_FLSH0 0x51400010 /* Flash Chip Select 0 */
  39. #define MSR_DIVIL_LBAR_FLSH1 0x51400011 /* Flash Chip Select 1 */
  40. #define MSR_DIVIL_LBAR_FLSH2 0x51400012 /* Flash Chip Select 2 */
  41. #define MSR_DIVIL_LBAR_FLSH3 0x51400013 /* Flash Chip Select 3 */
  42. /* Each made up of... */
  43. #define FLSH_LBAR_EN (1ULL<<32)
  44. #define FLSH_NOR_NAND (1ULL<<33) /* 1 for NAND */
  45. #define FLSH_MEM_IO (1ULL<<34) /* 1 for MMIO */
  46. /* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */
  47. /* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */
  48. /* Pin function selection MSR (IDE vs. flash on the IDE pins) */
  49. #define MSR_DIVIL_BALL_OPTS 0x51400015
  50. #define PIN_OPT_IDE (1<<0) /* 0 for flash, 1 for IDE */
  51. /* Registers within the NAND flash controller BAR -- memory mapped */
  52. #define MM_NAND_DATA 0x00 /* 0 to 0x7ff, in fact */
  53. #define MM_NAND_CTL 0x800 /* Any even address 0x800-0x80e */
  54. #define MM_NAND_IO 0x801 /* Any odd address 0x801-0x80f */
  55. #define MM_NAND_STS 0x810
  56. #define MM_NAND_ECC_LSB 0x811
  57. #define MM_NAND_ECC_MSB 0x812
  58. #define MM_NAND_ECC_COL 0x813
  59. #define MM_NAND_LAC 0x814
  60. #define MM_NAND_ECC_CTL 0x815
  61. /* Registers within the NAND flash controller BAR -- I/O mapped */
  62. #define IO_NAND_DATA 0x00 /* 0 to 3, in fact */
  63. #define IO_NAND_CTL 0x04
  64. #define IO_NAND_IO 0x05
  65. #define IO_NAND_STS 0x06
  66. #define IO_NAND_ECC_CTL 0x08
  67. #define IO_NAND_ECC_LSB 0x09
  68. #define IO_NAND_ECC_MSB 0x0a
  69. #define IO_NAND_ECC_COL 0x0b
  70. #define IO_NAND_LAC 0x0c
  71. #define CS_NAND_CTL_DIST_EN (1<<4) /* Enable NAND Distract interrupt */
  72. #define CS_NAND_CTL_RDY_INT_MASK (1<<3) /* Enable RDY/BUSY# interrupt */
  73. #define CS_NAND_CTL_ALE (1<<2)
  74. #define CS_NAND_CTL_CLE (1<<1)
  75. #define CS_NAND_CTL_CE (1<<0) /* Keep low; 1 to reset */
  76. #define CS_NAND_STS_FLASH_RDY (1<<3)
  77. #define CS_NAND_CTLR_BUSY (1<<2)
  78. #define CS_NAND_CMD_COMP (1<<1)
  79. #define CS_NAND_DIST_ST (1<<0)
  80. #define CS_NAND_ECC_PARITY (1<<2)
  81. #define CS_NAND_ECC_CLRECC (1<<1)
  82. #define CS_NAND_ECC_ENECC (1<<0)
  83. static void cs553x_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  84. {
  85. struct nand_chip *this = mtd_to_nand(mtd);
  86. while (unlikely(len > 0x800)) {
  87. memcpy_fromio(buf, this->IO_ADDR_R, 0x800);
  88. buf += 0x800;
  89. len -= 0x800;
  90. }
  91. memcpy_fromio(buf, this->IO_ADDR_R, len);
  92. }
  93. static void cs553x_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
  94. {
  95. struct nand_chip *this = mtd_to_nand(mtd);
  96. while (unlikely(len > 0x800)) {
  97. memcpy_toio(this->IO_ADDR_R, buf, 0x800);
  98. buf += 0x800;
  99. len -= 0x800;
  100. }
  101. memcpy_toio(this->IO_ADDR_R, buf, len);
  102. }
  103. static unsigned char cs553x_read_byte(struct mtd_info *mtd)
  104. {
  105. struct nand_chip *this = mtd_to_nand(mtd);
  106. return readb(this->IO_ADDR_R);
  107. }
  108. static void cs553x_write_byte(struct mtd_info *mtd, u_char byte)
  109. {
  110. struct nand_chip *this = mtd_to_nand(mtd);
  111. int i = 100000;
  112. while (i && readb(this->IO_ADDR_R + MM_NAND_STS) & CS_NAND_CTLR_BUSY) {
  113. udelay(1);
  114. i--;
  115. }
  116. writeb(byte, this->IO_ADDR_W + 0x801);
  117. }
  118. static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd,
  119. unsigned int ctrl)
  120. {
  121. struct nand_chip *this = mtd_to_nand(mtd);
  122. void __iomem *mmio_base = this->IO_ADDR_R;
  123. if (ctrl & NAND_CTRL_CHANGE) {
  124. unsigned char ctl = (ctrl & ~NAND_CTRL_CHANGE ) ^ 0x01;
  125. writeb(ctl, mmio_base + MM_NAND_CTL);
  126. }
  127. if (cmd != NAND_CMD_NONE)
  128. cs553x_write_byte(mtd, cmd);
  129. }
  130. static int cs553x_device_ready(struct mtd_info *mtd)
  131. {
  132. struct nand_chip *this = mtd_to_nand(mtd);
  133. void __iomem *mmio_base = this->IO_ADDR_R;
  134. unsigned char foo = readb(mmio_base + MM_NAND_STS);
  135. return (foo & CS_NAND_STS_FLASH_RDY) && !(foo & CS_NAND_CTLR_BUSY);
  136. }
  137. static void cs_enable_hwecc(struct mtd_info *mtd, int mode)
  138. {
  139. struct nand_chip *this = mtd_to_nand(mtd);
  140. void __iomem *mmio_base = this->IO_ADDR_R;
  141. writeb(0x07, mmio_base + MM_NAND_ECC_CTL);
  142. }
  143. static int cs_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
  144. {
  145. uint32_t ecc;
  146. struct nand_chip *this = mtd_to_nand(mtd);
  147. void __iomem *mmio_base = this->IO_ADDR_R;
  148. ecc = readl(mmio_base + MM_NAND_STS);
  149. ecc_code[1] = ecc >> 8;
  150. ecc_code[0] = ecc >> 16;
  151. ecc_code[2] = ecc >> 24;
  152. return 0;
  153. }
  154. static struct mtd_info *cs553x_mtd[4];
  155. static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
  156. {
  157. int err = 0;
  158. struct nand_chip *this;
  159. struct mtd_info *new_mtd;
  160. pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n",
  161. cs, mmio ? "MM" : "P", adr);
  162. if (!mmio) {
  163. pr_notice("PIO mode not yet implemented for CS553X NAND controller\n");
  164. return -ENXIO;
  165. }
  166. /* Allocate memory for MTD device structure and private data */
  167. this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
  168. if (!this) {
  169. err = -ENOMEM;
  170. goto out;
  171. }
  172. new_mtd = nand_to_mtd(this);
  173. /* Link the private data with the MTD structure */
  174. new_mtd->owner = THIS_MODULE;
  175. /* map physical address */
  176. this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096);
  177. if (!this->IO_ADDR_R) {
  178. pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr);
  179. err = -EIO;
  180. goto out_mtd;
  181. }
  182. this->cmd_ctrl = cs553x_hwcontrol;
  183. this->dev_ready = cs553x_device_ready;
  184. this->read_byte = cs553x_read_byte;
  185. this->read_buf = cs553x_read_buf;
  186. this->write_buf = cs553x_write_buf;
  187. this->chip_delay = 0;
  188. this->ecc.mode = NAND_ECC_HW;
  189. this->ecc.size = 256;
  190. this->ecc.bytes = 3;
  191. this->ecc.hwctl = cs_enable_hwecc;
  192. this->ecc.calculate = cs_calculate_ecc;
  193. this->ecc.correct = nand_correct_data;
  194. this->ecc.strength = 1;
  195. /* Enable the following for a flash based bad block table */
  196. this->bbt_options = NAND_BBT_USE_FLASH;
  197. new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs);
  198. if (!new_mtd->name) {
  199. err = -ENOMEM;
  200. goto out_ior;
  201. }
  202. /* Scan to find existence of the device */
  203. err = nand_scan(this, 1);
  204. if (err)
  205. goto out_free;
  206. cs553x_mtd[cs] = new_mtd;
  207. goto out;
  208. out_free:
  209. kfree(new_mtd->name);
  210. out_ior:
  211. iounmap(this->IO_ADDR_R);
  212. out_mtd:
  213. kfree(this);
  214. out:
  215. return err;
  216. }
  217. static int is_geode(void)
  218. {
  219. /* These are the CPUs which will have a CS553[56] companion chip */
  220. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
  221. boot_cpu_data.x86 == 5 &&
  222. boot_cpu_data.x86_model == 10)
  223. return 1; /* Geode LX */
  224. if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC ||
  225. boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) &&
  226. boot_cpu_data.x86 == 5 &&
  227. boot_cpu_data.x86_model == 5)
  228. return 1; /* Geode GX (née GX2) */
  229. return 0;
  230. }
  231. static int __init cs553x_init(void)
  232. {
  233. int err = -ENXIO;
  234. int i;
  235. uint64_t val;
  236. /* If the CPU isn't a Geode GX or LX, abort */
  237. if (!is_geode())
  238. return -ENXIO;
  239. /* If it doesn't have the CS553[56], abort */
  240. rdmsrl(MSR_DIVIL_GLD_CAP, val);
  241. val &= ~0xFFULL;
  242. if (val != CAP_CS5535 && val != CAP_CS5536)
  243. return -ENXIO;
  244. /* If it doesn't have the NAND controller enabled, abort */
  245. rdmsrl(MSR_DIVIL_BALL_OPTS, val);
  246. if (val & PIN_OPT_IDE) {
  247. pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n");
  248. return -ENXIO;
  249. }
  250. for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
  251. rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val);
  252. if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND))
  253. err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF);
  254. }
  255. /* Register all devices together here. This means we can easily hack it to
  256. do mtdconcat etc. if we want to. */
  257. for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
  258. if (cs553x_mtd[i]) {
  259. /* If any devices registered, return success. Else the last error. */
  260. mtd_device_register(cs553x_mtd[i], NULL, 0);
  261. err = 0;
  262. }
  263. }
  264. return err;
  265. }
  266. module_init(cs553x_init);
  267. static void __exit cs553x_cleanup(void)
  268. {
  269. int i;
  270. for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
  271. struct mtd_info *mtd = cs553x_mtd[i];
  272. struct nand_chip *this;
  273. void __iomem *mmio_base;
  274. if (!mtd)
  275. continue;
  276. this = mtd_to_nand(mtd);
  277. mmio_base = this->IO_ADDR_R;
  278. /* Release resources, unregister device */
  279. nand_release(this);
  280. kfree(mtd->name);
  281. cs553x_mtd[i] = NULL;
  282. /* unmap physical address */
  283. iounmap(mmio_base);
  284. /* Free the MTD device structure */
  285. kfree(this);
  286. }
  287. }
  288. module_exit(cs553x_cleanup);
  289. MODULE_LICENSE("GPL");
  290. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  291. MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip");