dram_sun6i.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Sun6i platform dram controller init.
  4. *
  5. * (C) Copyright 2007-2012
  6. * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
  7. * Berg Xing <bergxing@allwinnertech.com>
  8. * Tom Cubie <tangliang@allwinnertech.com>
  9. *
  10. * (C) Copyright 2014 Hans de Goede <hdegoede@redhat.com>
  11. */
  12. #include <common.h>
  13. #include <errno.h>
  14. #include <asm/io.h>
  15. #include <asm/arch/clock.h>
  16. #include <asm/arch/dram.h>
  17. #include <asm/arch/prcm.h>
  18. #define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)
  19. struct dram_sun6i_para {
  20. u8 bus_width;
  21. u8 chan;
  22. u8 rank;
  23. u8 rows;
  24. u16 page_size;
  25. };
  26. static void mctl_sys_init(void)
  27. {
  28. struct sunxi_ccm_reg * const ccm =
  29. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  30. const int dram_clk_div = 2;
  31. clock_set_pll5(DRAM_CLK * dram_clk_div, false);
  32. clrsetbits_le32(&ccm->dram_clk_cfg, CCM_DRAMCLK_CFG_DIV0_MASK,
  33. CCM_DRAMCLK_CFG_DIV0(dram_clk_div) | CCM_DRAMCLK_CFG_RST |
  34. CCM_DRAMCLK_CFG_UPD);
  35. mctl_await_completion(&ccm->dram_clk_cfg, CCM_DRAMCLK_CFG_UPD, 0);
  36. writel(MDFS_CLK_DEFAULT, &ccm->mdfs_clk_cfg);
  37. /* deassert mctl reset */
  38. setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
  39. /* enable mctl clock */
  40. setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
  41. }
  42. static void mctl_dll_init(int ch_index, struct dram_sun6i_para *para)
  43. {
  44. struct sunxi_mctl_phy_reg *mctl_phy;
  45. if (ch_index == 0)
  46. mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
  47. else
  48. mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
  49. /* disable + reset dlls */
  50. writel(MCTL_DLLCR_DISABLE, &mctl_phy->acdllcr);
  51. writel(MCTL_DLLCR_DISABLE, &mctl_phy->dx0dllcr);
  52. writel(MCTL_DLLCR_DISABLE, &mctl_phy->dx1dllcr);
  53. if (para->bus_width == 32) {
  54. writel(MCTL_DLLCR_DISABLE, &mctl_phy->dx2dllcr);
  55. writel(MCTL_DLLCR_DISABLE, &mctl_phy->dx3dllcr);
  56. }
  57. udelay(2);
  58. /* enable + reset dlls */
  59. writel(0, &mctl_phy->acdllcr);
  60. writel(0, &mctl_phy->dx0dllcr);
  61. writel(0, &mctl_phy->dx1dllcr);
  62. if (para->bus_width == 32) {
  63. writel(0, &mctl_phy->dx2dllcr);
  64. writel(0, &mctl_phy->dx3dllcr);
  65. }
  66. udelay(22);
  67. /* enable and release reset of dlls */
  68. writel(MCTL_DLLCR_NRESET, &mctl_phy->acdllcr);
  69. writel(MCTL_DLLCR_NRESET, &mctl_phy->dx0dllcr);
  70. writel(MCTL_DLLCR_NRESET, &mctl_phy->dx1dllcr);
  71. if (para->bus_width == 32) {
  72. writel(MCTL_DLLCR_NRESET, &mctl_phy->dx2dllcr);
  73. writel(MCTL_DLLCR_NRESET, &mctl_phy->dx3dllcr);
  74. }
  75. udelay(22);
  76. }
  77. static bool mctl_rank_detect(u32 *gsr0, int rank)
  78. {
  79. const u32 done = MCTL_DX_GSR0_RANK0_TRAIN_DONE << rank;
  80. const u32 err = MCTL_DX_GSR0_RANK0_TRAIN_ERR << rank;
  81. mctl_await_completion(gsr0, done, done);
  82. mctl_await_completion(gsr0 + 0x10, done, done);
  83. return !(readl(gsr0) & err) && !(readl(gsr0 + 0x10) & err);
  84. }
  85. static void mctl_channel_init(int ch_index, struct dram_sun6i_para *para)
  86. {
  87. struct sunxi_mctl_com_reg * const mctl_com =
  88. (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
  89. struct sunxi_mctl_ctl_reg *mctl_ctl;
  90. struct sunxi_mctl_phy_reg *mctl_phy;
  91. if (ch_index == 0) {
  92. mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
  93. mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
  94. } else {
  95. mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
  96. mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
  97. }
  98. writel(MCTL_MCMD_NOP, &mctl_ctl->mcmd);
  99. mctl_await_completion(&mctl_ctl->mcmd, MCTL_MCMD_BUSY, 0);
  100. /* PHY initialization */
  101. writel(MCTL_PGCR, &mctl_phy->pgcr);
  102. writel(MCTL_MR0, &mctl_phy->mr0);
  103. writel(MCTL_MR1, &mctl_phy->mr1);
  104. writel(MCTL_MR2, &mctl_phy->mr2);
  105. writel(MCTL_MR3, &mctl_phy->mr3);
  106. writel((MCTL_TITMSRST << 18) | (MCTL_TDLLLOCK << 6) | MCTL_TDLLSRST,
  107. &mctl_phy->ptr0);
  108. writel((MCTL_TDINIT1 << 19) | MCTL_TDINIT0, &mctl_phy->ptr1);
  109. writel((MCTL_TDINIT3 << 17) | MCTL_TDINIT2, &mctl_phy->ptr2);
  110. writel((MCTL_TCCD << 31) | (MCTL_TRC << 25) | (MCTL_TRRD << 21) |
  111. (MCTL_TRAS << 16) | (MCTL_TRCD << 12) | (MCTL_TRP << 8) |
  112. (MCTL_TWTR << 5) | (MCTL_TRTP << 2) | (MCTL_TMRD << 0),
  113. &mctl_phy->dtpr0);
  114. writel((MCTL_TDQSCKMAX << 27) | (MCTL_TDQSCK << 24) |
  115. (MCTL_TRFC << 16) | (MCTL_TRTODT << 11) |
  116. ((MCTL_TMOD - 12) << 9) | (MCTL_TFAW << 3) | (0 << 2) |
  117. (MCTL_TAOND << 0), &mctl_phy->dtpr1);
  118. writel((MCTL_TDLLK << 19) | (MCTL_TCKE << 15) | (MCTL_TXPDLL << 10) |
  119. (MCTL_TEXSR << 0), &mctl_phy->dtpr2);
  120. writel(1, &mctl_ctl->dfitphyupdtype0);
  121. writel(MCTL_DCR_DDR3, &mctl_phy->dcr);
  122. writel(MCTL_DSGCR, &mctl_phy->dsgcr);
  123. writel(MCTL_DXCCR, &mctl_phy->dxccr);
  124. writel(MCTL_DX_GCR | MCTL_DX_GCR_EN, &mctl_phy->dx0gcr);
  125. writel(MCTL_DX_GCR | MCTL_DX_GCR_EN, &mctl_phy->dx1gcr);
  126. writel(MCTL_DX_GCR | MCTL_DX_GCR_EN, &mctl_phy->dx2gcr);
  127. writel(MCTL_DX_GCR | MCTL_DX_GCR_EN, &mctl_phy->dx3gcr);
  128. mctl_await_completion(&mctl_phy->pgsr, 0x03, 0x03);
  129. writel(CONFIG_DRAM_ZQ, &mctl_phy->zq0cr1);
  130. setbits_le32(&mctl_phy->pir, MCTL_PIR_CLEAR_STATUS);
  131. writel(MCTL_PIR_STEP1, &mctl_phy->pir);
  132. udelay(10);
  133. mctl_await_completion(&mctl_phy->pgsr, 0x1f, 0x1f);
  134. /* rank detect */
  135. if (!mctl_rank_detect(&mctl_phy->dx0gsr0, 1)) {
  136. para->rank = 1;
  137. clrbits_le32(&mctl_phy->pgcr, MCTL_PGCR_RANK);
  138. }
  139. /*
  140. * channel detect, check channel 1 dx0 and dx1 have rank 0, if not
  141. * assume nothing is connected to channel 1.
  142. */
  143. if (ch_index == 1 && !mctl_rank_detect(&mctl_phy->dx0gsr0, 0)) {
  144. para->chan = 1;
  145. clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
  146. return;
  147. }
  148. /* bus width detect, if dx2 and dx3 don't have rank 0, assume 16 bit */
  149. if (!mctl_rank_detect(&mctl_phy->dx2gsr0, 0)) {
  150. para->bus_width = 16;
  151. para->page_size = 2048;
  152. setbits_le32(&mctl_phy->dx2dllcr, MCTL_DLLCR_DISABLE);
  153. setbits_le32(&mctl_phy->dx3dllcr, MCTL_DLLCR_DISABLE);
  154. clrbits_le32(&mctl_phy->dx2gcr, MCTL_DX_GCR_EN);
  155. clrbits_le32(&mctl_phy->dx3gcr, MCTL_DX_GCR_EN);
  156. }
  157. setbits_le32(&mctl_phy->pir, MCTL_PIR_CLEAR_STATUS);
  158. writel(MCTL_PIR_STEP2, &mctl_phy->pir);
  159. udelay(10);
  160. mctl_await_completion(&mctl_phy->pgsr, 0x11, 0x11);
  161. if (readl(&mctl_phy->pgsr) & MCTL_PGSR_TRAIN_ERR_MASK)
  162. panic("Training error initialising DRAM\n");
  163. /* Move to configure state */
  164. writel(MCTL_SCTL_CONFIG, &mctl_ctl->sctl);
  165. mctl_await_completion(&mctl_ctl->sstat, 0x07, 0x01);
  166. /* Set number of clks per micro-second */
  167. writel(DRAM_CLK / 1000000, &mctl_ctl->togcnt1u);
  168. /* Set number of clks per 100 nano-seconds */
  169. writel(DRAM_CLK / 10000000, &mctl_ctl->togcnt100n);
  170. /* Set memory timing registers */
  171. writel(MCTL_TREFI, &mctl_ctl->trefi);
  172. writel(MCTL_TMRD, &mctl_ctl->tmrd);
  173. writel(MCTL_TRFC, &mctl_ctl->trfc);
  174. writel((MCTL_TPREA << 16) | MCTL_TRP, &mctl_ctl->trp);
  175. writel(MCTL_TRTW, &mctl_ctl->trtw);
  176. writel(MCTL_TAL, &mctl_ctl->tal);
  177. writel(MCTL_TCL, &mctl_ctl->tcl);
  178. writel(MCTL_TCWL, &mctl_ctl->tcwl);
  179. writel(MCTL_TRAS, &mctl_ctl->tras);
  180. writel(MCTL_TRC, &mctl_ctl->trc);
  181. writel(MCTL_TRCD, &mctl_ctl->trcd);
  182. writel(MCTL_TRRD, &mctl_ctl->trrd);
  183. writel(MCTL_TRTP, &mctl_ctl->trtp);
  184. writel(MCTL_TWR, &mctl_ctl->twr);
  185. writel(MCTL_TWTR, &mctl_ctl->twtr);
  186. writel(MCTL_TEXSR, &mctl_ctl->texsr);
  187. writel(MCTL_TXP, &mctl_ctl->txp);
  188. writel(MCTL_TXPDLL, &mctl_ctl->txpdll);
  189. writel(MCTL_TZQCS, &mctl_ctl->tzqcs);
  190. writel(MCTL_TZQCSI, &mctl_ctl->tzqcsi);
  191. writel(MCTL_TDQS, &mctl_ctl->tdqs);
  192. writel(MCTL_TCKSRE, &mctl_ctl->tcksre);
  193. writel(MCTL_TCKSRX, &mctl_ctl->tcksrx);
  194. writel(MCTL_TCKE, &mctl_ctl->tcke);
  195. writel(MCTL_TMOD, &mctl_ctl->tmod);
  196. writel(MCTL_TRSTL, &mctl_ctl->trstl);
  197. writel(MCTL_TZQCL, &mctl_ctl->tzqcl);
  198. writel(MCTL_TMRR, &mctl_ctl->tmrr);
  199. writel(MCTL_TCKESR, &mctl_ctl->tckesr);
  200. writel(MCTL_TDPD, &mctl_ctl->tdpd);
  201. /* Unknown magic performed by boot0 */
  202. setbits_le32(&mctl_ctl->dfiodtcfg, 1 << 3);
  203. clrbits_le32(&mctl_ctl->dfiodtcfg1, 0x1f);
  204. /* Select 16/32-bits mode for MCTL */
  205. if (para->bus_width == 16)
  206. setbits_le32(&mctl_ctl->ppcfg, 1);
  207. /* Set DFI timing registers */
  208. writel(MCTL_TCWL, &mctl_ctl->dfitphywrl);
  209. writel(MCTL_TCL - 1, &mctl_ctl->dfitrdden);
  210. writel(MCTL_DFITPHYRDL, &mctl_ctl->dfitphyrdl);
  211. writel(MCTL_DFISTCFG0, &mctl_ctl->dfistcfg0);
  212. writel(MCTL_MCFG_DDR3, &mctl_ctl->mcfg);
  213. /* DFI update configuration register */
  214. writel(MCTL_DFIUPDCFG_UPD, &mctl_ctl->dfiupdcfg);
  215. /* Move to access state */
  216. writel(MCTL_SCTL_ACCESS, &mctl_ctl->sctl);
  217. mctl_await_completion(&mctl_ctl->sstat, 0x07, 0x03);
  218. }
  219. static void mctl_com_init(struct dram_sun6i_para *para)
  220. {
  221. struct sunxi_mctl_com_reg * const mctl_com =
  222. (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
  223. struct sunxi_mctl_phy_reg * const mctl_phy1 =
  224. (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
  225. struct sunxi_prcm_reg * const prcm =
  226. (struct sunxi_prcm_reg *)SUNXI_PRCM_BASE;
  227. writel(MCTL_CR_UNKNOWN | MCTL_CR_CHANNEL(para->chan) | MCTL_CR_DDR3 |
  228. ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16) |
  229. MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_ROW(para->rows) |
  230. MCTL_CR_BANK(1) | MCTL_CR_RANK(para->rank), &mctl_com->cr);
  231. /* Unknown magic performed by boot0 */
  232. setbits_le32(&mctl_com->dbgcr, (1 << 6));
  233. if (para->chan == 1) {
  234. /* Shutdown channel 1 */
  235. setbits_le32(&mctl_phy1->aciocr, MCTL_ACIOCR_DISABLE);
  236. setbits_le32(&mctl_phy1->dxccr, MCTL_DXCCR_DISABLE);
  237. clrbits_le32(&mctl_phy1->dsgcr, MCTL_DSGCR_ENABLE);
  238. /*
  239. * CH0 ?? this is what boot0 does. Leave as is until we can
  240. * confirm this.
  241. */
  242. setbits_le32(&prcm->vdd_sys_pwroff,
  243. PRCM_VDD_SYS_DRAM_CH0_PAD_HOLD_PWROFF);
  244. }
  245. }
  246. static void mctl_port_cfg(void)
  247. {
  248. struct sunxi_mctl_com_reg * const mctl_com =
  249. (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
  250. struct sunxi_ccm_reg * const ccm =
  251. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  252. /* enable DRAM AXI clock for CPU access */
  253. setbits_le32(&ccm->axi_gate, 1 << AXI_GATE_OFFSET_DRAM);
  254. /* Bunch of magic writes performed by boot0 */
  255. writel(0x00400302, &mctl_com->rmcr[0]);
  256. writel(0x01000307, &mctl_com->rmcr[1]);
  257. writel(0x00400302, &mctl_com->rmcr[2]);
  258. writel(0x01000307, &mctl_com->rmcr[3]);
  259. writel(0x01000307, &mctl_com->rmcr[4]);
  260. writel(0x01000303, &mctl_com->rmcr[6]);
  261. writel(0x01000303, &mctl_com->mmcr[0]);
  262. writel(0x00400310, &mctl_com->mmcr[1]);
  263. writel(0x01000307, &mctl_com->mmcr[2]);
  264. writel(0x01000303, &mctl_com->mmcr[3]);
  265. writel(0x01800303, &mctl_com->mmcr[4]);
  266. writel(0x01800303, &mctl_com->mmcr[5]);
  267. writel(0x01800303, &mctl_com->mmcr[6]);
  268. writel(0x01800303, &mctl_com->mmcr[7]);
  269. writel(0x01000303, &mctl_com->mmcr[8]);
  270. writel(0x00000002, &mctl_com->mmcr[15]);
  271. writel(0x00000310, &mctl_com->mbagcr[0]);
  272. writel(0x00400310, &mctl_com->mbagcr[1]);
  273. writel(0x00400310, &mctl_com->mbagcr[2]);
  274. writel(0x00000307, &mctl_com->mbagcr[3]);
  275. writel(0x00000317, &mctl_com->mbagcr[4]);
  276. writel(0x00000307, &mctl_com->mbagcr[5]);
  277. }
  278. unsigned long sunxi_dram_init(void)
  279. {
  280. struct sunxi_mctl_com_reg * const mctl_com =
  281. (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
  282. u32 offset;
  283. int bank, bus, columns;
  284. /* Set initial parameters, these get modified by the autodetect code */
  285. struct dram_sun6i_para para = {
  286. .bus_width = 32,
  287. .chan = 2,
  288. .rank = 2,
  289. .page_size = 4096,
  290. .rows = 16,
  291. };
  292. /* A31s only has one channel */
  293. if (sunxi_get_ss_bonding_id() == SUNXI_SS_BOND_ID_A31S)
  294. para.chan = 1;
  295. mctl_sys_init();
  296. mctl_dll_init(0, &para);
  297. setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
  298. if (para.chan == 2) {
  299. mctl_dll_init(1, &para);
  300. setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
  301. }
  302. setbits_le32(&mctl_com->ccr, MCTL_CCR_MASTER_CLK_EN);
  303. mctl_channel_init(0, &para);
  304. if (para.chan == 2)
  305. mctl_channel_init(1, &para);
  306. mctl_com_init(&para);
  307. mctl_port_cfg();
  308. /*
  309. * Change to 1 ch / sequence / 8192 byte pages / 16 rows /
  310. * 8 bit banks / 1 rank mode.
  311. */
  312. clrsetbits_le32(&mctl_com->cr,
  313. MCTL_CR_CHANNEL_MASK | MCTL_CR_PAGE_SIZE_MASK |
  314. MCTL_CR_ROW_MASK | MCTL_CR_BANK_MASK | MCTL_CR_RANK_MASK,
  315. MCTL_CR_CHANNEL(1) | MCTL_CR_SEQUENCE |
  316. MCTL_CR_PAGE_SIZE(8192) | MCTL_CR_ROW(16) |
  317. MCTL_CR_BANK(1) | MCTL_CR_RANK(1));
  318. /* Detect and set page size */
  319. for (columns = 7; columns < 20; columns++) {
  320. if (mctl_mem_matches(1 << columns))
  321. break;
  322. }
  323. bus = (para.bus_width == 32) ? 2 : 1;
  324. columns -= bus;
  325. para.page_size = (1 << columns) * (bus << 1);
  326. clrsetbits_le32(&mctl_com->cr, MCTL_CR_PAGE_SIZE_MASK,
  327. MCTL_CR_PAGE_SIZE(para.page_size));
  328. /* Detect and set rows */
  329. for (para.rows = 11; para.rows < 16; para.rows++) {
  330. offset = 1 << (para.rows + columns + bus);
  331. if (mctl_mem_matches(offset))
  332. break;
  333. }
  334. clrsetbits_le32(&mctl_com->cr, MCTL_CR_ROW_MASK,
  335. MCTL_CR_ROW(para.rows));
  336. /* Detect bank size */
  337. offset = 1 << (para.rows + columns + bus + 2);
  338. bank = mctl_mem_matches(offset) ? 0 : 1;
  339. /* Restore interleave, chan and rank values, set bank size */
  340. clrsetbits_le32(&mctl_com->cr,
  341. MCTL_CR_CHANNEL_MASK | MCTL_CR_SEQUENCE |
  342. MCTL_CR_BANK_MASK | MCTL_CR_RANK_MASK,
  343. MCTL_CR_CHANNEL(para.chan) | MCTL_CR_BANK(bank) |
  344. MCTL_CR_RANK(para.rank));
  345. return 1 << (para.rank + para.rows + bank + columns + para.chan + bus);
  346. }