mtk_nand.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621
  1. /*
  2. * MTK NAND Flash controller driver.
  3. * Copyright (C) 2016 MediaTek Inc.
  4. * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
  5. * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. #include <linux/platform_device.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/clk.h>
  21. #include <linux/mtd/rawnand.h>
  22. #include <linux/mtd/mtd.h>
  23. #include <linux/module.h>
  24. #include <linux/iopoll.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include "mtk_ecc.h"
  28. /* NAND controller register definition */
  29. #define NFI_CNFG (0x00)
  30. #define CNFG_AHB BIT(0)
  31. #define CNFG_READ_EN BIT(1)
  32. #define CNFG_DMA_BURST_EN BIT(2)
  33. #define CNFG_BYTE_RW BIT(6)
  34. #define CNFG_HW_ECC_EN BIT(8)
  35. #define CNFG_AUTO_FMT_EN BIT(9)
  36. #define CNFG_OP_CUST (6 << 12)
  37. #define NFI_PAGEFMT (0x04)
  38. #define PAGEFMT_FDM_ECC_SHIFT (12)
  39. #define PAGEFMT_FDM_SHIFT (8)
  40. #define PAGEFMT_SEC_SEL_512 BIT(2)
  41. #define PAGEFMT_512_2K (0)
  42. #define PAGEFMT_2K_4K (1)
  43. #define PAGEFMT_4K_8K (2)
  44. #define PAGEFMT_8K_16K (3)
  45. /* NFI control */
  46. #define NFI_CON (0x08)
  47. #define CON_FIFO_FLUSH BIT(0)
  48. #define CON_NFI_RST BIT(1)
  49. #define CON_BRD BIT(8) /* burst read */
  50. #define CON_BWR BIT(9) /* burst write */
  51. #define CON_SEC_SHIFT (12)
  52. /* Timming control register */
  53. #define NFI_ACCCON (0x0C)
  54. #define NFI_INTR_EN (0x10)
  55. #define INTR_AHB_DONE_EN BIT(6)
  56. #define NFI_INTR_STA (0x14)
  57. #define NFI_CMD (0x20)
  58. #define NFI_ADDRNOB (0x30)
  59. #define NFI_COLADDR (0x34)
  60. #define NFI_ROWADDR (0x38)
  61. #define NFI_STRDATA (0x40)
  62. #define STAR_EN (1)
  63. #define STAR_DE (0)
  64. #define NFI_CNRNB (0x44)
  65. #define NFI_DATAW (0x50)
  66. #define NFI_DATAR (0x54)
  67. #define NFI_PIO_DIRDY (0x58)
  68. #define PIO_DI_RDY (0x01)
  69. #define NFI_STA (0x60)
  70. #define STA_CMD BIT(0)
  71. #define STA_ADDR BIT(1)
  72. #define STA_BUSY BIT(8)
  73. #define STA_EMP_PAGE BIT(12)
  74. #define NFI_FSM_CUSTDATA (0xe << 16)
  75. #define NFI_FSM_MASK (0xf << 16)
  76. #define NFI_ADDRCNTR (0x70)
  77. #define CNTR_MASK GENMASK(16, 12)
  78. #define ADDRCNTR_SEC_SHIFT (12)
  79. #define ADDRCNTR_SEC(val) \
  80. (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
  81. #define NFI_STRADDR (0x80)
  82. #define NFI_BYTELEN (0x84)
  83. #define NFI_CSEL (0x90)
  84. #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
  85. #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
  86. #define NFI_FDM_MAX_SIZE (8)
  87. #define NFI_FDM_MIN_SIZE (1)
  88. #define NFI_MASTER_STA (0x224)
  89. #define MASTER_STA_MASK (0x0FFF)
  90. #define NFI_EMPTY_THRESH (0x23C)
  91. #define MTK_NAME "mtk-nand"
  92. #define KB(x) ((x) * 1024UL)
  93. #define MB(x) (KB(x) * 1024UL)
  94. #define MTK_TIMEOUT (500000)
  95. #define MTK_RESET_TIMEOUT (1000000)
  96. #define MTK_NAND_MAX_NSELS (2)
  97. #define MTK_NFC_MIN_SPARE (16)
  98. #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
  99. ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
  100. (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
  101. struct mtk_nfc_caps {
  102. const u8 *spare_size;
  103. u8 num_spare_size;
  104. u8 pageformat_spare_shift;
  105. u8 nfi_clk_div;
  106. u8 max_sector;
  107. u32 max_sector_size;
  108. };
  109. struct mtk_nfc_bad_mark_ctl {
  110. void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
  111. u32 sec;
  112. u32 pos;
  113. };
  114. /*
  115. * FDM: region used to store free OOB data
  116. */
  117. struct mtk_nfc_fdm {
  118. u32 reg_size;
  119. u32 ecc_size;
  120. };
  121. struct mtk_nfc_nand_chip {
  122. struct list_head node;
  123. struct nand_chip nand;
  124. struct mtk_nfc_bad_mark_ctl bad_mark;
  125. struct mtk_nfc_fdm fdm;
  126. u32 spare_per_sector;
  127. int nsels;
  128. u8 sels[0];
  129. /* nothing after this field */
  130. };
  131. struct mtk_nfc_clk {
  132. struct clk *nfi_clk;
  133. struct clk *pad_clk;
  134. };
  135. struct mtk_nfc {
  136. struct nand_controller controller;
  137. struct mtk_ecc_config ecc_cfg;
  138. struct mtk_nfc_clk clk;
  139. struct mtk_ecc *ecc;
  140. struct device *dev;
  141. const struct mtk_nfc_caps *caps;
  142. void __iomem *regs;
  143. struct completion done;
  144. struct list_head chips;
  145. u8 *buffer;
  146. };
  147. /*
  148. * supported spare size of each IP.
  149. * order should be the same with the spare size bitfiled defination of
  150. * register NFI_PAGEFMT.
  151. */
  152. static const u8 spare_size_mt2701[] = {
  153. 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64
  154. };
  155. static const u8 spare_size_mt2712[] = {
  156. 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
  157. 74
  158. };
  159. static const u8 spare_size_mt7622[] = {
  160. 16, 26, 27, 28
  161. };
  162. static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
  163. {
  164. return container_of(nand, struct mtk_nfc_nand_chip, nand);
  165. }
  166. static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
  167. {
  168. return (u8 *)p + i * chip->ecc.size;
  169. }
  170. static inline u8 *oob_ptr(struct nand_chip *chip, int i)
  171. {
  172. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  173. u8 *poi;
  174. /* map the sector's FDM data to free oob:
  175. * the beginning of the oob area stores the FDM data of bad mark sectors
  176. */
  177. if (i < mtk_nand->bad_mark.sec)
  178. poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
  179. else if (i == mtk_nand->bad_mark.sec)
  180. poi = chip->oob_poi;
  181. else
  182. poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
  183. return poi;
  184. }
  185. static inline int mtk_data_len(struct nand_chip *chip)
  186. {
  187. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  188. return chip->ecc.size + mtk_nand->spare_per_sector;
  189. }
  190. static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
  191. {
  192. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  193. return nfc->buffer + i * mtk_data_len(chip);
  194. }
  195. static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
  196. {
  197. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  198. return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
  199. }
  200. static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
  201. {
  202. writel(val, nfc->regs + reg);
  203. }
  204. static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
  205. {
  206. writew(val, nfc->regs + reg);
  207. }
  208. static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
  209. {
  210. writeb(val, nfc->regs + reg);
  211. }
  212. static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
  213. {
  214. return readl_relaxed(nfc->regs + reg);
  215. }
  216. static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
  217. {
  218. return readw_relaxed(nfc->regs + reg);
  219. }
  220. static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
  221. {
  222. return readb_relaxed(nfc->regs + reg);
  223. }
  224. static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
  225. {
  226. struct device *dev = nfc->dev;
  227. u32 val;
  228. int ret;
  229. /* reset all registers and force the NFI master to terminate */
  230. nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
  231. /* wait for the master to finish the last transaction */
  232. ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
  233. !(val & MASTER_STA_MASK), 50,
  234. MTK_RESET_TIMEOUT);
  235. if (ret)
  236. dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
  237. NFI_MASTER_STA, val);
  238. /* ensure any status register affected by the NFI master is reset */
  239. nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
  240. nfi_writew(nfc, STAR_DE, NFI_STRDATA);
  241. }
  242. static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
  243. {
  244. struct device *dev = nfc->dev;
  245. u32 val;
  246. int ret;
  247. nfi_writel(nfc, command, NFI_CMD);
  248. ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
  249. !(val & STA_CMD), 10, MTK_TIMEOUT);
  250. if (ret) {
  251. dev_warn(dev, "nfi core timed out entering command mode\n");
  252. return -EIO;
  253. }
  254. return 0;
  255. }
  256. static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
  257. {
  258. struct device *dev = nfc->dev;
  259. u32 val;
  260. int ret;
  261. nfi_writel(nfc, addr, NFI_COLADDR);
  262. nfi_writel(nfc, 0, NFI_ROWADDR);
  263. nfi_writew(nfc, 1, NFI_ADDRNOB);
  264. ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
  265. !(val & STA_ADDR), 10, MTK_TIMEOUT);
  266. if (ret) {
  267. dev_warn(dev, "nfi core timed out entering address mode\n");
  268. return -EIO;
  269. }
  270. return 0;
  271. }
  272. static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
  273. {
  274. struct nand_chip *chip = mtd_to_nand(mtd);
  275. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  276. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  277. u32 fmt, spare, i;
  278. if (!mtd->writesize)
  279. return 0;
  280. spare = mtk_nand->spare_per_sector;
  281. switch (mtd->writesize) {
  282. case 512:
  283. fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
  284. break;
  285. case KB(2):
  286. if (chip->ecc.size == 512)
  287. fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
  288. else
  289. fmt = PAGEFMT_512_2K;
  290. break;
  291. case KB(4):
  292. if (chip->ecc.size == 512)
  293. fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
  294. else
  295. fmt = PAGEFMT_2K_4K;
  296. break;
  297. case KB(8):
  298. if (chip->ecc.size == 512)
  299. fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
  300. else
  301. fmt = PAGEFMT_4K_8K;
  302. break;
  303. case KB(16):
  304. fmt = PAGEFMT_8K_16K;
  305. break;
  306. default:
  307. dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
  308. return -EINVAL;
  309. }
  310. /*
  311. * the hardware will double the value for this eccsize, so we need to
  312. * halve it
  313. */
  314. if (chip->ecc.size == 1024)
  315. spare >>= 1;
  316. for (i = 0; i < nfc->caps->num_spare_size; i++) {
  317. if (nfc->caps->spare_size[i] == spare)
  318. break;
  319. }
  320. if (i == nfc->caps->num_spare_size) {
  321. dev_err(nfc->dev, "invalid spare size %d\n", spare);
  322. return -EINVAL;
  323. }
  324. fmt |= i << nfc->caps->pageformat_spare_shift;
  325. fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
  326. fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
  327. nfi_writel(nfc, fmt, NFI_PAGEFMT);
  328. nfc->ecc_cfg.strength = chip->ecc.strength;
  329. nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
  330. return 0;
  331. }
  332. static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
  333. {
  334. struct nand_chip *nand = mtd_to_nand(mtd);
  335. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  336. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
  337. if (chip < 0)
  338. return;
  339. mtk_nfc_hw_runtime_config(mtd);
  340. nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
  341. }
  342. static int mtk_nfc_dev_ready(struct mtd_info *mtd)
  343. {
  344. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  345. if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
  346. return 0;
  347. return 1;
  348. }
  349. static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
  350. {
  351. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  352. if (ctrl & NAND_ALE) {
  353. mtk_nfc_send_address(nfc, dat);
  354. } else if (ctrl & NAND_CLE) {
  355. mtk_nfc_hw_reset(nfc);
  356. nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
  357. mtk_nfc_send_command(nfc, dat);
  358. }
  359. }
  360. static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
  361. {
  362. int rc;
  363. u8 val;
  364. rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
  365. val & PIO_DI_RDY, 10, MTK_TIMEOUT);
  366. if (rc < 0)
  367. dev_err(nfc->dev, "data not ready\n");
  368. }
  369. static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
  370. {
  371. struct nand_chip *chip = mtd_to_nand(mtd);
  372. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  373. u32 reg;
  374. /* after each byte read, the NFI_STA reg is reset by the hardware */
  375. reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
  376. if (reg != NFI_FSM_CUSTDATA) {
  377. reg = nfi_readw(nfc, NFI_CNFG);
  378. reg |= CNFG_BYTE_RW | CNFG_READ_EN;
  379. nfi_writew(nfc, reg, NFI_CNFG);
  380. /*
  381. * set to max sector to allow the HW to continue reading over
  382. * unaligned accesses
  383. */
  384. reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
  385. nfi_writel(nfc, reg, NFI_CON);
  386. /* trigger to fetch data */
  387. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  388. }
  389. mtk_nfc_wait_ioready(nfc);
  390. return nfi_readb(nfc, NFI_DATAR);
  391. }
  392. static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  393. {
  394. int i;
  395. for (i = 0; i < len; i++)
  396. buf[i] = mtk_nfc_read_byte(mtd);
  397. }
  398. static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
  399. {
  400. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  401. u32 reg;
  402. reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
  403. if (reg != NFI_FSM_CUSTDATA) {
  404. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
  405. nfi_writew(nfc, reg, NFI_CNFG);
  406. reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
  407. nfi_writel(nfc, reg, NFI_CON);
  408. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  409. }
  410. mtk_nfc_wait_ioready(nfc);
  411. nfi_writeb(nfc, byte, NFI_DATAW);
  412. }
  413. static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  414. {
  415. int i;
  416. for (i = 0; i < len; i++)
  417. mtk_nfc_write_byte(mtd, buf[i]);
  418. }
  419. static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
  420. const struct nand_data_interface *conf)
  421. {
  422. struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
  423. const struct nand_sdr_timings *timings;
  424. u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0;
  425. u32 thold;
  426. timings = nand_get_sdr_timings(conf);
  427. if (IS_ERR(timings))
  428. return -ENOTSUPP;
  429. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  430. return 0;
  431. rate = clk_get_rate(nfc->clk.nfi_clk);
  432. /* There is a frequency divider in some IPs */
  433. rate /= nfc->caps->nfi_clk_div;
  434. /* turn clock rate into KHZ */
  435. rate /= 1000;
  436. tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
  437. tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
  438. tpoecs &= 0xf;
  439. tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
  440. tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
  441. tprecs &= 0x3f;
  442. /* sdr interface has no tCR which means CE# low to RE# low */
  443. tc2r = 0;
  444. tw2r = timings->tWHR_min / 1000;
  445. tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
  446. tw2r = DIV_ROUND_UP(tw2r - 1, 2);
  447. tw2r &= 0xf;
  448. twh = max(timings->tREH_min, timings->tWH_min) / 1000;
  449. twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
  450. twh &= 0xf;
  451. /* Calculate real WE#/RE# hold time in nanosecond */
  452. thold = (twh + 1) * 1000000 / rate;
  453. /* nanosecond to picosecond */
  454. thold *= 1000;
  455. /*
  456. * WE# low level time should be expaned to meet WE# pulse time
  457. * and WE# cycle time at the same time.
  458. */
  459. if (thold < timings->tWC_min)
  460. twst = timings->tWC_min - thold;
  461. twst = max(timings->tWP_min, twst) / 1000;
  462. twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
  463. twst &= 0xf;
  464. /*
  465. * RE# low level time should be expaned to meet RE# pulse time,
  466. * RE# access time and RE# cycle time at the same time.
  467. */
  468. if (thold < timings->tRC_min)
  469. trlt = timings->tRC_min - thold;
  470. trlt = max3(trlt, timings->tREA_max, timings->tRP_min) / 1000;
  471. trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
  472. trlt &= 0xf;
  473. /*
  474. * ACCON: access timing control register
  475. * -------------------------------------
  476. * 31:28: tpoecs, minimum required time for CS post pulling down after
  477. * accessing the device
  478. * 27:22: tprecs, minimum required time for CS pre pulling down before
  479. * accessing the device
  480. * 21:16: tc2r, minimum required time from NCEB low to NREB low
  481. * 15:12: tw2r, minimum required time from NWEB high to NREB low.
  482. * 11:08: twh, write enable hold time
  483. * 07:04: twst, write wait states
  484. * 03:00: trlt, read wait states
  485. */
  486. trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
  487. nfi_writel(nfc, trlt, NFI_ACCCON);
  488. return 0;
  489. }
  490. static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
  491. {
  492. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  493. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  494. int size = chip->ecc.size + mtk_nand->fdm.reg_size;
  495. nfc->ecc_cfg.mode = ECC_DMA_MODE;
  496. nfc->ecc_cfg.op = ECC_ENCODE;
  497. return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
  498. }
  499. static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
  500. {
  501. /* nop */
  502. }
  503. static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
  504. {
  505. struct nand_chip *chip = mtd_to_nand(mtd);
  506. struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
  507. u32 bad_pos = nand->bad_mark.pos;
  508. if (raw)
  509. bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
  510. else
  511. bad_pos += nand->bad_mark.sec * chip->ecc.size;
  512. swap(chip->oob_poi[0], buf[bad_pos]);
  513. }
  514. static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
  515. u32 len, const u8 *buf)
  516. {
  517. struct nand_chip *chip = mtd_to_nand(mtd);
  518. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  519. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  520. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  521. u32 start, end;
  522. int i, ret;
  523. start = offset / chip->ecc.size;
  524. end = DIV_ROUND_UP(offset + len, chip->ecc.size);
  525. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  526. for (i = 0; i < chip->ecc.steps; i++) {
  527. memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
  528. chip->ecc.size);
  529. if (start > i || i >= end)
  530. continue;
  531. if (i == mtk_nand->bad_mark.sec)
  532. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  533. memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
  534. /* program the CRC back to the OOB */
  535. ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
  536. if (ret < 0)
  537. return ret;
  538. }
  539. return 0;
  540. }
  541. static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
  542. {
  543. struct nand_chip *chip = mtd_to_nand(mtd);
  544. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  545. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  546. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  547. u32 i;
  548. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  549. for (i = 0; i < chip->ecc.steps; i++) {
  550. if (buf)
  551. memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
  552. chip->ecc.size);
  553. if (i == mtk_nand->bad_mark.sec)
  554. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  555. memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
  556. }
  557. }
  558. static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
  559. u32 sectors)
  560. {
  561. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  562. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  563. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  564. u32 vall, valm;
  565. u8 *oobptr;
  566. int i, j;
  567. for (i = 0; i < sectors; i++) {
  568. oobptr = oob_ptr(chip, start + i);
  569. vall = nfi_readl(nfc, NFI_FDML(i));
  570. valm = nfi_readl(nfc, NFI_FDMM(i));
  571. for (j = 0; j < fdm->reg_size; j++)
  572. oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
  573. }
  574. }
  575. static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
  576. {
  577. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  578. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  579. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  580. u32 vall, valm;
  581. u8 *oobptr;
  582. int i, j;
  583. for (i = 0; i < chip->ecc.steps; i++) {
  584. oobptr = oob_ptr(chip, i);
  585. vall = 0;
  586. valm = 0;
  587. for (j = 0; j < 8; j++) {
  588. if (j < 4)
  589. vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
  590. << (j * 8);
  591. else
  592. valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
  593. << ((j - 4) * 8);
  594. }
  595. nfi_writel(nfc, vall, NFI_FDML(i));
  596. nfi_writel(nfc, valm, NFI_FDMM(i));
  597. }
  598. }
  599. static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  600. const u8 *buf, int page, int len)
  601. {
  602. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  603. struct device *dev = nfc->dev;
  604. dma_addr_t addr;
  605. u32 reg;
  606. int ret;
  607. addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
  608. ret = dma_mapping_error(nfc->dev, addr);
  609. if (ret) {
  610. dev_err(nfc->dev, "dma mapping error\n");
  611. return -EINVAL;
  612. }
  613. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
  614. nfi_writew(nfc, reg, NFI_CNFG);
  615. nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
  616. nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
  617. nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
  618. init_completion(&nfc->done);
  619. reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
  620. nfi_writel(nfc, reg, NFI_CON);
  621. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  622. ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
  623. if (!ret) {
  624. dev_err(dev, "program ahb done timeout\n");
  625. nfi_writew(nfc, 0, NFI_INTR_EN);
  626. ret = -ETIMEDOUT;
  627. goto timeout;
  628. }
  629. ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
  630. ADDRCNTR_SEC(reg) >= chip->ecc.steps,
  631. 10, MTK_TIMEOUT);
  632. if (ret)
  633. dev_err(dev, "hwecc write timeout\n");
  634. timeout:
  635. dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
  636. nfi_writel(nfc, 0, NFI_CON);
  637. return ret;
  638. }
  639. static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  640. const u8 *buf, int page, int raw)
  641. {
  642. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  643. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  644. size_t len;
  645. const u8 *bufpoi;
  646. u32 reg;
  647. int ret;
  648. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  649. if (!raw) {
  650. /* OOB => FDM: from register, ECC: from HW */
  651. reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
  652. nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
  653. nfc->ecc_cfg.op = ECC_ENCODE;
  654. nfc->ecc_cfg.mode = ECC_NFI_MODE;
  655. ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
  656. if (ret) {
  657. /* clear NFI config */
  658. reg = nfi_readw(nfc, NFI_CNFG);
  659. reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
  660. nfi_writew(nfc, reg, NFI_CNFG);
  661. return ret;
  662. }
  663. memcpy(nfc->buffer, buf, mtd->writesize);
  664. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
  665. bufpoi = nfc->buffer;
  666. /* write OOB into the FDM registers (OOB area in MTK NAND) */
  667. mtk_nfc_write_fdm(chip);
  668. } else {
  669. bufpoi = buf;
  670. }
  671. len = mtd->writesize + (raw ? mtd->oobsize : 0);
  672. ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
  673. if (!raw)
  674. mtk_ecc_disable(nfc->ecc);
  675. if (ret)
  676. return ret;
  677. return nand_prog_page_end_op(chip);
  678. }
  679. static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
  680. struct nand_chip *chip, const u8 *buf,
  681. int oob_on, int page)
  682. {
  683. return mtk_nfc_write_page(mtd, chip, buf, page, 0);
  684. }
  685. static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
  686. const u8 *buf, int oob_on, int pg)
  687. {
  688. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  689. mtk_nfc_format_page(mtd, buf);
  690. return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
  691. }
  692. static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
  693. struct nand_chip *chip, u32 offset,
  694. u32 data_len, const u8 *buf,
  695. int oob_on, int page)
  696. {
  697. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  698. int ret;
  699. ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
  700. if (ret < 0)
  701. return ret;
  702. /* use the data in the private buffer (now with FDM and CRC) */
  703. return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
  704. }
  705. static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
  706. int page)
  707. {
  708. return mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
  709. }
  710. static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start,
  711. u32 sectors)
  712. {
  713. struct nand_chip *chip = mtd_to_nand(mtd);
  714. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  715. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  716. struct mtk_ecc_stats stats;
  717. u32 reg_size = mtk_nand->fdm.reg_size;
  718. int rc, i;
  719. rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
  720. if (rc) {
  721. memset(buf, 0xff, sectors * chip->ecc.size);
  722. for (i = 0; i < sectors; i++)
  723. memset(oob_ptr(chip, start + i), 0xff, reg_size);
  724. return 0;
  725. }
  726. mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
  727. mtd->ecc_stats.corrected += stats.corrected;
  728. mtd->ecc_stats.failed += stats.failed;
  729. return stats.bitflips;
  730. }
  731. static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
  732. u32 data_offs, u32 readlen,
  733. u8 *bufpoi, int page, int raw)
  734. {
  735. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  736. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  737. u32 spare = mtk_nand->spare_per_sector;
  738. u32 column, sectors, start, end, reg;
  739. dma_addr_t addr;
  740. int bitflips = 0;
  741. size_t len;
  742. u8 *buf;
  743. int rc;
  744. start = data_offs / chip->ecc.size;
  745. end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
  746. sectors = end - start;
  747. column = start * (chip->ecc.size + spare);
  748. len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
  749. buf = bufpoi + start * chip->ecc.size;
  750. nand_read_page_op(chip, page, column, NULL, 0);
  751. addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
  752. rc = dma_mapping_error(nfc->dev, addr);
  753. if (rc) {
  754. dev_err(nfc->dev, "dma mapping error\n");
  755. return -EINVAL;
  756. }
  757. reg = nfi_readw(nfc, NFI_CNFG);
  758. reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
  759. if (!raw) {
  760. reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
  761. nfi_writew(nfc, reg, NFI_CNFG);
  762. nfc->ecc_cfg.mode = ECC_NFI_MODE;
  763. nfc->ecc_cfg.sectors = sectors;
  764. nfc->ecc_cfg.op = ECC_DECODE;
  765. rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
  766. if (rc) {
  767. dev_err(nfc->dev, "ecc enable\n");
  768. /* clear NFI_CNFG */
  769. reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
  770. CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
  771. nfi_writew(nfc, reg, NFI_CNFG);
  772. dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
  773. return rc;
  774. }
  775. } else {
  776. nfi_writew(nfc, reg, NFI_CNFG);
  777. }
  778. nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
  779. nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
  780. nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
  781. init_completion(&nfc->done);
  782. reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
  783. nfi_writel(nfc, reg, NFI_CON);
  784. nfi_writew(nfc, STAR_EN, NFI_STRDATA);
  785. rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
  786. if (!rc)
  787. dev_warn(nfc->dev, "read ahb/dma done timeout\n");
  788. rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
  789. ADDRCNTR_SEC(reg) >= sectors, 10,
  790. MTK_TIMEOUT);
  791. if (rc < 0) {
  792. dev_err(nfc->dev, "subpage done timeout\n");
  793. bitflips = -EIO;
  794. } else if (!raw) {
  795. rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
  796. bitflips = rc < 0 ? -ETIMEDOUT :
  797. mtk_nfc_update_ecc_stats(mtd, buf, start, sectors);
  798. mtk_nfc_read_fdm(chip, start, sectors);
  799. }
  800. dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
  801. if (raw)
  802. goto done;
  803. mtk_ecc_disable(nfc->ecc);
  804. if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
  805. mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
  806. done:
  807. nfi_writel(nfc, 0, NFI_CON);
  808. return bitflips;
  809. }
  810. static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
  811. struct nand_chip *chip, u32 off,
  812. u32 len, u8 *p, int pg)
  813. {
  814. return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
  815. }
  816. static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
  817. struct nand_chip *chip, u8 *p,
  818. int oob_on, int pg)
  819. {
  820. return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
  821. }
  822. static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
  823. u8 *buf, int oob_on, int page)
  824. {
  825. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  826. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  827. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  828. int i, ret;
  829. memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
  830. ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
  831. page, 1);
  832. if (ret < 0)
  833. return ret;
  834. for (i = 0; i < chip->ecc.steps; i++) {
  835. memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
  836. if (i == mtk_nand->bad_mark.sec)
  837. mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
  838. if (buf)
  839. memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
  840. chip->ecc.size);
  841. }
  842. return ret;
  843. }
  844. static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
  845. int page)
  846. {
  847. return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
  848. }
  849. static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
  850. {
  851. /*
  852. * CNRNB: nand ready/busy register
  853. * -------------------------------
  854. * 7:4: timeout register for polling the NAND busy/ready signal
  855. * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
  856. */
  857. nfi_writew(nfc, 0xf1, NFI_CNRNB);
  858. nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
  859. mtk_nfc_hw_reset(nfc);
  860. nfi_readl(nfc, NFI_INTR_STA);
  861. nfi_writel(nfc, 0, NFI_INTR_EN);
  862. }
  863. static irqreturn_t mtk_nfc_irq(int irq, void *id)
  864. {
  865. struct mtk_nfc *nfc = id;
  866. u16 sta, ien;
  867. sta = nfi_readw(nfc, NFI_INTR_STA);
  868. ien = nfi_readw(nfc, NFI_INTR_EN);
  869. if (!(sta & ien))
  870. return IRQ_NONE;
  871. nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
  872. complete(&nfc->done);
  873. return IRQ_HANDLED;
  874. }
  875. static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
  876. {
  877. int ret;
  878. ret = clk_prepare_enable(clk->nfi_clk);
  879. if (ret) {
  880. dev_err(dev, "failed to enable nfi clk\n");
  881. return ret;
  882. }
  883. ret = clk_prepare_enable(clk->pad_clk);
  884. if (ret) {
  885. dev_err(dev, "failed to enable pad clk\n");
  886. clk_disable_unprepare(clk->nfi_clk);
  887. return ret;
  888. }
  889. return 0;
  890. }
  891. static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
  892. {
  893. clk_disable_unprepare(clk->nfi_clk);
  894. clk_disable_unprepare(clk->pad_clk);
  895. }
  896. static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
  897. struct mtd_oob_region *oob_region)
  898. {
  899. struct nand_chip *chip = mtd_to_nand(mtd);
  900. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  901. struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
  902. u32 eccsteps;
  903. eccsteps = mtd->writesize / chip->ecc.size;
  904. if (section >= eccsteps)
  905. return -ERANGE;
  906. oob_region->length = fdm->reg_size - fdm->ecc_size;
  907. oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
  908. return 0;
  909. }
  910. static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
  911. struct mtd_oob_region *oob_region)
  912. {
  913. struct nand_chip *chip = mtd_to_nand(mtd);
  914. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  915. u32 eccsteps;
  916. if (section)
  917. return -ERANGE;
  918. eccsteps = mtd->writesize / chip->ecc.size;
  919. oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
  920. oob_region->length = mtd->oobsize - oob_region->offset;
  921. return 0;
  922. }
  923. static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
  924. .free = mtk_nfc_ooblayout_free,
  925. .ecc = mtk_nfc_ooblayout_ecc,
  926. };
  927. static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
  928. {
  929. struct nand_chip *nand = mtd_to_nand(mtd);
  930. struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
  931. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  932. u32 ecc_bytes;
  933. ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
  934. mtk_ecc_get_parity_bits(nfc->ecc), 8);
  935. fdm->reg_size = chip->spare_per_sector - ecc_bytes;
  936. if (fdm->reg_size > NFI_FDM_MAX_SIZE)
  937. fdm->reg_size = NFI_FDM_MAX_SIZE;
  938. /* bad block mark storage */
  939. fdm->ecc_size = 1;
  940. }
  941. static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
  942. struct mtd_info *mtd)
  943. {
  944. struct nand_chip *nand = mtd_to_nand(mtd);
  945. if (mtd->writesize == 512) {
  946. bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
  947. } else {
  948. bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
  949. bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
  950. bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
  951. }
  952. }
  953. static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
  954. {
  955. struct nand_chip *nand = mtd_to_nand(mtd);
  956. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  957. const u8 *spare = nfc->caps->spare_size;
  958. u32 eccsteps, i, closest_spare = 0;
  959. eccsteps = mtd->writesize / nand->ecc.size;
  960. *sps = mtd->oobsize / eccsteps;
  961. if (nand->ecc.size == 1024)
  962. *sps >>= 1;
  963. if (*sps < MTK_NFC_MIN_SPARE)
  964. return -EINVAL;
  965. for (i = 0; i < nfc->caps->num_spare_size; i++) {
  966. if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
  967. closest_spare = i;
  968. if (*sps == spare[i])
  969. break;
  970. }
  971. }
  972. *sps = spare[closest_spare];
  973. if (nand->ecc.size == 1024)
  974. *sps <<= 1;
  975. return 0;
  976. }
  977. static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
  978. {
  979. struct nand_chip *nand = mtd_to_nand(mtd);
  980. struct mtk_nfc *nfc = nand_get_controller_data(nand);
  981. u32 spare;
  982. int free, ret;
  983. /* support only ecc hw mode */
  984. if (nand->ecc.mode != NAND_ECC_HW) {
  985. dev_err(dev, "ecc.mode not supported\n");
  986. return -EINVAL;
  987. }
  988. /* if optional dt settings not present */
  989. if (!nand->ecc.size || !nand->ecc.strength) {
  990. /* use datasheet requirements */
  991. nand->ecc.strength = nand->ecc_strength_ds;
  992. nand->ecc.size = nand->ecc_step_ds;
  993. /*
  994. * align eccstrength and eccsize
  995. * this controller only supports 512 and 1024 sizes
  996. */
  997. if (nand->ecc.size < 1024) {
  998. if (mtd->writesize > 512 &&
  999. nfc->caps->max_sector_size > 512) {
  1000. nand->ecc.size = 1024;
  1001. nand->ecc.strength <<= 1;
  1002. } else {
  1003. nand->ecc.size = 512;
  1004. }
  1005. } else {
  1006. nand->ecc.size = 1024;
  1007. }
  1008. ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
  1009. if (ret)
  1010. return ret;
  1011. /* calculate oob bytes except ecc parity data */
  1012. free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
  1013. + 7) >> 3;
  1014. free = spare - free;
  1015. /*
  1016. * enhance ecc strength if oob left is bigger than max FDM size
  1017. * or reduce ecc strength if oob size is not enough for ecc
  1018. * parity data.
  1019. */
  1020. if (free > NFI_FDM_MAX_SIZE) {
  1021. spare -= NFI_FDM_MAX_SIZE;
  1022. nand->ecc.strength = (spare << 3) /
  1023. mtk_ecc_get_parity_bits(nfc->ecc);
  1024. } else if (free < 0) {
  1025. spare -= NFI_FDM_MIN_SIZE;
  1026. nand->ecc.strength = (spare << 3) /
  1027. mtk_ecc_get_parity_bits(nfc->ecc);
  1028. }
  1029. }
  1030. mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
  1031. dev_info(dev, "eccsize %d eccstrength %d\n",
  1032. nand->ecc.size, nand->ecc.strength);
  1033. return 0;
  1034. }
  1035. static int mtk_nfc_attach_chip(struct nand_chip *chip)
  1036. {
  1037. struct mtd_info *mtd = nand_to_mtd(chip);
  1038. struct device *dev = mtd->dev.parent;
  1039. struct mtk_nfc *nfc = nand_get_controller_data(chip);
  1040. struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
  1041. int len;
  1042. int ret;
  1043. if (chip->options & NAND_BUSWIDTH_16) {
  1044. dev_err(dev, "16bits buswidth not supported");
  1045. return -EINVAL;
  1046. }
  1047. /* store bbt magic in page, cause OOB is not protected */
  1048. if (chip->bbt_options & NAND_BBT_USE_FLASH)
  1049. chip->bbt_options |= NAND_BBT_NO_OOB;
  1050. ret = mtk_nfc_ecc_init(dev, mtd);
  1051. if (ret)
  1052. return ret;
  1053. ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
  1054. if (ret)
  1055. return ret;
  1056. mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
  1057. mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
  1058. len = mtd->writesize + mtd->oobsize;
  1059. nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
  1060. if (!nfc->buffer)
  1061. return -ENOMEM;
  1062. return 0;
  1063. }
  1064. static const struct nand_controller_ops mtk_nfc_controller_ops = {
  1065. .attach_chip = mtk_nfc_attach_chip,
  1066. };
  1067. static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
  1068. struct device_node *np)
  1069. {
  1070. struct mtk_nfc_nand_chip *chip;
  1071. struct nand_chip *nand;
  1072. struct mtd_info *mtd;
  1073. int nsels;
  1074. u32 tmp;
  1075. int ret;
  1076. int i;
  1077. if (!of_get_property(np, "reg", &nsels))
  1078. return -ENODEV;
  1079. nsels /= sizeof(u32);
  1080. if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
  1081. dev_err(dev, "invalid reg property size %d\n", nsels);
  1082. return -EINVAL;
  1083. }
  1084. chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
  1085. GFP_KERNEL);
  1086. if (!chip)
  1087. return -ENOMEM;
  1088. chip->nsels = nsels;
  1089. for (i = 0; i < nsels; i++) {
  1090. ret = of_property_read_u32_index(np, "reg", i, &tmp);
  1091. if (ret) {
  1092. dev_err(dev, "reg property failure : %d\n", ret);
  1093. return ret;
  1094. }
  1095. chip->sels[i] = tmp;
  1096. }
  1097. nand = &chip->nand;
  1098. nand->controller = &nfc->controller;
  1099. nand_set_flash_node(nand, np);
  1100. nand_set_controller_data(nand, nfc);
  1101. nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
  1102. nand->dev_ready = mtk_nfc_dev_ready;
  1103. nand->select_chip = mtk_nfc_select_chip;
  1104. nand->write_byte = mtk_nfc_write_byte;
  1105. nand->write_buf = mtk_nfc_write_buf;
  1106. nand->read_byte = mtk_nfc_read_byte;
  1107. nand->read_buf = mtk_nfc_read_buf;
  1108. nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
  1109. nand->setup_data_interface = mtk_nfc_setup_data_interface;
  1110. /* set default mode in case dt entry is missing */
  1111. nand->ecc.mode = NAND_ECC_HW;
  1112. nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
  1113. nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
  1114. nand->ecc.write_page = mtk_nfc_write_page_hwecc;
  1115. nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
  1116. nand->ecc.write_oob = mtk_nfc_write_oob_std;
  1117. nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
  1118. nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
  1119. nand->ecc.read_page = mtk_nfc_read_page_hwecc;
  1120. nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
  1121. nand->ecc.read_oob = mtk_nfc_read_oob_std;
  1122. mtd = nand_to_mtd(nand);
  1123. mtd->owner = THIS_MODULE;
  1124. mtd->dev.parent = dev;
  1125. mtd->name = MTK_NAME;
  1126. mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
  1127. mtk_nfc_hw_init(nfc);
  1128. ret = nand_scan(nand, nsels);
  1129. if (ret)
  1130. return ret;
  1131. ret = mtd_device_register(mtd, NULL, 0);
  1132. if (ret) {
  1133. dev_err(dev, "mtd parse partition error\n");
  1134. nand_cleanup(nand);
  1135. return ret;
  1136. }
  1137. list_add_tail(&chip->node, &nfc->chips);
  1138. return 0;
  1139. }
  1140. static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
  1141. {
  1142. struct device_node *np = dev->of_node;
  1143. struct device_node *nand_np;
  1144. int ret;
  1145. for_each_child_of_node(np, nand_np) {
  1146. ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
  1147. if (ret) {
  1148. of_node_put(nand_np);
  1149. return ret;
  1150. }
  1151. }
  1152. return 0;
  1153. }
  1154. static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
  1155. .spare_size = spare_size_mt2701,
  1156. .num_spare_size = 16,
  1157. .pageformat_spare_shift = 4,
  1158. .nfi_clk_div = 1,
  1159. .max_sector = 16,
  1160. .max_sector_size = 1024,
  1161. };
  1162. static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
  1163. .spare_size = spare_size_mt2712,
  1164. .num_spare_size = 19,
  1165. .pageformat_spare_shift = 16,
  1166. .nfi_clk_div = 2,
  1167. .max_sector = 16,
  1168. .max_sector_size = 1024,
  1169. };
  1170. static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
  1171. .spare_size = spare_size_mt7622,
  1172. .num_spare_size = 4,
  1173. .pageformat_spare_shift = 4,
  1174. .nfi_clk_div = 1,
  1175. .max_sector = 8,
  1176. .max_sector_size = 512,
  1177. };
  1178. static const struct of_device_id mtk_nfc_id_table[] = {
  1179. {
  1180. .compatible = "mediatek,mt2701-nfc",
  1181. .data = &mtk_nfc_caps_mt2701,
  1182. }, {
  1183. .compatible = "mediatek,mt2712-nfc",
  1184. .data = &mtk_nfc_caps_mt2712,
  1185. }, {
  1186. .compatible = "mediatek,mt7622-nfc",
  1187. .data = &mtk_nfc_caps_mt7622,
  1188. },
  1189. {}
  1190. };
  1191. MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
  1192. static int mtk_nfc_probe(struct platform_device *pdev)
  1193. {
  1194. struct device *dev = &pdev->dev;
  1195. struct device_node *np = dev->of_node;
  1196. struct mtk_nfc *nfc;
  1197. struct resource *res;
  1198. int ret, irq;
  1199. nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
  1200. if (!nfc)
  1201. return -ENOMEM;
  1202. spin_lock_init(&nfc->controller.lock);
  1203. init_waitqueue_head(&nfc->controller.wq);
  1204. INIT_LIST_HEAD(&nfc->chips);
  1205. nfc->controller.ops = &mtk_nfc_controller_ops;
  1206. /* probe defer if not ready */
  1207. nfc->ecc = of_mtk_ecc_get(np);
  1208. if (IS_ERR(nfc->ecc))
  1209. return PTR_ERR(nfc->ecc);
  1210. else if (!nfc->ecc)
  1211. return -ENODEV;
  1212. nfc->caps = of_device_get_match_data(dev);
  1213. nfc->dev = dev;
  1214. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1215. nfc->regs = devm_ioremap_resource(dev, res);
  1216. if (IS_ERR(nfc->regs)) {
  1217. ret = PTR_ERR(nfc->regs);
  1218. goto release_ecc;
  1219. }
  1220. nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
  1221. if (IS_ERR(nfc->clk.nfi_clk)) {
  1222. dev_err(dev, "no clk\n");
  1223. ret = PTR_ERR(nfc->clk.nfi_clk);
  1224. goto release_ecc;
  1225. }
  1226. nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
  1227. if (IS_ERR(nfc->clk.pad_clk)) {
  1228. dev_err(dev, "no pad clk\n");
  1229. ret = PTR_ERR(nfc->clk.pad_clk);
  1230. goto release_ecc;
  1231. }
  1232. ret = mtk_nfc_enable_clk(dev, &nfc->clk);
  1233. if (ret)
  1234. goto release_ecc;
  1235. irq = platform_get_irq(pdev, 0);
  1236. if (irq < 0) {
  1237. dev_err(dev, "no nfi irq resource\n");
  1238. ret = -EINVAL;
  1239. goto clk_disable;
  1240. }
  1241. ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
  1242. if (ret) {
  1243. dev_err(dev, "failed to request nfi irq\n");
  1244. goto clk_disable;
  1245. }
  1246. ret = dma_set_mask(dev, DMA_BIT_MASK(32));
  1247. if (ret) {
  1248. dev_err(dev, "failed to set dma mask\n");
  1249. goto clk_disable;
  1250. }
  1251. platform_set_drvdata(pdev, nfc);
  1252. ret = mtk_nfc_nand_chips_init(dev, nfc);
  1253. if (ret) {
  1254. dev_err(dev, "failed to init nand chips\n");
  1255. goto clk_disable;
  1256. }
  1257. return 0;
  1258. clk_disable:
  1259. mtk_nfc_disable_clk(&nfc->clk);
  1260. release_ecc:
  1261. mtk_ecc_release(nfc->ecc);
  1262. return ret;
  1263. }
  1264. static int mtk_nfc_remove(struct platform_device *pdev)
  1265. {
  1266. struct mtk_nfc *nfc = platform_get_drvdata(pdev);
  1267. struct mtk_nfc_nand_chip *chip;
  1268. while (!list_empty(&nfc->chips)) {
  1269. chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
  1270. node);
  1271. nand_release(&chip->nand);
  1272. list_del(&chip->node);
  1273. }
  1274. mtk_ecc_release(nfc->ecc);
  1275. mtk_nfc_disable_clk(&nfc->clk);
  1276. return 0;
  1277. }
  1278. #ifdef CONFIG_PM_SLEEP
  1279. static int mtk_nfc_suspend(struct device *dev)
  1280. {
  1281. struct mtk_nfc *nfc = dev_get_drvdata(dev);
  1282. mtk_nfc_disable_clk(&nfc->clk);
  1283. return 0;
  1284. }
  1285. static int mtk_nfc_resume(struct device *dev)
  1286. {
  1287. struct mtk_nfc *nfc = dev_get_drvdata(dev);
  1288. struct mtk_nfc_nand_chip *chip;
  1289. struct nand_chip *nand;
  1290. int ret;
  1291. u32 i;
  1292. udelay(200);
  1293. ret = mtk_nfc_enable_clk(dev, &nfc->clk);
  1294. if (ret)
  1295. return ret;
  1296. /* reset NAND chip if VCC was powered off */
  1297. list_for_each_entry(chip, &nfc->chips, node) {
  1298. nand = &chip->nand;
  1299. for (i = 0; i < chip->nsels; i++)
  1300. nand_reset(nand, i);
  1301. }
  1302. return 0;
  1303. }
  1304. static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
  1305. #endif
  1306. static struct platform_driver mtk_nfc_driver = {
  1307. .probe = mtk_nfc_probe,
  1308. .remove = mtk_nfc_remove,
  1309. .driver = {
  1310. .name = MTK_NAME,
  1311. .of_match_table = mtk_nfc_id_table,
  1312. #ifdef CONFIG_PM_SLEEP
  1313. .pm = &mtk_nfc_pm_ops,
  1314. #endif
  1315. },
  1316. };
  1317. module_platform_driver(mtk_nfc_driver);
  1318. MODULE_LICENSE("GPL");
  1319. MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
  1320. MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");