bfq-iosched.c 191 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820
  1. /*
  2. * Budget Fair Queueing (BFQ) I/O scheduler.
  3. *
  4. * Based on ideas and code from CFQ:
  5. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  6. *
  7. * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
  8. * Paolo Valente <paolo.valente@unimore.it>
  9. *
  10. * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
  11. * Arianna Avanzini <avanzini@google.com>
  12. *
  13. * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License as
  17. * published by the Free Software Foundation; either version 2 of the
  18. * License, or (at your option) any later version.
  19. *
  20. * This program is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  23. * General Public License for more details.
  24. *
  25. * BFQ is a proportional-share I/O scheduler, with some extra
  26. * low-latency capabilities. BFQ also supports full hierarchical
  27. * scheduling through cgroups. Next paragraphs provide an introduction
  28. * on BFQ inner workings. Details on BFQ benefits, usage and
  29. * limitations can be found in Documentation/block/bfq-iosched.txt.
  30. *
  31. * BFQ is a proportional-share storage-I/O scheduling algorithm based
  32. * on the slice-by-slice service scheme of CFQ. But BFQ assigns
  33. * budgets, measured in number of sectors, to processes instead of
  34. * time slices. The device is not granted to the in-service process
  35. * for a given time slice, but until it has exhausted its assigned
  36. * budget. This change from the time to the service domain enables BFQ
  37. * to distribute the device throughput among processes as desired,
  38. * without any distortion due to throughput fluctuations, or to device
  39. * internal queueing. BFQ uses an ad hoc internal scheduler, called
  40. * B-WF2Q+, to schedule processes according to their budgets. More
  41. * precisely, BFQ schedules queues associated with processes. Each
  42. * process/queue is assigned a user-configurable weight, and B-WF2Q+
  43. * guarantees that each queue receives a fraction of the throughput
  44. * proportional to its weight. Thanks to the accurate policy of
  45. * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
  46. * processes issuing sequential requests (to boost the throughput),
  47. * and yet guarantee a low latency to interactive and soft real-time
  48. * applications.
  49. *
  50. * In particular, to provide these low-latency guarantees, BFQ
  51. * explicitly privileges the I/O of two classes of time-sensitive
  52. * applications: interactive and soft real-time. In more detail, BFQ
  53. * behaves this way if the low_latency parameter is set (default
  54. * configuration). This feature enables BFQ to provide applications in
  55. * these classes with a very low latency.
  56. *
  57. * To implement this feature, BFQ constantly tries to detect whether
  58. * the I/O requests in a bfq_queue come from an interactive or a soft
  59. * real-time application. For brevity, in these cases, the queue is
  60. * said to be interactive or soft real-time. In both cases, BFQ
  61. * privileges the service of the queue, over that of non-interactive
  62. * and non-soft-real-time queues. This privileging is performed,
  63. * mainly, by raising the weight of the queue. So, for brevity, we
  64. * call just weight-raising periods the time periods during which a
  65. * queue is privileged, because deemed interactive or soft real-time.
  66. *
  67. * The detection of soft real-time queues/applications is described in
  68. * detail in the comments on the function
  69. * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
  70. * interactive queue works as follows: a queue is deemed interactive
  71. * if it is constantly non empty only for a limited time interval,
  72. * after which it does become empty. The queue may be deemed
  73. * interactive again (for a limited time), if it restarts being
  74. * constantly non empty, provided that this happens only after the
  75. * queue has remained empty for a given minimum idle time.
  76. *
  77. * By default, BFQ computes automatically the above maximum time
  78. * interval, i.e., the time interval after which a constantly
  79. * non-empty queue stops being deemed interactive. Since a queue is
  80. * weight-raised while it is deemed interactive, this maximum time
  81. * interval happens to coincide with the (maximum) duration of the
  82. * weight-raising for interactive queues.
  83. *
  84. * Finally, BFQ also features additional heuristics for
  85. * preserving both a low latency and a high throughput on NCQ-capable,
  86. * rotational or flash-based devices, and to get the job done quickly
  87. * for applications consisting in many I/O-bound processes.
  88. *
  89. * NOTE: if the main or only goal, with a given device, is to achieve
  90. * the maximum-possible throughput at all times, then do switch off
  91. * all low-latency heuristics for that device, by setting low_latency
  92. * to 0.
  93. *
  94. * BFQ is described in [1], where also a reference to the initial,
  95. * more theoretical paper on BFQ can be found. The interested reader
  96. * can find in the latter paper full details on the main algorithm, as
  97. * well as formulas of the guarantees and formal proofs of all the
  98. * properties. With respect to the version of BFQ presented in these
  99. * papers, this implementation adds a few more heuristics, such as the
  100. * ones that guarantee a low latency to interactive and soft real-time
  101. * applications, and a hierarchical extension based on H-WF2Q+.
  102. *
  103. * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
  104. * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
  105. * with O(log N) complexity derives from the one introduced with EEVDF
  106. * in [3].
  107. *
  108. * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
  109. * Scheduler", Proceedings of the First Workshop on Mobile System
  110. * Technologies (MST-2015), May 2015.
  111. * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
  112. *
  113. * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
  114. * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
  115. * Oct 1997.
  116. *
  117. * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
  118. *
  119. * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
  120. * First: A Flexible and Accurate Mechanism for Proportional Share
  121. * Resource Allocation", technical report.
  122. *
  123. * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
  124. */
  125. #include <linux/module.h>
  126. #include <linux/slab.h>
  127. #include <linux/blkdev.h>
  128. #include <linux/cgroup.h>
  129. #include <linux/elevator.h>
  130. #include <linux/ktime.h>
  131. #include <linux/rbtree.h>
  132. #include <linux/ioprio.h>
  133. #include <linux/sbitmap.h>
  134. #include <linux/delay.h>
  135. #include "blk.h"
  136. #include "blk-mq.h"
  137. #include "blk-mq-tag.h"
  138. #include "blk-mq-sched.h"
  139. #include "bfq-iosched.h"
  140. #include "blk-wbt.h"
  141. #define BFQ_BFQQ_FNS(name) \
  142. void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
  143. { \
  144. __set_bit(BFQQF_##name, &(bfqq)->flags); \
  145. } \
  146. void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
  147. { \
  148. __clear_bit(BFQQF_##name, &(bfqq)->flags); \
  149. } \
  150. int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
  151. { \
  152. return test_bit(BFQQF_##name, &(bfqq)->flags); \
  153. }
  154. BFQ_BFQQ_FNS(just_created);
  155. BFQ_BFQQ_FNS(busy);
  156. BFQ_BFQQ_FNS(wait_request);
  157. BFQ_BFQQ_FNS(non_blocking_wait_rq);
  158. BFQ_BFQQ_FNS(fifo_expire);
  159. BFQ_BFQQ_FNS(has_short_ttime);
  160. BFQ_BFQQ_FNS(sync);
  161. BFQ_BFQQ_FNS(IO_bound);
  162. BFQ_BFQQ_FNS(in_large_burst);
  163. BFQ_BFQQ_FNS(coop);
  164. BFQ_BFQQ_FNS(split_coop);
  165. BFQ_BFQQ_FNS(softrt_update);
  166. #undef BFQ_BFQQ_FNS \
  167. /* Expiration time of sync (0) and async (1) requests, in ns. */
  168. static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
  169. /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
  170. static const int bfq_back_max = 16 * 1024;
  171. /* Penalty of a backwards seek, in number of sectors. */
  172. static const int bfq_back_penalty = 2;
  173. /* Idling period duration, in ns. */
  174. static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
  175. /* Minimum number of assigned budgets for which stats are safe to compute. */
  176. static const int bfq_stats_min_budgets = 194;
  177. /* Default maximum budget values, in sectors and number of requests. */
  178. static const int bfq_default_max_budget = 16 * 1024;
  179. /*
  180. * When a sync request is dispatched, the queue that contains that
  181. * request, and all the ancestor entities of that queue, are charged
  182. * with the number of sectors of the request. In constrast, if the
  183. * request is async, then the queue and its ancestor entities are
  184. * charged with the number of sectors of the request, multiplied by
  185. * the factor below. This throttles the bandwidth for async I/O,
  186. * w.r.t. to sync I/O, and it is done to counter the tendency of async
  187. * writes to steal I/O throughput to reads.
  188. *
  189. * The current value of this parameter is the result of a tuning with
  190. * several hardware and software configurations. We tried to find the
  191. * lowest value for which writes do not cause noticeable problems to
  192. * reads. In fact, the lower this parameter, the stabler I/O control,
  193. * in the following respect. The lower this parameter is, the less
  194. * the bandwidth enjoyed by a group decreases
  195. * - when the group does writes, w.r.t. to when it does reads;
  196. * - when other groups do reads, w.r.t. to when they do writes.
  197. */
  198. static const int bfq_async_charge_factor = 3;
  199. /* Default timeout values, in jiffies, approximating CFQ defaults. */
  200. const int bfq_timeout = HZ / 8;
  201. /*
  202. * Time limit for merging (see comments in bfq_setup_cooperator). Set
  203. * to the slowest value that, in our tests, proved to be effective in
  204. * removing false positives, while not causing true positives to miss
  205. * queue merging.
  206. *
  207. * As can be deduced from the low time limit below, queue merging, if
  208. * successful, happens at the very beggining of the I/O of the involved
  209. * cooperating processes, as a consequence of the arrival of the very
  210. * first requests from each cooperator. After that, there is very
  211. * little chance to find cooperators.
  212. */
  213. static const unsigned long bfq_merge_time_limit = HZ/10;
  214. static struct kmem_cache *bfq_pool;
  215. /* Below this threshold (in ns), we consider thinktime immediate. */
  216. #define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
  217. /* hw_tag detection: parallel requests threshold and min samples needed. */
  218. #define BFQ_HW_QUEUE_THRESHOLD 4
  219. #define BFQ_HW_QUEUE_SAMPLES 32
  220. #define BFQQ_SEEK_THR (sector_t)(8 * 100)
  221. #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  222. #define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
  223. #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
  224. /* Min number of samples required to perform peak-rate update */
  225. #define BFQ_RATE_MIN_SAMPLES 32
  226. /* Min observation time interval required to perform a peak-rate update (ns) */
  227. #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
  228. /* Target observation time interval for a peak-rate update (ns) */
  229. #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
  230. /*
  231. * Shift used for peak-rate fixed precision calculations.
  232. * With
  233. * - the current shift: 16 positions
  234. * - the current type used to store rate: u32
  235. * - the current unit of measure for rate: [sectors/usec], or, more precisely,
  236. * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
  237. * the range of rates that can be stored is
  238. * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
  239. * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
  240. * [15, 65G] sectors/sec
  241. * Which, assuming a sector size of 512B, corresponds to a range of
  242. * [7.5K, 33T] B/sec
  243. */
  244. #define BFQ_RATE_SHIFT 16
  245. /*
  246. * When configured for computing the duration of the weight-raising
  247. * for interactive queues automatically (see the comments at the
  248. * beginning of this file), BFQ does it using the following formula:
  249. * duration = (ref_rate / r) * ref_wr_duration,
  250. * where r is the peak rate of the device, and ref_rate and
  251. * ref_wr_duration are two reference parameters. In particular,
  252. * ref_rate is the peak rate of the reference storage device (see
  253. * below), and ref_wr_duration is about the maximum time needed, with
  254. * BFQ and while reading two files in parallel, to load typical large
  255. * applications on the reference device (see the comments on
  256. * max_service_from_wr below, for more details on how ref_wr_duration
  257. * is obtained). In practice, the slower/faster the device at hand
  258. * is, the more/less it takes to load applications with respect to the
  259. * reference device. Accordingly, the longer/shorter BFQ grants
  260. * weight raising to interactive applications.
  261. *
  262. * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
  263. * depending on whether the device is rotational or non-rotational.
  264. *
  265. * In the following definitions, ref_rate[0] and ref_wr_duration[0]
  266. * are the reference values for a rotational device, whereas
  267. * ref_rate[1] and ref_wr_duration[1] are the reference values for a
  268. * non-rotational device. The reference rates are not the actual peak
  269. * rates of the devices used as a reference, but slightly lower
  270. * values. The reason for using slightly lower values is that the
  271. * peak-rate estimator tends to yield slightly lower values than the
  272. * actual peak rate (it can yield the actual peak rate only if there
  273. * is only one process doing I/O, and the process does sequential
  274. * I/O).
  275. *
  276. * The reference peak rates are measured in sectors/usec, left-shifted
  277. * by BFQ_RATE_SHIFT.
  278. */
  279. static int ref_rate[2] = {14000, 33000};
  280. /*
  281. * To improve readability, a conversion function is used to initialize
  282. * the following array, which entails that the array can be
  283. * initialized only in a function.
  284. */
  285. static int ref_wr_duration[2];
  286. /*
  287. * BFQ uses the above-detailed, time-based weight-raising mechanism to
  288. * privilege interactive tasks. This mechanism is vulnerable to the
  289. * following false positives: I/O-bound applications that will go on
  290. * doing I/O for much longer than the duration of weight
  291. * raising. These applications have basically no benefit from being
  292. * weight-raised at the beginning of their I/O. On the opposite end,
  293. * while being weight-raised, these applications
  294. * a) unjustly steal throughput to applications that may actually need
  295. * low latency;
  296. * b) make BFQ uselessly perform device idling; device idling results
  297. * in loss of device throughput with most flash-based storage, and may
  298. * increase latencies when used purposelessly.
  299. *
  300. * BFQ tries to reduce these problems, by adopting the following
  301. * countermeasure. To introduce this countermeasure, we need first to
  302. * finish explaining how the duration of weight-raising for
  303. * interactive tasks is computed.
  304. *
  305. * For a bfq_queue deemed as interactive, the duration of weight
  306. * raising is dynamically adjusted, as a function of the estimated
  307. * peak rate of the device, so as to be equal to the time needed to
  308. * execute the 'largest' interactive task we benchmarked so far. By
  309. * largest task, we mean the task for which each involved process has
  310. * to do more I/O than for any of the other tasks we benchmarked. This
  311. * reference interactive task is the start-up of LibreOffice Writer,
  312. * and in this task each process/bfq_queue needs to have at most ~110K
  313. * sectors transferred.
  314. *
  315. * This last piece of information enables BFQ to reduce the actual
  316. * duration of weight-raising for at least one class of I/O-bound
  317. * applications: those doing sequential or quasi-sequential I/O. An
  318. * example is file copy. In fact, once started, the main I/O-bound
  319. * processes of these applications usually consume the above 110K
  320. * sectors in much less time than the processes of an application that
  321. * is starting, because these I/O-bound processes will greedily devote
  322. * almost all their CPU cycles only to their target,
  323. * throughput-friendly I/O operations. This is even more true if BFQ
  324. * happens to be underestimating the device peak rate, and thus
  325. * overestimating the duration of weight raising. But, according to
  326. * our measurements, once transferred 110K sectors, these processes
  327. * have no right to be weight-raised any longer.
  328. *
  329. * Basing on the last consideration, BFQ ends weight-raising for a
  330. * bfq_queue if the latter happens to have received an amount of
  331. * service at least equal to the following constant. The constant is
  332. * set to slightly more than 110K, to have a minimum safety margin.
  333. *
  334. * This early ending of weight-raising reduces the amount of time
  335. * during which interactive false positives cause the two problems
  336. * described at the beginning of these comments.
  337. */
  338. static const unsigned long max_service_from_wr = 120000;
  339. #define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
  340. #define RQ_BFQQ(rq) ((rq)->elv.priv[1])
  341. struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
  342. {
  343. return bic->bfqq[is_sync];
  344. }
  345. void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
  346. {
  347. bic->bfqq[is_sync] = bfqq;
  348. }
  349. struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
  350. {
  351. return bic->icq.q->elevator->elevator_data;
  352. }
  353. /**
  354. * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
  355. * @icq: the iocontext queue.
  356. */
  357. static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
  358. {
  359. /* bic->icq is the first member, %NULL will convert to %NULL */
  360. return container_of(icq, struct bfq_io_cq, icq);
  361. }
  362. /**
  363. * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
  364. * @bfqd: the lookup key.
  365. * @ioc: the io_context of the process doing I/O.
  366. * @q: the request queue.
  367. */
  368. static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
  369. struct io_context *ioc,
  370. struct request_queue *q)
  371. {
  372. if (ioc) {
  373. unsigned long flags;
  374. struct bfq_io_cq *icq;
  375. spin_lock_irqsave(q->queue_lock, flags);
  376. icq = icq_to_bic(ioc_lookup_icq(ioc, q));
  377. spin_unlock_irqrestore(q->queue_lock, flags);
  378. return icq;
  379. }
  380. return NULL;
  381. }
  382. /*
  383. * Scheduler run of queue, if there are requests pending and no one in the
  384. * driver that will restart queueing.
  385. */
  386. void bfq_schedule_dispatch(struct bfq_data *bfqd)
  387. {
  388. if (bfqd->queued != 0) {
  389. bfq_log(bfqd, "schedule dispatch");
  390. blk_mq_run_hw_queues(bfqd->queue, true);
  391. }
  392. }
  393. #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  394. #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
  395. #define bfq_sample_valid(samples) ((samples) > 80)
  396. /*
  397. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  398. * We choose the request that is closesr to the head right now. Distance
  399. * behind the head is penalized and only allowed to a certain extent.
  400. */
  401. static struct request *bfq_choose_req(struct bfq_data *bfqd,
  402. struct request *rq1,
  403. struct request *rq2,
  404. sector_t last)
  405. {
  406. sector_t s1, s2, d1 = 0, d2 = 0;
  407. unsigned long back_max;
  408. #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  409. #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  410. unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
  411. if (!rq1 || rq1 == rq2)
  412. return rq2;
  413. if (!rq2)
  414. return rq1;
  415. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  416. return rq1;
  417. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  418. return rq2;
  419. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  420. return rq1;
  421. else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
  422. return rq2;
  423. s1 = blk_rq_pos(rq1);
  424. s2 = blk_rq_pos(rq2);
  425. /*
  426. * By definition, 1KiB is 2 sectors.
  427. */
  428. back_max = bfqd->bfq_back_max * 2;
  429. /*
  430. * Strict one way elevator _except_ in the case where we allow
  431. * short backward seeks which are biased as twice the cost of a
  432. * similar forward seek.
  433. */
  434. if (s1 >= last)
  435. d1 = s1 - last;
  436. else if (s1 + back_max >= last)
  437. d1 = (last - s1) * bfqd->bfq_back_penalty;
  438. else
  439. wrap |= BFQ_RQ1_WRAP;
  440. if (s2 >= last)
  441. d2 = s2 - last;
  442. else if (s2 + back_max >= last)
  443. d2 = (last - s2) * bfqd->bfq_back_penalty;
  444. else
  445. wrap |= BFQ_RQ2_WRAP;
  446. /* Found required data */
  447. /*
  448. * By doing switch() on the bit mask "wrap" we avoid having to
  449. * check two variables for all permutations: --> faster!
  450. */
  451. switch (wrap) {
  452. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  453. if (d1 < d2)
  454. return rq1;
  455. else if (d2 < d1)
  456. return rq2;
  457. if (s1 >= s2)
  458. return rq1;
  459. else
  460. return rq2;
  461. case BFQ_RQ2_WRAP:
  462. return rq1;
  463. case BFQ_RQ1_WRAP:
  464. return rq2;
  465. case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
  466. default:
  467. /*
  468. * Since both rqs are wrapped,
  469. * start with the one that's further behind head
  470. * (--> only *one* back seek required),
  471. * since back seek takes more time than forward.
  472. */
  473. if (s1 <= s2)
  474. return rq1;
  475. else
  476. return rq2;
  477. }
  478. }
  479. /*
  480. * Async I/O can easily starve sync I/O (both sync reads and sync
  481. * writes), by consuming all tags. Similarly, storms of sync writes,
  482. * such as those that sync(2) may trigger, can starve sync reads.
  483. * Limit depths of async I/O and sync writes so as to counter both
  484. * problems.
  485. */
  486. static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
  487. {
  488. struct bfq_data *bfqd = data->q->elevator->elevator_data;
  489. if (op_is_sync(op) && !op_is_write(op))
  490. return;
  491. data->shallow_depth =
  492. bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
  493. bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
  494. __func__, bfqd->wr_busy_queues, op_is_sync(op),
  495. data->shallow_depth);
  496. }
  497. static struct bfq_queue *
  498. bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
  499. sector_t sector, struct rb_node **ret_parent,
  500. struct rb_node ***rb_link)
  501. {
  502. struct rb_node **p, *parent;
  503. struct bfq_queue *bfqq = NULL;
  504. parent = NULL;
  505. p = &root->rb_node;
  506. while (*p) {
  507. struct rb_node **n;
  508. parent = *p;
  509. bfqq = rb_entry(parent, struct bfq_queue, pos_node);
  510. /*
  511. * Sort strictly based on sector. Smallest to the left,
  512. * largest to the right.
  513. */
  514. if (sector > blk_rq_pos(bfqq->next_rq))
  515. n = &(*p)->rb_right;
  516. else if (sector < blk_rq_pos(bfqq->next_rq))
  517. n = &(*p)->rb_left;
  518. else
  519. break;
  520. p = n;
  521. bfqq = NULL;
  522. }
  523. *ret_parent = parent;
  524. if (rb_link)
  525. *rb_link = p;
  526. bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
  527. (unsigned long long)sector,
  528. bfqq ? bfqq->pid : 0);
  529. return bfqq;
  530. }
  531. static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
  532. {
  533. return bfqq->service_from_backlogged > 0 &&
  534. time_is_before_jiffies(bfqq->first_IO_time +
  535. bfq_merge_time_limit);
  536. }
  537. void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  538. {
  539. struct rb_node **p, *parent;
  540. struct bfq_queue *__bfqq;
  541. if (bfqq->pos_root) {
  542. rb_erase(&bfqq->pos_node, bfqq->pos_root);
  543. bfqq->pos_root = NULL;
  544. }
  545. /*
  546. * bfqq cannot be merged any longer (see comments in
  547. * bfq_setup_cooperator): no point in adding bfqq into the
  548. * position tree.
  549. */
  550. if (bfq_too_late_for_merging(bfqq))
  551. return;
  552. if (bfq_class_idle(bfqq))
  553. return;
  554. if (!bfqq->next_rq)
  555. return;
  556. bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
  557. __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
  558. blk_rq_pos(bfqq->next_rq), &parent, &p);
  559. if (!__bfqq) {
  560. rb_link_node(&bfqq->pos_node, parent, p);
  561. rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
  562. } else
  563. bfqq->pos_root = NULL;
  564. }
  565. /*
  566. * Tell whether there are active queues or groups with differentiated weights.
  567. */
  568. static bool bfq_differentiated_weights(struct bfq_data *bfqd)
  569. {
  570. /*
  571. * For weights to differ, at least one of the trees must contain
  572. * at least two nodes.
  573. */
  574. return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
  575. (bfqd->queue_weights_tree.rb_node->rb_left ||
  576. bfqd->queue_weights_tree.rb_node->rb_right)
  577. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  578. ) ||
  579. (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
  580. (bfqd->group_weights_tree.rb_node->rb_left ||
  581. bfqd->group_weights_tree.rb_node->rb_right)
  582. #endif
  583. );
  584. }
  585. /*
  586. * The following function returns true if every queue must receive the
  587. * same share of the throughput (this condition is used when deciding
  588. * whether idling may be disabled, see the comments in the function
  589. * bfq_better_to_idle()).
  590. *
  591. * Such a scenario occurs when:
  592. * 1) all active queues have the same weight,
  593. * 2) all active groups at the same level in the groups tree have the same
  594. * weight,
  595. * 3) all active groups at the same level in the groups tree have the same
  596. * number of children.
  597. *
  598. * Unfortunately, keeping the necessary state for evaluating exactly the
  599. * above symmetry conditions would be quite complex and time-consuming.
  600. * Therefore this function evaluates, instead, the following stronger
  601. * sub-conditions, for which it is much easier to maintain the needed
  602. * state:
  603. * 1) all active queues have the same weight,
  604. * 2) all active groups have the same weight,
  605. * 3) all active groups have at most one active child each.
  606. * In particular, the last two conditions are always true if hierarchical
  607. * support and the cgroups interface are not enabled, thus no state needs
  608. * to be maintained in this case.
  609. */
  610. static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
  611. {
  612. return !bfq_differentiated_weights(bfqd);
  613. }
  614. /*
  615. * If the weight-counter tree passed as input contains no counter for
  616. * the weight of the input entity, then add that counter; otherwise just
  617. * increment the existing counter.
  618. *
  619. * Note that weight-counter trees contain few nodes in mostly symmetric
  620. * scenarios. For example, if all queues have the same weight, then the
  621. * weight-counter tree for the queues may contain at most one node.
  622. * This holds even if low_latency is on, because weight-raised queues
  623. * are not inserted in the tree.
  624. * In most scenarios, the rate at which nodes are created/destroyed
  625. * should be low too.
  626. */
  627. void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
  628. struct rb_root *root)
  629. {
  630. struct rb_node **new = &(root->rb_node), *parent = NULL;
  631. /*
  632. * Do not insert if the entity is already associated with a
  633. * counter, which happens if:
  634. * 1) the entity is associated with a queue,
  635. * 2) a request arrival has caused the queue to become both
  636. * non-weight-raised, and hence change its weight, and
  637. * backlogged; in this respect, each of the two events
  638. * causes an invocation of this function,
  639. * 3) this is the invocation of this function caused by the
  640. * second event. This second invocation is actually useless,
  641. * and we handle this fact by exiting immediately. More
  642. * efficient or clearer solutions might possibly be adopted.
  643. */
  644. if (entity->weight_counter)
  645. return;
  646. while (*new) {
  647. struct bfq_weight_counter *__counter = container_of(*new,
  648. struct bfq_weight_counter,
  649. weights_node);
  650. parent = *new;
  651. if (entity->weight == __counter->weight) {
  652. entity->weight_counter = __counter;
  653. goto inc_counter;
  654. }
  655. if (entity->weight < __counter->weight)
  656. new = &((*new)->rb_left);
  657. else
  658. new = &((*new)->rb_right);
  659. }
  660. entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
  661. GFP_ATOMIC);
  662. /*
  663. * In the unlucky event of an allocation failure, we just
  664. * exit. This will cause the weight of entity to not be
  665. * considered in bfq_differentiated_weights, which, in its
  666. * turn, causes the scenario to be deemed wrongly symmetric in
  667. * case entity's weight would have been the only weight making
  668. * the scenario asymmetric. On the bright side, no unbalance
  669. * will however occur when entity becomes inactive again (the
  670. * invocation of this function is triggered by an activation
  671. * of entity). In fact, bfq_weights_tree_remove does nothing
  672. * if !entity->weight_counter.
  673. */
  674. if (unlikely(!entity->weight_counter))
  675. return;
  676. entity->weight_counter->weight = entity->weight;
  677. rb_link_node(&entity->weight_counter->weights_node, parent, new);
  678. rb_insert_color(&entity->weight_counter->weights_node, root);
  679. inc_counter:
  680. entity->weight_counter->num_active++;
  681. }
  682. /*
  683. * Decrement the weight counter associated with the entity, and, if the
  684. * counter reaches 0, remove the counter from the tree.
  685. * See the comments to the function bfq_weights_tree_add() for considerations
  686. * about overhead.
  687. */
  688. void __bfq_weights_tree_remove(struct bfq_data *bfqd,
  689. struct bfq_entity *entity,
  690. struct rb_root *root)
  691. {
  692. if (!entity->weight_counter)
  693. return;
  694. entity->weight_counter->num_active--;
  695. if (entity->weight_counter->num_active > 0)
  696. goto reset_entity_pointer;
  697. rb_erase(&entity->weight_counter->weights_node, root);
  698. kfree(entity->weight_counter);
  699. reset_entity_pointer:
  700. entity->weight_counter = NULL;
  701. }
  702. /*
  703. * Invoke __bfq_weights_tree_remove on bfqq and all its inactive
  704. * parent entities.
  705. */
  706. void bfq_weights_tree_remove(struct bfq_data *bfqd,
  707. struct bfq_queue *bfqq)
  708. {
  709. struct bfq_entity *entity = bfqq->entity.parent;
  710. __bfq_weights_tree_remove(bfqd, &bfqq->entity,
  711. &bfqd->queue_weights_tree);
  712. for_each_entity(entity) {
  713. struct bfq_sched_data *sd = entity->my_sched_data;
  714. if (sd->next_in_service || sd->in_service_entity) {
  715. /*
  716. * entity is still active, because either
  717. * next_in_service or in_service_entity is not
  718. * NULL (see the comments on the definition of
  719. * next_in_service for details on why
  720. * in_service_entity must be checked too).
  721. *
  722. * As a consequence, the weight of entity is
  723. * not to be removed. In addition, if entity
  724. * is active, then its parent entities are
  725. * active as well, and thus their weights are
  726. * not to be removed either. In the end, this
  727. * loop must stop here.
  728. */
  729. break;
  730. }
  731. __bfq_weights_tree_remove(bfqd, entity,
  732. &bfqd->group_weights_tree);
  733. }
  734. }
  735. /*
  736. * Return expired entry, or NULL to just start from scratch in rbtree.
  737. */
  738. static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
  739. struct request *last)
  740. {
  741. struct request *rq;
  742. if (bfq_bfqq_fifo_expire(bfqq))
  743. return NULL;
  744. bfq_mark_bfqq_fifo_expire(bfqq);
  745. rq = rq_entry_fifo(bfqq->fifo.next);
  746. if (rq == last || ktime_get_ns() < rq->fifo_time)
  747. return NULL;
  748. bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
  749. return rq;
  750. }
  751. static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
  752. struct bfq_queue *bfqq,
  753. struct request *last)
  754. {
  755. struct rb_node *rbnext = rb_next(&last->rb_node);
  756. struct rb_node *rbprev = rb_prev(&last->rb_node);
  757. struct request *next, *prev = NULL;
  758. /* Follow expired path, else get first next available. */
  759. next = bfq_check_fifo(bfqq, last);
  760. if (next)
  761. return next;
  762. if (rbprev)
  763. prev = rb_entry_rq(rbprev);
  764. if (rbnext)
  765. next = rb_entry_rq(rbnext);
  766. else {
  767. rbnext = rb_first(&bfqq->sort_list);
  768. if (rbnext && rbnext != &last->rb_node)
  769. next = rb_entry_rq(rbnext);
  770. }
  771. return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
  772. }
  773. /* see the definition of bfq_async_charge_factor for details */
  774. static unsigned long bfq_serv_to_charge(struct request *rq,
  775. struct bfq_queue *bfqq)
  776. {
  777. if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
  778. return blk_rq_sectors(rq);
  779. return blk_rq_sectors(rq) * bfq_async_charge_factor;
  780. }
  781. /**
  782. * bfq_updated_next_req - update the queue after a new next_rq selection.
  783. * @bfqd: the device data the queue belongs to.
  784. * @bfqq: the queue to update.
  785. *
  786. * If the first request of a queue changes we make sure that the queue
  787. * has enough budget to serve at least its first request (if the
  788. * request has grown). We do this because if the queue has not enough
  789. * budget for its first request, it has to go through two dispatch
  790. * rounds to actually get it dispatched.
  791. */
  792. static void bfq_updated_next_req(struct bfq_data *bfqd,
  793. struct bfq_queue *bfqq)
  794. {
  795. struct bfq_entity *entity = &bfqq->entity;
  796. struct request *next_rq = bfqq->next_rq;
  797. unsigned long new_budget;
  798. if (!next_rq)
  799. return;
  800. if (bfqq == bfqd->in_service_queue)
  801. /*
  802. * In order not to break guarantees, budgets cannot be
  803. * changed after an entity has been selected.
  804. */
  805. return;
  806. new_budget = max_t(unsigned long, bfqq->max_budget,
  807. bfq_serv_to_charge(next_rq, bfqq));
  808. if (entity->budget != new_budget) {
  809. entity->budget = new_budget;
  810. bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
  811. new_budget);
  812. bfq_requeue_bfqq(bfqd, bfqq, false);
  813. }
  814. }
  815. static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
  816. {
  817. u64 dur;
  818. if (bfqd->bfq_wr_max_time > 0)
  819. return bfqd->bfq_wr_max_time;
  820. dur = bfqd->rate_dur_prod;
  821. do_div(dur, bfqd->peak_rate);
  822. /*
  823. * Limit duration between 3 and 25 seconds. The upper limit
  824. * has been conservatively set after the following worst case:
  825. * on a QEMU/KVM virtual machine
  826. * - running in a slow PC
  827. * - with a virtual disk stacked on a slow low-end 5400rpm HDD
  828. * - serving a heavy I/O workload, such as the sequential reading
  829. * of several files
  830. * mplayer took 23 seconds to start, if constantly weight-raised.
  831. *
  832. * As for higher values than that accomodating the above bad
  833. * scenario, tests show that higher values would often yield
  834. * the opposite of the desired result, i.e., would worsen
  835. * responsiveness by allowing non-interactive applications to
  836. * preserve weight raising for too long.
  837. *
  838. * On the other end, lower values than 3 seconds make it
  839. * difficult for most interactive tasks to complete their jobs
  840. * before weight-raising finishes.
  841. */
  842. return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
  843. }
  844. /* switch back from soft real-time to interactive weight raising */
  845. static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
  846. struct bfq_data *bfqd)
  847. {
  848. bfqq->wr_coeff = bfqd->bfq_wr_coeff;
  849. bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
  850. bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
  851. }
  852. static void
  853. bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
  854. struct bfq_io_cq *bic, bool bfq_already_existing)
  855. {
  856. unsigned int old_wr_coeff = bfqq->wr_coeff;
  857. bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
  858. if (bic->saved_has_short_ttime)
  859. bfq_mark_bfqq_has_short_ttime(bfqq);
  860. else
  861. bfq_clear_bfqq_has_short_ttime(bfqq);
  862. if (bic->saved_IO_bound)
  863. bfq_mark_bfqq_IO_bound(bfqq);
  864. else
  865. bfq_clear_bfqq_IO_bound(bfqq);
  866. bfqq->ttime = bic->saved_ttime;
  867. bfqq->wr_coeff = bic->saved_wr_coeff;
  868. bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
  869. bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
  870. bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
  871. if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
  872. time_is_before_jiffies(bfqq->last_wr_start_finish +
  873. bfqq->wr_cur_max_time))) {
  874. if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
  875. !bfq_bfqq_in_large_burst(bfqq) &&
  876. time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
  877. bfq_wr_duration(bfqd))) {
  878. switch_back_to_interactive_wr(bfqq, bfqd);
  879. } else {
  880. bfqq->wr_coeff = 1;
  881. bfq_log_bfqq(bfqq->bfqd, bfqq,
  882. "resume state: switching off wr");
  883. }
  884. }
  885. /* make sure weight will be updated, however we got here */
  886. bfqq->entity.prio_changed = 1;
  887. if (likely(!busy))
  888. return;
  889. if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
  890. bfqd->wr_busy_queues++;
  891. else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
  892. bfqd->wr_busy_queues--;
  893. }
  894. static int bfqq_process_refs(struct bfq_queue *bfqq)
  895. {
  896. return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
  897. }
  898. /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
  899. static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  900. {
  901. struct bfq_queue *item;
  902. struct hlist_node *n;
  903. hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
  904. hlist_del_init(&item->burst_list_node);
  905. hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
  906. bfqd->burst_size = 1;
  907. bfqd->burst_parent_entity = bfqq->entity.parent;
  908. }
  909. /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
  910. static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  911. {
  912. /* Increment burst size to take into account also bfqq */
  913. bfqd->burst_size++;
  914. if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
  915. struct bfq_queue *pos, *bfqq_item;
  916. struct hlist_node *n;
  917. /*
  918. * Enough queues have been activated shortly after each
  919. * other to consider this burst as large.
  920. */
  921. bfqd->large_burst = true;
  922. /*
  923. * We can now mark all queues in the burst list as
  924. * belonging to a large burst.
  925. */
  926. hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
  927. burst_list_node)
  928. bfq_mark_bfqq_in_large_burst(bfqq_item);
  929. bfq_mark_bfqq_in_large_burst(bfqq);
  930. /*
  931. * From now on, and until the current burst finishes, any
  932. * new queue being activated shortly after the last queue
  933. * was inserted in the burst can be immediately marked as
  934. * belonging to a large burst. So the burst list is not
  935. * needed any more. Remove it.
  936. */
  937. hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
  938. burst_list_node)
  939. hlist_del_init(&pos->burst_list_node);
  940. } else /*
  941. * Burst not yet large: add bfqq to the burst list. Do
  942. * not increment the ref counter for bfqq, because bfqq
  943. * is removed from the burst list before freeing bfqq
  944. * in put_queue.
  945. */
  946. hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
  947. }
  948. /*
  949. * If many queues belonging to the same group happen to be created
  950. * shortly after each other, then the processes associated with these
  951. * queues have typically a common goal. In particular, bursts of queue
  952. * creations are usually caused by services or applications that spawn
  953. * many parallel threads/processes. Examples are systemd during boot,
  954. * or git grep. To help these processes get their job done as soon as
  955. * possible, it is usually better to not grant either weight-raising
  956. * or device idling to their queues.
  957. *
  958. * In this comment we describe, firstly, the reasons why this fact
  959. * holds, and, secondly, the next function, which implements the main
  960. * steps needed to properly mark these queues so that they can then be
  961. * treated in a different way.
  962. *
  963. * The above services or applications benefit mostly from a high
  964. * throughput: the quicker the requests of the activated queues are
  965. * cumulatively served, the sooner the target job of these queues gets
  966. * completed. As a consequence, weight-raising any of these queues,
  967. * which also implies idling the device for it, is almost always
  968. * counterproductive. In most cases it just lowers throughput.
  969. *
  970. * On the other hand, a burst of queue creations may be caused also by
  971. * the start of an application that does not consist of a lot of
  972. * parallel I/O-bound threads. In fact, with a complex application,
  973. * several short processes may need to be executed to start-up the
  974. * application. In this respect, to start an application as quickly as
  975. * possible, the best thing to do is in any case to privilege the I/O
  976. * related to the application with respect to all other
  977. * I/O. Therefore, the best strategy to start as quickly as possible
  978. * an application that causes a burst of queue creations is to
  979. * weight-raise all the queues created during the burst. This is the
  980. * exact opposite of the best strategy for the other type of bursts.
  981. *
  982. * In the end, to take the best action for each of the two cases, the
  983. * two types of bursts need to be distinguished. Fortunately, this
  984. * seems relatively easy, by looking at the sizes of the bursts. In
  985. * particular, we found a threshold such that only bursts with a
  986. * larger size than that threshold are apparently caused by
  987. * services or commands such as systemd or git grep. For brevity,
  988. * hereafter we call just 'large' these bursts. BFQ *does not*
  989. * weight-raise queues whose creation occurs in a large burst. In
  990. * addition, for each of these queues BFQ performs or does not perform
  991. * idling depending on which choice boosts the throughput more. The
  992. * exact choice depends on the device and request pattern at
  993. * hand.
  994. *
  995. * Unfortunately, false positives may occur while an interactive task
  996. * is starting (e.g., an application is being started). The
  997. * consequence is that the queues associated with the task do not
  998. * enjoy weight raising as expected. Fortunately these false positives
  999. * are very rare. They typically occur if some service happens to
  1000. * start doing I/O exactly when the interactive task starts.
  1001. *
  1002. * Turning back to the next function, it implements all the steps
  1003. * needed to detect the occurrence of a large burst and to properly
  1004. * mark all the queues belonging to it (so that they can then be
  1005. * treated in a different way). This goal is achieved by maintaining a
  1006. * "burst list" that holds, temporarily, the queues that belong to the
  1007. * burst in progress. The list is then used to mark these queues as
  1008. * belonging to a large burst if the burst does become large. The main
  1009. * steps are the following.
  1010. *
  1011. * . when the very first queue is created, the queue is inserted into the
  1012. * list (as it could be the first queue in a possible burst)
  1013. *
  1014. * . if the current burst has not yet become large, and a queue Q that does
  1015. * not yet belong to the burst is activated shortly after the last time
  1016. * at which a new queue entered the burst list, then the function appends
  1017. * Q to the burst list
  1018. *
  1019. * . if, as a consequence of the previous step, the burst size reaches
  1020. * the large-burst threshold, then
  1021. *
  1022. * . all the queues in the burst list are marked as belonging to a
  1023. * large burst
  1024. *
  1025. * . the burst list is deleted; in fact, the burst list already served
  1026. * its purpose (keeping temporarily track of the queues in a burst,
  1027. * so as to be able to mark them as belonging to a large burst in the
  1028. * previous sub-step), and now is not needed any more
  1029. *
  1030. * . the device enters a large-burst mode
  1031. *
  1032. * . if a queue Q that does not belong to the burst is created while
  1033. * the device is in large-burst mode and shortly after the last time
  1034. * at which a queue either entered the burst list or was marked as
  1035. * belonging to the current large burst, then Q is immediately marked
  1036. * as belonging to a large burst.
  1037. *
  1038. * . if a queue Q that does not belong to the burst is created a while
  1039. * later, i.e., not shortly after, than the last time at which a queue
  1040. * either entered the burst list or was marked as belonging to the
  1041. * current large burst, then the current burst is deemed as finished and:
  1042. *
  1043. * . the large-burst mode is reset if set
  1044. *
  1045. * . the burst list is emptied
  1046. *
  1047. * . Q is inserted in the burst list, as Q may be the first queue
  1048. * in a possible new burst (then the burst list contains just Q
  1049. * after this step).
  1050. */
  1051. static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  1052. {
  1053. /*
  1054. * If bfqq is already in the burst list or is part of a large
  1055. * burst, or finally has just been split, then there is
  1056. * nothing else to do.
  1057. */
  1058. if (!hlist_unhashed(&bfqq->burst_list_node) ||
  1059. bfq_bfqq_in_large_burst(bfqq) ||
  1060. time_is_after_eq_jiffies(bfqq->split_time +
  1061. msecs_to_jiffies(10)))
  1062. return;
  1063. /*
  1064. * If bfqq's creation happens late enough, or bfqq belongs to
  1065. * a different group than the burst group, then the current
  1066. * burst is finished, and related data structures must be
  1067. * reset.
  1068. *
  1069. * In this respect, consider the special case where bfqq is
  1070. * the very first queue created after BFQ is selected for this
  1071. * device. In this case, last_ins_in_burst and
  1072. * burst_parent_entity are not yet significant when we get
  1073. * here. But it is easy to verify that, whether or not the
  1074. * following condition is true, bfqq will end up being
  1075. * inserted into the burst list. In particular the list will
  1076. * happen to contain only bfqq. And this is exactly what has
  1077. * to happen, as bfqq may be the first queue of the first
  1078. * burst.
  1079. */
  1080. if (time_is_before_jiffies(bfqd->last_ins_in_burst +
  1081. bfqd->bfq_burst_interval) ||
  1082. bfqq->entity.parent != bfqd->burst_parent_entity) {
  1083. bfqd->large_burst = false;
  1084. bfq_reset_burst_list(bfqd, bfqq);
  1085. goto end;
  1086. }
  1087. /*
  1088. * If we get here, then bfqq is being activated shortly after the
  1089. * last queue. So, if the current burst is also large, we can mark
  1090. * bfqq as belonging to this large burst immediately.
  1091. */
  1092. if (bfqd->large_burst) {
  1093. bfq_mark_bfqq_in_large_burst(bfqq);
  1094. goto end;
  1095. }
  1096. /*
  1097. * If we get here, then a large-burst state has not yet been
  1098. * reached, but bfqq is being activated shortly after the last
  1099. * queue. Then we add bfqq to the burst.
  1100. */
  1101. bfq_add_to_burst(bfqd, bfqq);
  1102. end:
  1103. /*
  1104. * At this point, bfqq either has been added to the current
  1105. * burst or has caused the current burst to terminate and a
  1106. * possible new burst to start. In particular, in the second
  1107. * case, bfqq has become the first queue in the possible new
  1108. * burst. In both cases last_ins_in_burst needs to be moved
  1109. * forward.
  1110. */
  1111. bfqd->last_ins_in_burst = jiffies;
  1112. }
  1113. static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
  1114. {
  1115. struct bfq_entity *entity = &bfqq->entity;
  1116. return entity->budget - entity->service;
  1117. }
  1118. /*
  1119. * If enough samples have been computed, return the current max budget
  1120. * stored in bfqd, which is dynamically updated according to the
  1121. * estimated disk peak rate; otherwise return the default max budget
  1122. */
  1123. static int bfq_max_budget(struct bfq_data *bfqd)
  1124. {
  1125. if (bfqd->budgets_assigned < bfq_stats_min_budgets)
  1126. return bfq_default_max_budget;
  1127. else
  1128. return bfqd->bfq_max_budget;
  1129. }
  1130. /*
  1131. * Return min budget, which is a fraction of the current or default
  1132. * max budget (trying with 1/32)
  1133. */
  1134. static int bfq_min_budget(struct bfq_data *bfqd)
  1135. {
  1136. if (bfqd->budgets_assigned < bfq_stats_min_budgets)
  1137. return bfq_default_max_budget / 32;
  1138. else
  1139. return bfqd->bfq_max_budget / 32;
  1140. }
  1141. /*
  1142. * The next function, invoked after the input queue bfqq switches from
  1143. * idle to busy, updates the budget of bfqq. The function also tells
  1144. * whether the in-service queue should be expired, by returning
  1145. * true. The purpose of expiring the in-service queue is to give bfqq
  1146. * the chance to possibly preempt the in-service queue, and the reason
  1147. * for preempting the in-service queue is to achieve one of the two
  1148. * goals below.
  1149. *
  1150. * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
  1151. * expired because it has remained idle. In particular, bfqq may have
  1152. * expired for one of the following two reasons:
  1153. *
  1154. * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
  1155. * and did not make it to issue a new request before its last
  1156. * request was served;
  1157. *
  1158. * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
  1159. * a new request before the expiration of the idling-time.
  1160. *
  1161. * Even if bfqq has expired for one of the above reasons, the process
  1162. * associated with the queue may be however issuing requests greedily,
  1163. * and thus be sensitive to the bandwidth it receives (bfqq may have
  1164. * remained idle for other reasons: CPU high load, bfqq not enjoying
  1165. * idling, I/O throttling somewhere in the path from the process to
  1166. * the I/O scheduler, ...). But if, after every expiration for one of
  1167. * the above two reasons, bfqq has to wait for the service of at least
  1168. * one full budget of another queue before being served again, then
  1169. * bfqq is likely to get a much lower bandwidth or resource time than
  1170. * its reserved ones. To address this issue, two countermeasures need
  1171. * to be taken.
  1172. *
  1173. * First, the budget and the timestamps of bfqq need to be updated in
  1174. * a special way on bfqq reactivation: they need to be updated as if
  1175. * bfqq did not remain idle and did not expire. In fact, if they are
  1176. * computed as if bfqq expired and remained idle until reactivation,
  1177. * then the process associated with bfqq is treated as if, instead of
  1178. * being greedy, it stopped issuing requests when bfqq remained idle,
  1179. * and restarts issuing requests only on this reactivation. In other
  1180. * words, the scheduler does not help the process recover the "service
  1181. * hole" between bfqq expiration and reactivation. As a consequence,
  1182. * the process receives a lower bandwidth than its reserved one. In
  1183. * contrast, to recover this hole, the budget must be updated as if
  1184. * bfqq was not expired at all before this reactivation, i.e., it must
  1185. * be set to the value of the remaining budget when bfqq was
  1186. * expired. Along the same line, timestamps need to be assigned the
  1187. * value they had the last time bfqq was selected for service, i.e.,
  1188. * before last expiration. Thus timestamps need to be back-shifted
  1189. * with respect to their normal computation (see [1] for more details
  1190. * on this tricky aspect).
  1191. *
  1192. * Secondly, to allow the process to recover the hole, the in-service
  1193. * queue must be expired too, to give bfqq the chance to preempt it
  1194. * immediately. In fact, if bfqq has to wait for a full budget of the
  1195. * in-service queue to be completed, then it may become impossible to
  1196. * let the process recover the hole, even if the back-shifted
  1197. * timestamps of bfqq are lower than those of the in-service queue. If
  1198. * this happens for most or all of the holes, then the process may not
  1199. * receive its reserved bandwidth. In this respect, it is worth noting
  1200. * that, being the service of outstanding requests unpreemptible, a
  1201. * little fraction of the holes may however be unrecoverable, thereby
  1202. * causing a little loss of bandwidth.
  1203. *
  1204. * The last important point is detecting whether bfqq does need this
  1205. * bandwidth recovery. In this respect, the next function deems the
  1206. * process associated with bfqq greedy, and thus allows it to recover
  1207. * the hole, if: 1) the process is waiting for the arrival of a new
  1208. * request (which implies that bfqq expired for one of the above two
  1209. * reasons), and 2) such a request has arrived soon. The first
  1210. * condition is controlled through the flag non_blocking_wait_rq,
  1211. * while the second through the flag arrived_in_time. If both
  1212. * conditions hold, then the function computes the budget in the
  1213. * above-described special way, and signals that the in-service queue
  1214. * should be expired. Timestamp back-shifting is done later in
  1215. * __bfq_activate_entity.
  1216. *
  1217. * 2. Reduce latency. Even if timestamps are not backshifted to let
  1218. * the process associated with bfqq recover a service hole, bfqq may
  1219. * however happen to have, after being (re)activated, a lower finish
  1220. * timestamp than the in-service queue. That is, the next budget of
  1221. * bfqq may have to be completed before the one of the in-service
  1222. * queue. If this is the case, then preempting the in-service queue
  1223. * allows this goal to be achieved, apart from the unpreemptible,
  1224. * outstanding requests mentioned above.
  1225. *
  1226. * Unfortunately, regardless of which of the above two goals one wants
  1227. * to achieve, service trees need first to be updated to know whether
  1228. * the in-service queue must be preempted. To have service trees
  1229. * correctly updated, the in-service queue must be expired and
  1230. * rescheduled, and bfqq must be scheduled too. This is one of the
  1231. * most costly operations (in future versions, the scheduling
  1232. * mechanism may be re-designed in such a way to make it possible to
  1233. * know whether preemption is needed without needing to update service
  1234. * trees). In addition, queue preemptions almost always cause random
  1235. * I/O, and thus loss of throughput. Because of these facts, the next
  1236. * function adopts the following simple scheme to avoid both costly
  1237. * operations and too frequent preemptions: it requests the expiration
  1238. * of the in-service queue (unconditionally) only for queues that need
  1239. * to recover a hole, or that either are weight-raised or deserve to
  1240. * be weight-raised.
  1241. */
  1242. static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
  1243. struct bfq_queue *bfqq,
  1244. bool arrived_in_time,
  1245. bool wr_or_deserves_wr)
  1246. {
  1247. struct bfq_entity *entity = &bfqq->entity;
  1248. if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
  1249. /*
  1250. * We do not clear the flag non_blocking_wait_rq here, as
  1251. * the latter is used in bfq_activate_bfqq to signal
  1252. * that timestamps need to be back-shifted (and is
  1253. * cleared right after).
  1254. */
  1255. /*
  1256. * In next assignment we rely on that either
  1257. * entity->service or entity->budget are not updated
  1258. * on expiration if bfqq is empty (see
  1259. * __bfq_bfqq_recalc_budget). Thus both quantities
  1260. * remain unchanged after such an expiration, and the
  1261. * following statement therefore assigns to
  1262. * entity->budget the remaining budget on such an
  1263. * expiration.
  1264. */
  1265. entity->budget = min_t(unsigned long,
  1266. bfq_bfqq_budget_left(bfqq),
  1267. bfqq->max_budget);
  1268. /*
  1269. * At this point, we have used entity->service to get
  1270. * the budget left (needed for updating
  1271. * entity->budget). Thus we finally can, and have to,
  1272. * reset entity->service. The latter must be reset
  1273. * because bfqq would otherwise be charged again for
  1274. * the service it has received during its previous
  1275. * service slot(s).
  1276. */
  1277. entity->service = 0;
  1278. return true;
  1279. }
  1280. /*
  1281. * We can finally complete expiration, by setting service to 0.
  1282. */
  1283. entity->service = 0;
  1284. entity->budget = max_t(unsigned long, bfqq->max_budget,
  1285. bfq_serv_to_charge(bfqq->next_rq, bfqq));
  1286. bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
  1287. return wr_or_deserves_wr;
  1288. }
  1289. /*
  1290. * Return the farthest past time instant according to jiffies
  1291. * macros.
  1292. */
  1293. static unsigned long bfq_smallest_from_now(void)
  1294. {
  1295. return jiffies - MAX_JIFFY_OFFSET;
  1296. }
  1297. static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
  1298. struct bfq_queue *bfqq,
  1299. unsigned int old_wr_coeff,
  1300. bool wr_or_deserves_wr,
  1301. bool interactive,
  1302. bool in_burst,
  1303. bool soft_rt)
  1304. {
  1305. if (old_wr_coeff == 1 && wr_or_deserves_wr) {
  1306. /* start a weight-raising period */
  1307. if (interactive) {
  1308. bfqq->service_from_wr = 0;
  1309. bfqq->wr_coeff = bfqd->bfq_wr_coeff;
  1310. bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
  1311. } else {
  1312. /*
  1313. * No interactive weight raising in progress
  1314. * here: assign minus infinity to
  1315. * wr_start_at_switch_to_srt, to make sure
  1316. * that, at the end of the soft-real-time
  1317. * weight raising periods that is starting
  1318. * now, no interactive weight-raising period
  1319. * may be wrongly considered as still in
  1320. * progress (and thus actually started by
  1321. * mistake).
  1322. */
  1323. bfqq->wr_start_at_switch_to_srt =
  1324. bfq_smallest_from_now();
  1325. bfqq->wr_coeff = bfqd->bfq_wr_coeff *
  1326. BFQ_SOFTRT_WEIGHT_FACTOR;
  1327. bfqq->wr_cur_max_time =
  1328. bfqd->bfq_wr_rt_max_time;
  1329. }
  1330. /*
  1331. * If needed, further reduce budget to make sure it is
  1332. * close to bfqq's backlog, so as to reduce the
  1333. * scheduling-error component due to a too large
  1334. * budget. Do not care about throughput consequences,
  1335. * but only about latency. Finally, do not assign a
  1336. * too small budget either, to avoid increasing
  1337. * latency by causing too frequent expirations.
  1338. */
  1339. bfqq->entity.budget = min_t(unsigned long,
  1340. bfqq->entity.budget,
  1341. 2 * bfq_min_budget(bfqd));
  1342. } else if (old_wr_coeff > 1) {
  1343. if (interactive) { /* update wr coeff and duration */
  1344. bfqq->wr_coeff = bfqd->bfq_wr_coeff;
  1345. bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
  1346. } else if (in_burst)
  1347. bfqq->wr_coeff = 1;
  1348. else if (soft_rt) {
  1349. /*
  1350. * The application is now or still meeting the
  1351. * requirements for being deemed soft rt. We
  1352. * can then correctly and safely (re)charge
  1353. * the weight-raising duration for the
  1354. * application with the weight-raising
  1355. * duration for soft rt applications.
  1356. *
  1357. * In particular, doing this recharge now, i.e.,
  1358. * before the weight-raising period for the
  1359. * application finishes, reduces the probability
  1360. * of the following negative scenario:
  1361. * 1) the weight of a soft rt application is
  1362. * raised at startup (as for any newly
  1363. * created application),
  1364. * 2) since the application is not interactive,
  1365. * at a certain time weight-raising is
  1366. * stopped for the application,
  1367. * 3) at that time the application happens to
  1368. * still have pending requests, and hence
  1369. * is destined to not have a chance to be
  1370. * deemed soft rt before these requests are
  1371. * completed (see the comments to the
  1372. * function bfq_bfqq_softrt_next_start()
  1373. * for details on soft rt detection),
  1374. * 4) these pending requests experience a high
  1375. * latency because the application is not
  1376. * weight-raised while they are pending.
  1377. */
  1378. if (bfqq->wr_cur_max_time !=
  1379. bfqd->bfq_wr_rt_max_time) {
  1380. bfqq->wr_start_at_switch_to_srt =
  1381. bfqq->last_wr_start_finish;
  1382. bfqq->wr_cur_max_time =
  1383. bfqd->bfq_wr_rt_max_time;
  1384. bfqq->wr_coeff = bfqd->bfq_wr_coeff *
  1385. BFQ_SOFTRT_WEIGHT_FACTOR;
  1386. }
  1387. bfqq->last_wr_start_finish = jiffies;
  1388. }
  1389. }
  1390. }
  1391. static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
  1392. struct bfq_queue *bfqq)
  1393. {
  1394. return bfqq->dispatched == 0 &&
  1395. time_is_before_jiffies(
  1396. bfqq->budget_timeout +
  1397. bfqd->bfq_wr_min_idle_time);
  1398. }
  1399. static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
  1400. struct bfq_queue *bfqq,
  1401. int old_wr_coeff,
  1402. struct request *rq,
  1403. bool *interactive)
  1404. {
  1405. bool soft_rt, in_burst, wr_or_deserves_wr,
  1406. bfqq_wants_to_preempt,
  1407. idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
  1408. /*
  1409. * See the comments on
  1410. * bfq_bfqq_update_budg_for_activation for
  1411. * details on the usage of the next variable.
  1412. */
  1413. arrived_in_time = ktime_get_ns() <=
  1414. bfqq->ttime.last_end_request +
  1415. bfqd->bfq_slice_idle * 3;
  1416. /*
  1417. * bfqq deserves to be weight-raised if:
  1418. * - it is sync,
  1419. * - it does not belong to a large burst,
  1420. * - it has been idle for enough time or is soft real-time,
  1421. * - is linked to a bfq_io_cq (it is not shared in any sense).
  1422. */
  1423. in_burst = bfq_bfqq_in_large_burst(bfqq);
  1424. soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
  1425. !in_burst &&
  1426. time_is_before_jiffies(bfqq->soft_rt_next_start) &&
  1427. bfqq->dispatched == 0;
  1428. *interactive = !in_burst && idle_for_long_time;
  1429. wr_or_deserves_wr = bfqd->low_latency &&
  1430. (bfqq->wr_coeff > 1 ||
  1431. (bfq_bfqq_sync(bfqq) &&
  1432. bfqq->bic && (*interactive || soft_rt)));
  1433. /*
  1434. * Using the last flag, update budget and check whether bfqq
  1435. * may want to preempt the in-service queue.
  1436. */
  1437. bfqq_wants_to_preempt =
  1438. bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
  1439. arrived_in_time,
  1440. wr_or_deserves_wr);
  1441. /*
  1442. * If bfqq happened to be activated in a burst, but has been
  1443. * idle for much more than an interactive queue, then we
  1444. * assume that, in the overall I/O initiated in the burst, the
  1445. * I/O associated with bfqq is finished. So bfqq does not need
  1446. * to be treated as a queue belonging to a burst
  1447. * anymore. Accordingly, we reset bfqq's in_large_burst flag
  1448. * if set, and remove bfqq from the burst list if it's
  1449. * there. We do not decrement burst_size, because the fact
  1450. * that bfqq does not need to belong to the burst list any
  1451. * more does not invalidate the fact that bfqq was created in
  1452. * a burst.
  1453. */
  1454. if (likely(!bfq_bfqq_just_created(bfqq)) &&
  1455. idle_for_long_time &&
  1456. time_is_before_jiffies(
  1457. bfqq->budget_timeout +
  1458. msecs_to_jiffies(10000))) {
  1459. hlist_del_init(&bfqq->burst_list_node);
  1460. bfq_clear_bfqq_in_large_burst(bfqq);
  1461. }
  1462. bfq_clear_bfqq_just_created(bfqq);
  1463. if (!bfq_bfqq_IO_bound(bfqq)) {
  1464. if (arrived_in_time) {
  1465. bfqq->requests_within_timer++;
  1466. if (bfqq->requests_within_timer >=
  1467. bfqd->bfq_requests_within_timer)
  1468. bfq_mark_bfqq_IO_bound(bfqq);
  1469. } else
  1470. bfqq->requests_within_timer = 0;
  1471. }
  1472. if (bfqd->low_latency) {
  1473. if (unlikely(time_is_after_jiffies(bfqq->split_time)))
  1474. /* wraparound */
  1475. bfqq->split_time =
  1476. jiffies - bfqd->bfq_wr_min_idle_time - 1;
  1477. if (time_is_before_jiffies(bfqq->split_time +
  1478. bfqd->bfq_wr_min_idle_time)) {
  1479. bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
  1480. old_wr_coeff,
  1481. wr_or_deserves_wr,
  1482. *interactive,
  1483. in_burst,
  1484. soft_rt);
  1485. if (old_wr_coeff != bfqq->wr_coeff)
  1486. bfqq->entity.prio_changed = 1;
  1487. }
  1488. }
  1489. bfqq->last_idle_bklogged = jiffies;
  1490. bfqq->service_from_backlogged = 0;
  1491. bfq_clear_bfqq_softrt_update(bfqq);
  1492. bfq_add_bfqq_busy(bfqd, bfqq);
  1493. /*
  1494. * Expire in-service queue only if preemption may be needed
  1495. * for guarantees. In this respect, the function
  1496. * next_queue_may_preempt just checks a simple, necessary
  1497. * condition, and not a sufficient condition based on
  1498. * timestamps. In fact, for the latter condition to be
  1499. * evaluated, timestamps would need first to be updated, and
  1500. * this operation is quite costly (see the comments on the
  1501. * function bfq_bfqq_update_budg_for_activation).
  1502. */
  1503. if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
  1504. bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
  1505. next_queue_may_preempt(bfqd))
  1506. bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
  1507. false, BFQQE_PREEMPTED);
  1508. }
  1509. static void bfq_add_request(struct request *rq)
  1510. {
  1511. struct bfq_queue *bfqq = RQ_BFQQ(rq);
  1512. struct bfq_data *bfqd = bfqq->bfqd;
  1513. struct request *next_rq, *prev;
  1514. unsigned int old_wr_coeff = bfqq->wr_coeff;
  1515. bool interactive = false;
  1516. bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
  1517. bfqq->queued[rq_is_sync(rq)]++;
  1518. bfqd->queued++;
  1519. elv_rb_add(&bfqq->sort_list, rq);
  1520. /*
  1521. * Check if this request is a better next-serve candidate.
  1522. */
  1523. prev = bfqq->next_rq;
  1524. next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
  1525. bfqq->next_rq = next_rq;
  1526. /*
  1527. * Adjust priority tree position, if next_rq changes.
  1528. */
  1529. if (prev != bfqq->next_rq)
  1530. bfq_pos_tree_add_move(bfqd, bfqq);
  1531. if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
  1532. bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
  1533. rq, &interactive);
  1534. else {
  1535. if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
  1536. time_is_before_jiffies(
  1537. bfqq->last_wr_start_finish +
  1538. bfqd->bfq_wr_min_inter_arr_async)) {
  1539. bfqq->wr_coeff = bfqd->bfq_wr_coeff;
  1540. bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
  1541. bfqd->wr_busy_queues++;
  1542. bfqq->entity.prio_changed = 1;
  1543. }
  1544. if (prev != bfqq->next_rq)
  1545. bfq_updated_next_req(bfqd, bfqq);
  1546. }
  1547. /*
  1548. * Assign jiffies to last_wr_start_finish in the following
  1549. * cases:
  1550. *
  1551. * . if bfqq is not going to be weight-raised, because, for
  1552. * non weight-raised queues, last_wr_start_finish stores the
  1553. * arrival time of the last request; as of now, this piece
  1554. * of information is used only for deciding whether to
  1555. * weight-raise async queues
  1556. *
  1557. * . if bfqq is not weight-raised, because, if bfqq is now
  1558. * switching to weight-raised, then last_wr_start_finish
  1559. * stores the time when weight-raising starts
  1560. *
  1561. * . if bfqq is interactive, because, regardless of whether
  1562. * bfqq is currently weight-raised, the weight-raising
  1563. * period must start or restart (this case is considered
  1564. * separately because it is not detected by the above
  1565. * conditions, if bfqq is already weight-raised)
  1566. *
  1567. * last_wr_start_finish has to be updated also if bfqq is soft
  1568. * real-time, because the weight-raising period is constantly
  1569. * restarted on idle-to-busy transitions for these queues, but
  1570. * this is already done in bfq_bfqq_handle_idle_busy_switch if
  1571. * needed.
  1572. */
  1573. if (bfqd->low_latency &&
  1574. (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
  1575. bfqq->last_wr_start_finish = jiffies;
  1576. }
  1577. static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
  1578. struct bio *bio,
  1579. struct request_queue *q)
  1580. {
  1581. struct bfq_queue *bfqq = bfqd->bio_bfqq;
  1582. if (bfqq)
  1583. return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
  1584. return NULL;
  1585. }
  1586. static sector_t get_sdist(sector_t last_pos, struct request *rq)
  1587. {
  1588. if (last_pos)
  1589. return abs(blk_rq_pos(rq) - last_pos);
  1590. return 0;
  1591. }
  1592. #if 0 /* Still not clear if we can do without next two functions */
  1593. static void bfq_activate_request(struct request_queue *q, struct request *rq)
  1594. {
  1595. struct bfq_data *bfqd = q->elevator->elevator_data;
  1596. bfqd->rq_in_driver++;
  1597. }
  1598. static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
  1599. {
  1600. struct bfq_data *bfqd = q->elevator->elevator_data;
  1601. bfqd->rq_in_driver--;
  1602. }
  1603. #endif
  1604. static void bfq_remove_request(struct request_queue *q,
  1605. struct request *rq)
  1606. {
  1607. struct bfq_queue *bfqq = RQ_BFQQ(rq);
  1608. struct bfq_data *bfqd = bfqq->bfqd;
  1609. const int sync = rq_is_sync(rq);
  1610. if (bfqq->next_rq == rq) {
  1611. bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
  1612. bfq_updated_next_req(bfqd, bfqq);
  1613. }
  1614. if (rq->queuelist.prev != &rq->queuelist)
  1615. list_del_init(&rq->queuelist);
  1616. bfqq->queued[sync]--;
  1617. bfqd->queued--;
  1618. elv_rb_del(&bfqq->sort_list, rq);
  1619. elv_rqhash_del(q, rq);
  1620. if (q->last_merge == rq)
  1621. q->last_merge = NULL;
  1622. if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
  1623. bfqq->next_rq = NULL;
  1624. if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
  1625. bfq_del_bfqq_busy(bfqd, bfqq, false);
  1626. /*
  1627. * bfqq emptied. In normal operation, when
  1628. * bfqq is empty, bfqq->entity.service and
  1629. * bfqq->entity.budget must contain,
  1630. * respectively, the service received and the
  1631. * budget used last time bfqq emptied. These
  1632. * facts do not hold in this case, as at least
  1633. * this last removal occurred while bfqq is
  1634. * not in service. To avoid inconsistencies,
  1635. * reset both bfqq->entity.service and
  1636. * bfqq->entity.budget, if bfqq has still a
  1637. * process that may issue I/O requests to it.
  1638. */
  1639. bfqq->entity.budget = bfqq->entity.service = 0;
  1640. }
  1641. /*
  1642. * Remove queue from request-position tree as it is empty.
  1643. */
  1644. if (bfqq->pos_root) {
  1645. rb_erase(&bfqq->pos_node, bfqq->pos_root);
  1646. bfqq->pos_root = NULL;
  1647. }
  1648. } else {
  1649. bfq_pos_tree_add_move(bfqd, bfqq);
  1650. }
  1651. if (rq->cmd_flags & REQ_META)
  1652. bfqq->meta_pending--;
  1653. }
  1654. static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
  1655. {
  1656. struct request_queue *q = hctx->queue;
  1657. struct bfq_data *bfqd = q->elevator->elevator_data;
  1658. struct request *free = NULL;
  1659. /*
  1660. * bfq_bic_lookup grabs the queue_lock: invoke it now and
  1661. * store its return value for later use, to avoid nesting
  1662. * queue_lock inside the bfqd->lock. We assume that the bic
  1663. * returned by bfq_bic_lookup does not go away before
  1664. * bfqd->lock is taken.
  1665. */
  1666. struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
  1667. bool ret;
  1668. spin_lock_irq(&bfqd->lock);
  1669. if (bic)
  1670. bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
  1671. else
  1672. bfqd->bio_bfqq = NULL;
  1673. bfqd->bio_bic = bic;
  1674. ret = blk_mq_sched_try_merge(q, bio, &free);
  1675. if (free)
  1676. blk_mq_free_request(free);
  1677. spin_unlock_irq(&bfqd->lock);
  1678. return ret;
  1679. }
  1680. static int bfq_request_merge(struct request_queue *q, struct request **req,
  1681. struct bio *bio)
  1682. {
  1683. struct bfq_data *bfqd = q->elevator->elevator_data;
  1684. struct request *__rq;
  1685. __rq = bfq_find_rq_fmerge(bfqd, bio, q);
  1686. if (__rq && elv_bio_merge_ok(__rq, bio)) {
  1687. *req = __rq;
  1688. return ELEVATOR_FRONT_MERGE;
  1689. }
  1690. return ELEVATOR_NO_MERGE;
  1691. }
  1692. static struct bfq_queue *bfq_init_rq(struct request *rq);
  1693. static void bfq_request_merged(struct request_queue *q, struct request *req,
  1694. enum elv_merge type)
  1695. {
  1696. if (type == ELEVATOR_FRONT_MERGE &&
  1697. rb_prev(&req->rb_node) &&
  1698. blk_rq_pos(req) <
  1699. blk_rq_pos(container_of(rb_prev(&req->rb_node),
  1700. struct request, rb_node))) {
  1701. struct bfq_queue *bfqq = bfq_init_rq(req);
  1702. struct bfq_data *bfqd;
  1703. struct request *prev, *next_rq;
  1704. if (!bfqq)
  1705. return;
  1706. bfqd = bfqq->bfqd;
  1707. /* Reposition request in its sort_list */
  1708. elv_rb_del(&bfqq->sort_list, req);
  1709. elv_rb_add(&bfqq->sort_list, req);
  1710. /* Choose next request to be served for bfqq */
  1711. prev = bfqq->next_rq;
  1712. next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
  1713. bfqd->last_position);
  1714. bfqq->next_rq = next_rq;
  1715. /*
  1716. * If next_rq changes, update both the queue's budget to
  1717. * fit the new request and the queue's position in its
  1718. * rq_pos_tree.
  1719. */
  1720. if (prev != bfqq->next_rq) {
  1721. bfq_updated_next_req(bfqd, bfqq);
  1722. bfq_pos_tree_add_move(bfqd, bfqq);
  1723. }
  1724. }
  1725. }
  1726. /*
  1727. * This function is called to notify the scheduler that the requests
  1728. * rq and 'next' have been merged, with 'next' going away. BFQ
  1729. * exploits this hook to address the following issue: if 'next' has a
  1730. * fifo_time lower that rq, then the fifo_time of rq must be set to
  1731. * the value of 'next', to not forget the greater age of 'next'.
  1732. *
  1733. * NOTE: in this function we assume that rq is in a bfq_queue, basing
  1734. * on that rq is picked from the hash table q->elevator->hash, which,
  1735. * in its turn, is filled only with I/O requests present in
  1736. * bfq_queues, while BFQ is in use for the request queue q. In fact,
  1737. * the function that fills this hash table (elv_rqhash_add) is called
  1738. * only by bfq_insert_request.
  1739. */
  1740. static void bfq_requests_merged(struct request_queue *q, struct request *rq,
  1741. struct request *next)
  1742. {
  1743. struct bfq_queue *bfqq = bfq_init_rq(rq),
  1744. *next_bfqq = bfq_init_rq(next);
  1745. if (!bfqq)
  1746. return;
  1747. /*
  1748. * If next and rq belong to the same bfq_queue and next is older
  1749. * than rq, then reposition rq in the fifo (by substituting next
  1750. * with rq). Otherwise, if next and rq belong to different
  1751. * bfq_queues, never reposition rq: in fact, we would have to
  1752. * reposition it with respect to next's position in its own fifo,
  1753. * which would most certainly be too expensive with respect to
  1754. * the benefits.
  1755. */
  1756. if (bfqq == next_bfqq &&
  1757. !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1758. next->fifo_time < rq->fifo_time) {
  1759. list_del_init(&rq->queuelist);
  1760. list_replace_init(&next->queuelist, &rq->queuelist);
  1761. rq->fifo_time = next->fifo_time;
  1762. }
  1763. if (bfqq->next_rq == next)
  1764. bfqq->next_rq = rq;
  1765. bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
  1766. }
  1767. /* Must be called with bfqq != NULL */
  1768. static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
  1769. {
  1770. if (bfq_bfqq_busy(bfqq))
  1771. bfqq->bfqd->wr_busy_queues--;
  1772. bfqq->wr_coeff = 1;
  1773. bfqq->wr_cur_max_time = 0;
  1774. bfqq->last_wr_start_finish = jiffies;
  1775. /*
  1776. * Trigger a weight change on the next invocation of
  1777. * __bfq_entity_update_weight_prio.
  1778. */
  1779. bfqq->entity.prio_changed = 1;
  1780. }
  1781. void bfq_end_wr_async_queues(struct bfq_data *bfqd,
  1782. struct bfq_group *bfqg)
  1783. {
  1784. int i, j;
  1785. for (i = 0; i < 2; i++)
  1786. for (j = 0; j < IOPRIO_BE_NR; j++)
  1787. if (bfqg->async_bfqq[i][j])
  1788. bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
  1789. if (bfqg->async_idle_bfqq)
  1790. bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
  1791. }
  1792. static void bfq_end_wr(struct bfq_data *bfqd)
  1793. {
  1794. struct bfq_queue *bfqq;
  1795. spin_lock_irq(&bfqd->lock);
  1796. list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
  1797. bfq_bfqq_end_wr(bfqq);
  1798. list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
  1799. bfq_bfqq_end_wr(bfqq);
  1800. bfq_end_wr_async(bfqd);
  1801. spin_unlock_irq(&bfqd->lock);
  1802. }
  1803. static sector_t bfq_io_struct_pos(void *io_struct, bool request)
  1804. {
  1805. if (request)
  1806. return blk_rq_pos(io_struct);
  1807. else
  1808. return ((struct bio *)io_struct)->bi_iter.bi_sector;
  1809. }
  1810. static int bfq_rq_close_to_sector(void *io_struct, bool request,
  1811. sector_t sector)
  1812. {
  1813. return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
  1814. BFQQ_CLOSE_THR;
  1815. }
  1816. static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
  1817. struct bfq_queue *bfqq,
  1818. sector_t sector)
  1819. {
  1820. struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
  1821. struct rb_node *parent, *node;
  1822. struct bfq_queue *__bfqq;
  1823. if (RB_EMPTY_ROOT(root))
  1824. return NULL;
  1825. /*
  1826. * First, if we find a request starting at the end of the last
  1827. * request, choose it.
  1828. */
  1829. __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
  1830. if (__bfqq)
  1831. return __bfqq;
  1832. /*
  1833. * If the exact sector wasn't found, the parent of the NULL leaf
  1834. * will contain the closest sector (rq_pos_tree sorted by
  1835. * next_request position).
  1836. */
  1837. __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
  1838. if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
  1839. return __bfqq;
  1840. if (blk_rq_pos(__bfqq->next_rq) < sector)
  1841. node = rb_next(&__bfqq->pos_node);
  1842. else
  1843. node = rb_prev(&__bfqq->pos_node);
  1844. if (!node)
  1845. return NULL;
  1846. __bfqq = rb_entry(node, struct bfq_queue, pos_node);
  1847. if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
  1848. return __bfqq;
  1849. return NULL;
  1850. }
  1851. static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
  1852. struct bfq_queue *cur_bfqq,
  1853. sector_t sector)
  1854. {
  1855. struct bfq_queue *bfqq;
  1856. /*
  1857. * We shall notice if some of the queues are cooperating,
  1858. * e.g., working closely on the same area of the device. In
  1859. * that case, we can group them together and: 1) don't waste
  1860. * time idling, and 2) serve the union of their requests in
  1861. * the best possible order for throughput.
  1862. */
  1863. bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
  1864. if (!bfqq || bfqq == cur_bfqq)
  1865. return NULL;
  1866. return bfqq;
  1867. }
  1868. static struct bfq_queue *
  1869. bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
  1870. {
  1871. int process_refs, new_process_refs;
  1872. struct bfq_queue *__bfqq;
  1873. /*
  1874. * If there are no process references on the new_bfqq, then it is
  1875. * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
  1876. * may have dropped their last reference (not just their last process
  1877. * reference).
  1878. */
  1879. if (!bfqq_process_refs(new_bfqq))
  1880. return NULL;
  1881. /* Avoid a circular list and skip interim queue merges. */
  1882. while ((__bfqq = new_bfqq->new_bfqq)) {
  1883. if (__bfqq == bfqq)
  1884. return NULL;
  1885. new_bfqq = __bfqq;
  1886. }
  1887. process_refs = bfqq_process_refs(bfqq);
  1888. new_process_refs = bfqq_process_refs(new_bfqq);
  1889. /*
  1890. * If the process for the bfqq has gone away, there is no
  1891. * sense in merging the queues.
  1892. */
  1893. if (process_refs == 0 || new_process_refs == 0)
  1894. return NULL;
  1895. bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
  1896. new_bfqq->pid);
  1897. /*
  1898. * Merging is just a redirection: the requests of the process
  1899. * owning one of the two queues are redirected to the other queue.
  1900. * The latter queue, in its turn, is set as shared if this is the
  1901. * first time that the requests of some process are redirected to
  1902. * it.
  1903. *
  1904. * We redirect bfqq to new_bfqq and not the opposite, because
  1905. * we are in the context of the process owning bfqq, thus we
  1906. * have the io_cq of this process. So we can immediately
  1907. * configure this io_cq to redirect the requests of the
  1908. * process to new_bfqq. In contrast, the io_cq of new_bfqq is
  1909. * not available any more (new_bfqq->bic == NULL).
  1910. *
  1911. * Anyway, even in case new_bfqq coincides with the in-service
  1912. * queue, redirecting requests the in-service queue is the
  1913. * best option, as we feed the in-service queue with new
  1914. * requests close to the last request served and, by doing so,
  1915. * are likely to increase the throughput.
  1916. */
  1917. bfqq->new_bfqq = new_bfqq;
  1918. new_bfqq->ref += process_refs;
  1919. return new_bfqq;
  1920. }
  1921. static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
  1922. struct bfq_queue *new_bfqq)
  1923. {
  1924. if (bfq_too_late_for_merging(new_bfqq))
  1925. return false;
  1926. if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
  1927. (bfqq->ioprio_class != new_bfqq->ioprio_class))
  1928. return false;
  1929. /*
  1930. * If either of the queues has already been detected as seeky,
  1931. * then merging it with the other queue is unlikely to lead to
  1932. * sequential I/O.
  1933. */
  1934. if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
  1935. return false;
  1936. /*
  1937. * Interleaved I/O is known to be done by (some) applications
  1938. * only for reads, so it does not make sense to merge async
  1939. * queues.
  1940. */
  1941. if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
  1942. return false;
  1943. return true;
  1944. }
  1945. /*
  1946. * Attempt to schedule a merge of bfqq with the currently in-service
  1947. * queue or with a close queue among the scheduled queues. Return
  1948. * NULL if no merge was scheduled, a pointer to the shared bfq_queue
  1949. * structure otherwise.
  1950. *
  1951. * The OOM queue is not allowed to participate to cooperation: in fact, since
  1952. * the requests temporarily redirected to the OOM queue could be redirected
  1953. * again to dedicated queues at any time, the state needed to correctly
  1954. * handle merging with the OOM queue would be quite complex and expensive
  1955. * to maintain. Besides, in such a critical condition as an out of memory,
  1956. * the benefits of queue merging may be little relevant, or even negligible.
  1957. *
  1958. * WARNING: queue merging may impair fairness among non-weight raised
  1959. * queues, for at least two reasons: 1) the original weight of a
  1960. * merged queue may change during the merged state, 2) even being the
  1961. * weight the same, a merged queue may be bloated with many more
  1962. * requests than the ones produced by its originally-associated
  1963. * process.
  1964. */
  1965. static struct bfq_queue *
  1966. bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  1967. void *io_struct, bool request)
  1968. {
  1969. struct bfq_queue *in_service_bfqq, *new_bfqq;
  1970. /*
  1971. * Prevent bfqq from being merged if it has been created too
  1972. * long ago. The idea is that true cooperating processes, and
  1973. * thus their associated bfq_queues, are supposed to be
  1974. * created shortly after each other. This is the case, e.g.,
  1975. * for KVM/QEMU and dump I/O threads. Basing on this
  1976. * assumption, the following filtering greatly reduces the
  1977. * probability that two non-cooperating processes, which just
  1978. * happen to do close I/O for some short time interval, have
  1979. * their queues merged by mistake.
  1980. */
  1981. if (bfq_too_late_for_merging(bfqq))
  1982. return NULL;
  1983. if (bfqq->new_bfqq)
  1984. return bfqq->new_bfqq;
  1985. if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
  1986. return NULL;
  1987. /* If there is only one backlogged queue, don't search. */
  1988. if (bfqd->busy_queues == 1)
  1989. return NULL;
  1990. in_service_bfqq = bfqd->in_service_queue;
  1991. if (in_service_bfqq && in_service_bfqq != bfqq &&
  1992. likely(in_service_bfqq != &bfqd->oom_bfqq) &&
  1993. bfq_rq_close_to_sector(io_struct, request,
  1994. bfqd->in_serv_last_pos) &&
  1995. bfqq->entity.parent == in_service_bfqq->entity.parent &&
  1996. bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
  1997. new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
  1998. if (new_bfqq)
  1999. return new_bfqq;
  2000. }
  2001. /*
  2002. * Check whether there is a cooperator among currently scheduled
  2003. * queues. The only thing we need is that the bio/request is not
  2004. * NULL, as we need it to establish whether a cooperator exists.
  2005. */
  2006. new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
  2007. bfq_io_struct_pos(io_struct, request));
  2008. if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
  2009. bfq_may_be_close_cooperator(bfqq, new_bfqq))
  2010. return bfq_setup_merge(bfqq, new_bfqq);
  2011. return NULL;
  2012. }
  2013. static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
  2014. {
  2015. struct bfq_io_cq *bic = bfqq->bic;
  2016. /*
  2017. * If !bfqq->bic, the queue is already shared or its requests
  2018. * have already been redirected to a shared queue; both idle window
  2019. * and weight raising state have already been saved. Do nothing.
  2020. */
  2021. if (!bic)
  2022. return;
  2023. bic->saved_ttime = bfqq->ttime;
  2024. bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
  2025. bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
  2026. bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
  2027. bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
  2028. if (unlikely(bfq_bfqq_just_created(bfqq) &&
  2029. !bfq_bfqq_in_large_burst(bfqq) &&
  2030. bfqq->bfqd->low_latency)) {
  2031. /*
  2032. * bfqq being merged right after being created: bfqq
  2033. * would have deserved interactive weight raising, but
  2034. * did not make it to be set in a weight-raised state,
  2035. * because of this early merge. Store directly the
  2036. * weight-raising state that would have been assigned
  2037. * to bfqq, so that to avoid that bfqq unjustly fails
  2038. * to enjoy weight raising if split soon.
  2039. */
  2040. bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
  2041. bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
  2042. bic->saved_last_wr_start_finish = jiffies;
  2043. } else {
  2044. bic->saved_wr_coeff = bfqq->wr_coeff;
  2045. bic->saved_wr_start_at_switch_to_srt =
  2046. bfqq->wr_start_at_switch_to_srt;
  2047. bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
  2048. bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
  2049. }
  2050. }
  2051. static void
  2052. bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
  2053. struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
  2054. {
  2055. bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
  2056. (unsigned long)new_bfqq->pid);
  2057. /* Save weight raising and idle window of the merged queues */
  2058. bfq_bfqq_save_state(bfqq);
  2059. bfq_bfqq_save_state(new_bfqq);
  2060. if (bfq_bfqq_IO_bound(bfqq))
  2061. bfq_mark_bfqq_IO_bound(new_bfqq);
  2062. bfq_clear_bfqq_IO_bound(bfqq);
  2063. /*
  2064. * If bfqq is weight-raised, then let new_bfqq inherit
  2065. * weight-raising. To reduce false positives, neglect the case
  2066. * where bfqq has just been created, but has not yet made it
  2067. * to be weight-raised (which may happen because EQM may merge
  2068. * bfqq even before bfq_add_request is executed for the first
  2069. * time for bfqq). Handling this case would however be very
  2070. * easy, thanks to the flag just_created.
  2071. */
  2072. if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
  2073. new_bfqq->wr_coeff = bfqq->wr_coeff;
  2074. new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
  2075. new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
  2076. new_bfqq->wr_start_at_switch_to_srt =
  2077. bfqq->wr_start_at_switch_to_srt;
  2078. if (bfq_bfqq_busy(new_bfqq))
  2079. bfqd->wr_busy_queues++;
  2080. new_bfqq->entity.prio_changed = 1;
  2081. }
  2082. if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
  2083. bfqq->wr_coeff = 1;
  2084. bfqq->entity.prio_changed = 1;
  2085. if (bfq_bfqq_busy(bfqq))
  2086. bfqd->wr_busy_queues--;
  2087. }
  2088. bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
  2089. bfqd->wr_busy_queues);
  2090. /*
  2091. * Merge queues (that is, let bic redirect its requests to new_bfqq)
  2092. */
  2093. bic_set_bfqq(bic, new_bfqq, 1);
  2094. bfq_mark_bfqq_coop(new_bfqq);
  2095. /*
  2096. * new_bfqq now belongs to at least two bics (it is a shared queue):
  2097. * set new_bfqq->bic to NULL. bfqq either:
  2098. * - does not belong to any bic any more, and hence bfqq->bic must
  2099. * be set to NULL, or
  2100. * - is a queue whose owning bics have already been redirected to a
  2101. * different queue, hence the queue is destined to not belong to
  2102. * any bic soon and bfqq->bic is already NULL (therefore the next
  2103. * assignment causes no harm).
  2104. */
  2105. new_bfqq->bic = NULL;
  2106. bfqq->bic = NULL;
  2107. /* release process reference to bfqq */
  2108. bfq_put_queue(bfqq);
  2109. }
  2110. static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
  2111. struct bio *bio)
  2112. {
  2113. struct bfq_data *bfqd = q->elevator->elevator_data;
  2114. bool is_sync = op_is_sync(bio->bi_opf);
  2115. struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
  2116. /*
  2117. * Disallow merge of a sync bio into an async request.
  2118. */
  2119. if (is_sync && !rq_is_sync(rq))
  2120. return false;
  2121. /*
  2122. * Lookup the bfqq that this bio will be queued with. Allow
  2123. * merge only if rq is queued there.
  2124. */
  2125. if (!bfqq)
  2126. return false;
  2127. /*
  2128. * We take advantage of this function to perform an early merge
  2129. * of the queues of possible cooperating processes.
  2130. */
  2131. new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
  2132. if (new_bfqq) {
  2133. /*
  2134. * bic still points to bfqq, then it has not yet been
  2135. * redirected to some other bfq_queue, and a queue
  2136. * merge beween bfqq and new_bfqq can be safely
  2137. * fulfillled, i.e., bic can be redirected to new_bfqq
  2138. * and bfqq can be put.
  2139. */
  2140. bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
  2141. new_bfqq);
  2142. /*
  2143. * If we get here, bio will be queued into new_queue,
  2144. * so use new_bfqq to decide whether bio and rq can be
  2145. * merged.
  2146. */
  2147. bfqq = new_bfqq;
  2148. /*
  2149. * Change also bqfd->bio_bfqq, as
  2150. * bfqd->bio_bic now points to new_bfqq, and
  2151. * this function may be invoked again (and then may
  2152. * use again bqfd->bio_bfqq).
  2153. */
  2154. bfqd->bio_bfqq = bfqq;
  2155. }
  2156. return bfqq == RQ_BFQQ(rq);
  2157. }
  2158. /*
  2159. * Set the maximum time for the in-service queue to consume its
  2160. * budget. This prevents seeky processes from lowering the throughput.
  2161. * In practice, a time-slice service scheme is used with seeky
  2162. * processes.
  2163. */
  2164. static void bfq_set_budget_timeout(struct bfq_data *bfqd,
  2165. struct bfq_queue *bfqq)
  2166. {
  2167. unsigned int timeout_coeff;
  2168. if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
  2169. timeout_coeff = 1;
  2170. else
  2171. timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
  2172. bfqd->last_budget_start = ktime_get();
  2173. bfqq->budget_timeout = jiffies +
  2174. bfqd->bfq_timeout * timeout_coeff;
  2175. }
  2176. static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
  2177. struct bfq_queue *bfqq)
  2178. {
  2179. if (bfqq) {
  2180. bfq_clear_bfqq_fifo_expire(bfqq);
  2181. bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
  2182. if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
  2183. bfqq->wr_coeff > 1 &&
  2184. bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
  2185. time_is_before_jiffies(bfqq->budget_timeout)) {
  2186. /*
  2187. * For soft real-time queues, move the start
  2188. * of the weight-raising period forward by the
  2189. * time the queue has not received any
  2190. * service. Otherwise, a relatively long
  2191. * service delay is likely to cause the
  2192. * weight-raising period of the queue to end,
  2193. * because of the short duration of the
  2194. * weight-raising period of a soft real-time
  2195. * queue. It is worth noting that this move
  2196. * is not so dangerous for the other queues,
  2197. * because soft real-time queues are not
  2198. * greedy.
  2199. *
  2200. * To not add a further variable, we use the
  2201. * overloaded field budget_timeout to
  2202. * determine for how long the queue has not
  2203. * received service, i.e., how much time has
  2204. * elapsed since the queue expired. However,
  2205. * this is a little imprecise, because
  2206. * budget_timeout is set to jiffies if bfqq
  2207. * not only expires, but also remains with no
  2208. * request.
  2209. */
  2210. if (time_after(bfqq->budget_timeout,
  2211. bfqq->last_wr_start_finish))
  2212. bfqq->last_wr_start_finish +=
  2213. jiffies - bfqq->budget_timeout;
  2214. else
  2215. bfqq->last_wr_start_finish = jiffies;
  2216. }
  2217. bfq_set_budget_timeout(bfqd, bfqq);
  2218. bfq_log_bfqq(bfqd, bfqq,
  2219. "set_in_service_queue, cur-budget = %d",
  2220. bfqq->entity.budget);
  2221. }
  2222. bfqd->in_service_queue = bfqq;
  2223. bfqd->in_serv_last_pos = 0;
  2224. }
  2225. /*
  2226. * Get and set a new queue for service.
  2227. */
  2228. static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
  2229. {
  2230. struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
  2231. __bfq_set_in_service_queue(bfqd, bfqq);
  2232. return bfqq;
  2233. }
  2234. static void bfq_arm_slice_timer(struct bfq_data *bfqd)
  2235. {
  2236. struct bfq_queue *bfqq = bfqd->in_service_queue;
  2237. u32 sl;
  2238. bfq_mark_bfqq_wait_request(bfqq);
  2239. /*
  2240. * We don't want to idle for seeks, but we do want to allow
  2241. * fair distribution of slice time for a process doing back-to-back
  2242. * seeks. So allow a little bit of time for him to submit a new rq.
  2243. */
  2244. sl = bfqd->bfq_slice_idle;
  2245. /*
  2246. * Unless the queue is being weight-raised or the scenario is
  2247. * asymmetric, grant only minimum idle time if the queue
  2248. * is seeky. A long idling is preserved for a weight-raised
  2249. * queue, or, more in general, in an asymmetric scenario,
  2250. * because a long idling is needed for guaranteeing to a queue
  2251. * its reserved share of the throughput (in particular, it is
  2252. * needed if the queue has a higher weight than some other
  2253. * queue).
  2254. */
  2255. if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
  2256. bfq_symmetric_scenario(bfqd))
  2257. sl = min_t(u64, sl, BFQ_MIN_TT);
  2258. else if (bfqq->wr_coeff > 1)
  2259. sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
  2260. bfqd->last_idling_start = ktime_get();
  2261. hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
  2262. HRTIMER_MODE_REL);
  2263. bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
  2264. }
  2265. /*
  2266. * In autotuning mode, max_budget is dynamically recomputed as the
  2267. * amount of sectors transferred in timeout at the estimated peak
  2268. * rate. This enables BFQ to utilize a full timeslice with a full
  2269. * budget, even if the in-service queue is served at peak rate. And
  2270. * this maximises throughput with sequential workloads.
  2271. */
  2272. static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
  2273. {
  2274. return (u64)bfqd->peak_rate * USEC_PER_MSEC *
  2275. jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
  2276. }
  2277. /*
  2278. * Update parameters related to throughput and responsiveness, as a
  2279. * function of the estimated peak rate. See comments on
  2280. * bfq_calc_max_budget(), and on the ref_wr_duration array.
  2281. */
  2282. static void update_thr_responsiveness_params(struct bfq_data *bfqd)
  2283. {
  2284. if (bfqd->bfq_user_max_budget == 0) {
  2285. bfqd->bfq_max_budget =
  2286. bfq_calc_max_budget(bfqd);
  2287. bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
  2288. }
  2289. }
  2290. static void bfq_reset_rate_computation(struct bfq_data *bfqd,
  2291. struct request *rq)
  2292. {
  2293. if (rq != NULL) { /* new rq dispatch now, reset accordingly */
  2294. bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
  2295. bfqd->peak_rate_samples = 1;
  2296. bfqd->sequential_samples = 0;
  2297. bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
  2298. blk_rq_sectors(rq);
  2299. } else /* no new rq dispatched, just reset the number of samples */
  2300. bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
  2301. bfq_log(bfqd,
  2302. "reset_rate_computation at end, sample %u/%u tot_sects %llu",
  2303. bfqd->peak_rate_samples, bfqd->sequential_samples,
  2304. bfqd->tot_sectors_dispatched);
  2305. }
  2306. static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
  2307. {
  2308. u32 rate, weight, divisor;
  2309. /*
  2310. * For the convergence property to hold (see comments on
  2311. * bfq_update_peak_rate()) and for the assessment to be
  2312. * reliable, a minimum number of samples must be present, and
  2313. * a minimum amount of time must have elapsed. If not so, do
  2314. * not compute new rate. Just reset parameters, to get ready
  2315. * for a new evaluation attempt.
  2316. */
  2317. if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
  2318. bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
  2319. goto reset_computation;
  2320. /*
  2321. * If a new request completion has occurred after last
  2322. * dispatch, then, to approximate the rate at which requests
  2323. * have been served by the device, it is more precise to
  2324. * extend the observation interval to the last completion.
  2325. */
  2326. bfqd->delta_from_first =
  2327. max_t(u64, bfqd->delta_from_first,
  2328. bfqd->last_completion - bfqd->first_dispatch);
  2329. /*
  2330. * Rate computed in sects/usec, and not sects/nsec, for
  2331. * precision issues.
  2332. */
  2333. rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
  2334. div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
  2335. /*
  2336. * Peak rate not updated if:
  2337. * - the percentage of sequential dispatches is below 3/4 of the
  2338. * total, and rate is below the current estimated peak rate
  2339. * - rate is unreasonably high (> 20M sectors/sec)
  2340. */
  2341. if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
  2342. rate <= bfqd->peak_rate) ||
  2343. rate > 20<<BFQ_RATE_SHIFT)
  2344. goto reset_computation;
  2345. /*
  2346. * We have to update the peak rate, at last! To this purpose,
  2347. * we use a low-pass filter. We compute the smoothing constant
  2348. * of the filter as a function of the 'weight' of the new
  2349. * measured rate.
  2350. *
  2351. * As can be seen in next formulas, we define this weight as a
  2352. * quantity proportional to how sequential the workload is,
  2353. * and to how long the observation time interval is.
  2354. *
  2355. * The weight runs from 0 to 8. The maximum value of the
  2356. * weight, 8, yields the minimum value for the smoothing
  2357. * constant. At this minimum value for the smoothing constant,
  2358. * the measured rate contributes for half of the next value of
  2359. * the estimated peak rate.
  2360. *
  2361. * So, the first step is to compute the weight as a function
  2362. * of how sequential the workload is. Note that the weight
  2363. * cannot reach 9, because bfqd->sequential_samples cannot
  2364. * become equal to bfqd->peak_rate_samples, which, in its
  2365. * turn, holds true because bfqd->sequential_samples is not
  2366. * incremented for the first sample.
  2367. */
  2368. weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
  2369. /*
  2370. * Second step: further refine the weight as a function of the
  2371. * duration of the observation interval.
  2372. */
  2373. weight = min_t(u32, 8,
  2374. div_u64(weight * bfqd->delta_from_first,
  2375. BFQ_RATE_REF_INTERVAL));
  2376. /*
  2377. * Divisor ranging from 10, for minimum weight, to 2, for
  2378. * maximum weight.
  2379. */
  2380. divisor = 10 - weight;
  2381. /*
  2382. * Finally, update peak rate:
  2383. *
  2384. * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
  2385. */
  2386. bfqd->peak_rate *= divisor-1;
  2387. bfqd->peak_rate /= divisor;
  2388. rate /= divisor; /* smoothing constant alpha = 1/divisor */
  2389. bfqd->peak_rate += rate;
  2390. /*
  2391. * For a very slow device, bfqd->peak_rate can reach 0 (see
  2392. * the minimum representable values reported in the comments
  2393. * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
  2394. * divisions by zero where bfqd->peak_rate is used as a
  2395. * divisor.
  2396. */
  2397. bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
  2398. update_thr_responsiveness_params(bfqd);
  2399. reset_computation:
  2400. bfq_reset_rate_computation(bfqd, rq);
  2401. }
  2402. /*
  2403. * Update the read/write peak rate (the main quantity used for
  2404. * auto-tuning, see update_thr_responsiveness_params()).
  2405. *
  2406. * It is not trivial to estimate the peak rate (correctly): because of
  2407. * the presence of sw and hw queues between the scheduler and the
  2408. * device components that finally serve I/O requests, it is hard to
  2409. * say exactly when a given dispatched request is served inside the
  2410. * device, and for how long. As a consequence, it is hard to know
  2411. * precisely at what rate a given set of requests is actually served
  2412. * by the device.
  2413. *
  2414. * On the opposite end, the dispatch time of any request is trivially
  2415. * available, and, from this piece of information, the "dispatch rate"
  2416. * of requests can be immediately computed. So, the idea in the next
  2417. * function is to use what is known, namely request dispatch times
  2418. * (plus, when useful, request completion times), to estimate what is
  2419. * unknown, namely in-device request service rate.
  2420. *
  2421. * The main issue is that, because of the above facts, the rate at
  2422. * which a certain set of requests is dispatched over a certain time
  2423. * interval can vary greatly with respect to the rate at which the
  2424. * same requests are then served. But, since the size of any
  2425. * intermediate queue is limited, and the service scheme is lossless
  2426. * (no request is silently dropped), the following obvious convergence
  2427. * property holds: the number of requests dispatched MUST become
  2428. * closer and closer to the number of requests completed as the
  2429. * observation interval grows. This is the key property used in
  2430. * the next function to estimate the peak service rate as a function
  2431. * of the observed dispatch rate. The function assumes to be invoked
  2432. * on every request dispatch.
  2433. */
  2434. static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
  2435. {
  2436. u64 now_ns = ktime_get_ns();
  2437. if (bfqd->peak_rate_samples == 0) { /* first dispatch */
  2438. bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
  2439. bfqd->peak_rate_samples);
  2440. bfq_reset_rate_computation(bfqd, rq);
  2441. goto update_last_values; /* will add one sample */
  2442. }
  2443. /*
  2444. * Device idle for very long: the observation interval lasting
  2445. * up to this dispatch cannot be a valid observation interval
  2446. * for computing a new peak rate (similarly to the late-
  2447. * completion event in bfq_completed_request()). Go to
  2448. * update_rate_and_reset to have the following three steps
  2449. * taken:
  2450. * - close the observation interval at the last (previous)
  2451. * request dispatch or completion
  2452. * - compute rate, if possible, for that observation interval
  2453. * - start a new observation interval with this dispatch
  2454. */
  2455. if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
  2456. bfqd->rq_in_driver == 0)
  2457. goto update_rate_and_reset;
  2458. /* Update sampling information */
  2459. bfqd->peak_rate_samples++;
  2460. if ((bfqd->rq_in_driver > 0 ||
  2461. now_ns - bfqd->last_completion < BFQ_MIN_TT)
  2462. && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
  2463. bfqd->sequential_samples++;
  2464. bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
  2465. /* Reset max observed rq size every 32 dispatches */
  2466. if (likely(bfqd->peak_rate_samples % 32))
  2467. bfqd->last_rq_max_size =
  2468. max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
  2469. else
  2470. bfqd->last_rq_max_size = blk_rq_sectors(rq);
  2471. bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
  2472. /* Target observation interval not yet reached, go on sampling */
  2473. if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
  2474. goto update_last_values;
  2475. update_rate_and_reset:
  2476. bfq_update_rate_reset(bfqd, rq);
  2477. update_last_values:
  2478. bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2479. if (RQ_BFQQ(rq) == bfqd->in_service_queue)
  2480. bfqd->in_serv_last_pos = bfqd->last_position;
  2481. bfqd->last_dispatch = now_ns;
  2482. }
  2483. /*
  2484. * Remove request from internal lists.
  2485. */
  2486. static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
  2487. {
  2488. struct bfq_queue *bfqq = RQ_BFQQ(rq);
  2489. /*
  2490. * For consistency, the next instruction should have been
  2491. * executed after removing the request from the queue and
  2492. * dispatching it. We execute instead this instruction before
  2493. * bfq_remove_request() (and hence introduce a temporary
  2494. * inconsistency), for efficiency. In fact, should this
  2495. * dispatch occur for a non in-service bfqq, this anticipated
  2496. * increment prevents two counters related to bfqq->dispatched
  2497. * from risking to be, first, uselessly decremented, and then
  2498. * incremented again when the (new) value of bfqq->dispatched
  2499. * happens to be taken into account.
  2500. */
  2501. bfqq->dispatched++;
  2502. bfq_update_peak_rate(q->elevator->elevator_data, rq);
  2503. bfq_remove_request(q, rq);
  2504. }
  2505. static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  2506. {
  2507. /*
  2508. * If this bfqq is shared between multiple processes, check
  2509. * to make sure that those processes are still issuing I/Os
  2510. * within the mean seek distance. If not, it may be time to
  2511. * break the queues apart again.
  2512. */
  2513. if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
  2514. bfq_mark_bfqq_split_coop(bfqq);
  2515. if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
  2516. if (bfqq->dispatched == 0)
  2517. /*
  2518. * Overloading budget_timeout field to store
  2519. * the time at which the queue remains with no
  2520. * backlog and no outstanding request; used by
  2521. * the weight-raising mechanism.
  2522. */
  2523. bfqq->budget_timeout = jiffies;
  2524. bfq_del_bfqq_busy(bfqd, bfqq, true);
  2525. } else {
  2526. bfq_requeue_bfqq(bfqd, bfqq, true);
  2527. /*
  2528. * Resort priority tree of potential close cooperators.
  2529. */
  2530. bfq_pos_tree_add_move(bfqd, bfqq);
  2531. }
  2532. /*
  2533. * All in-service entities must have been properly deactivated
  2534. * or requeued before executing the next function, which
  2535. * resets all in-service entites as no more in service.
  2536. */
  2537. __bfq_bfqd_reset_in_service(bfqd);
  2538. }
  2539. /**
  2540. * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
  2541. * @bfqd: device data.
  2542. * @bfqq: queue to update.
  2543. * @reason: reason for expiration.
  2544. *
  2545. * Handle the feedback on @bfqq budget at queue expiration.
  2546. * See the body for detailed comments.
  2547. */
  2548. static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
  2549. struct bfq_queue *bfqq,
  2550. enum bfqq_expiration reason)
  2551. {
  2552. struct request *next_rq;
  2553. int budget, min_budget;
  2554. min_budget = bfq_min_budget(bfqd);
  2555. if (bfqq->wr_coeff == 1)
  2556. budget = bfqq->max_budget;
  2557. else /*
  2558. * Use a constant, low budget for weight-raised queues,
  2559. * to help achieve a low latency. Keep it slightly higher
  2560. * than the minimum possible budget, to cause a little
  2561. * bit fewer expirations.
  2562. */
  2563. budget = 2 * min_budget;
  2564. bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
  2565. bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
  2566. bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
  2567. budget, bfq_min_budget(bfqd));
  2568. bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
  2569. bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
  2570. if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
  2571. switch (reason) {
  2572. /*
  2573. * Caveat: in all the following cases we trade latency
  2574. * for throughput.
  2575. */
  2576. case BFQQE_TOO_IDLE:
  2577. /*
  2578. * This is the only case where we may reduce
  2579. * the budget: if there is no request of the
  2580. * process still waiting for completion, then
  2581. * we assume (tentatively) that the timer has
  2582. * expired because the batch of requests of
  2583. * the process could have been served with a
  2584. * smaller budget. Hence, betting that
  2585. * process will behave in the same way when it
  2586. * becomes backlogged again, we reduce its
  2587. * next budget. As long as we guess right,
  2588. * this budget cut reduces the latency
  2589. * experienced by the process.
  2590. *
  2591. * However, if there are still outstanding
  2592. * requests, then the process may have not yet
  2593. * issued its next request just because it is
  2594. * still waiting for the completion of some of
  2595. * the still outstanding ones. So in this
  2596. * subcase we do not reduce its budget, on the
  2597. * contrary we increase it to possibly boost
  2598. * the throughput, as discussed in the
  2599. * comments to the BUDGET_TIMEOUT case.
  2600. */
  2601. if (bfqq->dispatched > 0) /* still outstanding reqs */
  2602. budget = min(budget * 2, bfqd->bfq_max_budget);
  2603. else {
  2604. if (budget > 5 * min_budget)
  2605. budget -= 4 * min_budget;
  2606. else
  2607. budget = min_budget;
  2608. }
  2609. break;
  2610. case BFQQE_BUDGET_TIMEOUT:
  2611. /*
  2612. * We double the budget here because it gives
  2613. * the chance to boost the throughput if this
  2614. * is not a seeky process (and has bumped into
  2615. * this timeout because of, e.g., ZBR).
  2616. */
  2617. budget = min(budget * 2, bfqd->bfq_max_budget);
  2618. break;
  2619. case BFQQE_BUDGET_EXHAUSTED:
  2620. /*
  2621. * The process still has backlog, and did not
  2622. * let either the budget timeout or the disk
  2623. * idling timeout expire. Hence it is not
  2624. * seeky, has a short thinktime and may be
  2625. * happy with a higher budget too. So
  2626. * definitely increase the budget of this good
  2627. * candidate to boost the disk throughput.
  2628. */
  2629. budget = min(budget * 4, bfqd->bfq_max_budget);
  2630. break;
  2631. case BFQQE_NO_MORE_REQUESTS:
  2632. /*
  2633. * For queues that expire for this reason, it
  2634. * is particularly important to keep the
  2635. * budget close to the actual service they
  2636. * need. Doing so reduces the timestamp
  2637. * misalignment problem described in the
  2638. * comments in the body of
  2639. * __bfq_activate_entity. In fact, suppose
  2640. * that a queue systematically expires for
  2641. * BFQQE_NO_MORE_REQUESTS and presents a
  2642. * new request in time to enjoy timestamp
  2643. * back-shifting. The larger the budget of the
  2644. * queue is with respect to the service the
  2645. * queue actually requests in each service
  2646. * slot, the more times the queue can be
  2647. * reactivated with the same virtual finish
  2648. * time. It follows that, even if this finish
  2649. * time is pushed to the system virtual time
  2650. * to reduce the consequent timestamp
  2651. * misalignment, the queue unjustly enjoys for
  2652. * many re-activations a lower finish time
  2653. * than all newly activated queues.
  2654. *
  2655. * The service needed by bfqq is measured
  2656. * quite precisely by bfqq->entity.service.
  2657. * Since bfqq does not enjoy device idling,
  2658. * bfqq->entity.service is equal to the number
  2659. * of sectors that the process associated with
  2660. * bfqq requested to read/write before waiting
  2661. * for request completions, or blocking for
  2662. * other reasons.
  2663. */
  2664. budget = max_t(int, bfqq->entity.service, min_budget);
  2665. break;
  2666. default:
  2667. return;
  2668. }
  2669. } else if (!bfq_bfqq_sync(bfqq)) {
  2670. /*
  2671. * Async queues get always the maximum possible
  2672. * budget, as for them we do not care about latency
  2673. * (in addition, their ability to dispatch is limited
  2674. * by the charging factor).
  2675. */
  2676. budget = bfqd->bfq_max_budget;
  2677. }
  2678. bfqq->max_budget = budget;
  2679. if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
  2680. !bfqd->bfq_user_max_budget)
  2681. bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
  2682. /*
  2683. * If there is still backlog, then assign a new budget, making
  2684. * sure that it is large enough for the next request. Since
  2685. * the finish time of bfqq must be kept in sync with the
  2686. * budget, be sure to call __bfq_bfqq_expire() *after* this
  2687. * update.
  2688. *
  2689. * If there is no backlog, then no need to update the budget;
  2690. * it will be updated on the arrival of a new request.
  2691. */
  2692. next_rq = bfqq->next_rq;
  2693. if (next_rq)
  2694. bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
  2695. bfq_serv_to_charge(next_rq, bfqq));
  2696. bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
  2697. next_rq ? blk_rq_sectors(next_rq) : 0,
  2698. bfqq->entity.budget);
  2699. }
  2700. /*
  2701. * Return true if the process associated with bfqq is "slow". The slow
  2702. * flag is used, in addition to the budget timeout, to reduce the
  2703. * amount of service provided to seeky processes, and thus reduce
  2704. * their chances to lower the throughput. More details in the comments
  2705. * on the function bfq_bfqq_expire().
  2706. *
  2707. * An important observation is in order: as discussed in the comments
  2708. * on the function bfq_update_peak_rate(), with devices with internal
  2709. * queues, it is hard if ever possible to know when and for how long
  2710. * an I/O request is processed by the device (apart from the trivial
  2711. * I/O pattern where a new request is dispatched only after the
  2712. * previous one has been completed). This makes it hard to evaluate
  2713. * the real rate at which the I/O requests of each bfq_queue are
  2714. * served. In fact, for an I/O scheduler like BFQ, serving a
  2715. * bfq_queue means just dispatching its requests during its service
  2716. * slot (i.e., until the budget of the queue is exhausted, or the
  2717. * queue remains idle, or, finally, a timeout fires). But, during the
  2718. * service slot of a bfq_queue, around 100 ms at most, the device may
  2719. * be even still processing requests of bfq_queues served in previous
  2720. * service slots. On the opposite end, the requests of the in-service
  2721. * bfq_queue may be completed after the service slot of the queue
  2722. * finishes.
  2723. *
  2724. * Anyway, unless more sophisticated solutions are used
  2725. * (where possible), the sum of the sizes of the requests dispatched
  2726. * during the service slot of a bfq_queue is probably the only
  2727. * approximation available for the service received by the bfq_queue
  2728. * during its service slot. And this sum is the quantity used in this
  2729. * function to evaluate the I/O speed of a process.
  2730. */
  2731. static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  2732. bool compensate, enum bfqq_expiration reason,
  2733. unsigned long *delta_ms)
  2734. {
  2735. ktime_t delta_ktime;
  2736. u32 delta_usecs;
  2737. bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
  2738. if (!bfq_bfqq_sync(bfqq))
  2739. return false;
  2740. if (compensate)
  2741. delta_ktime = bfqd->last_idling_start;
  2742. else
  2743. delta_ktime = ktime_get();
  2744. delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
  2745. delta_usecs = ktime_to_us(delta_ktime);
  2746. /* don't use too short time intervals */
  2747. if (delta_usecs < 1000) {
  2748. if (blk_queue_nonrot(bfqd->queue))
  2749. /*
  2750. * give same worst-case guarantees as idling
  2751. * for seeky
  2752. */
  2753. *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
  2754. else /* charge at least one seek */
  2755. *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
  2756. return slow;
  2757. }
  2758. *delta_ms = delta_usecs / USEC_PER_MSEC;
  2759. /*
  2760. * Use only long (> 20ms) intervals to filter out excessive
  2761. * spikes in service rate estimation.
  2762. */
  2763. if (delta_usecs > 20000) {
  2764. /*
  2765. * Caveat for rotational devices: processes doing I/O
  2766. * in the slower disk zones tend to be slow(er) even
  2767. * if not seeky. In this respect, the estimated peak
  2768. * rate is likely to be an average over the disk
  2769. * surface. Accordingly, to not be too harsh with
  2770. * unlucky processes, a process is deemed slow only if
  2771. * its rate has been lower than half of the estimated
  2772. * peak rate.
  2773. */
  2774. slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
  2775. }
  2776. bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
  2777. return slow;
  2778. }
  2779. /*
  2780. * To be deemed as soft real-time, an application must meet two
  2781. * requirements. First, the application must not require an average
  2782. * bandwidth higher than the approximate bandwidth required to playback or
  2783. * record a compressed high-definition video.
  2784. * The next function is invoked on the completion of the last request of a
  2785. * batch, to compute the next-start time instant, soft_rt_next_start, such
  2786. * that, if the next request of the application does not arrive before
  2787. * soft_rt_next_start, then the above requirement on the bandwidth is met.
  2788. *
  2789. * The second requirement is that the request pattern of the application is
  2790. * isochronous, i.e., that, after issuing a request or a batch of requests,
  2791. * the application stops issuing new requests until all its pending requests
  2792. * have been completed. After that, the application may issue a new batch,
  2793. * and so on.
  2794. * For this reason the next function is invoked to compute
  2795. * soft_rt_next_start only for applications that meet this requirement,
  2796. * whereas soft_rt_next_start is set to infinity for applications that do
  2797. * not.
  2798. *
  2799. * Unfortunately, even a greedy (i.e., I/O-bound) application may
  2800. * happen to meet, occasionally or systematically, both the above
  2801. * bandwidth and isochrony requirements. This may happen at least in
  2802. * the following circumstances. First, if the CPU load is high. The
  2803. * application may stop issuing requests while the CPUs are busy
  2804. * serving other processes, then restart, then stop again for a while,
  2805. * and so on. The other circumstances are related to the storage
  2806. * device: the storage device is highly loaded or reaches a low-enough
  2807. * throughput with the I/O of the application (e.g., because the I/O
  2808. * is random and/or the device is slow). In all these cases, the
  2809. * I/O of the application may be simply slowed down enough to meet
  2810. * the bandwidth and isochrony requirements. To reduce the probability
  2811. * that greedy applications are deemed as soft real-time in these
  2812. * corner cases, a further rule is used in the computation of
  2813. * soft_rt_next_start: the return value of this function is forced to
  2814. * be higher than the maximum between the following two quantities.
  2815. *
  2816. * (a) Current time plus: (1) the maximum time for which the arrival
  2817. * of a request is waited for when a sync queue becomes idle,
  2818. * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
  2819. * postpone for a moment the reason for adding a few extra
  2820. * jiffies; we get back to it after next item (b). Lower-bounding
  2821. * the return value of this function with the current time plus
  2822. * bfqd->bfq_slice_idle tends to filter out greedy applications,
  2823. * because the latter issue their next request as soon as possible
  2824. * after the last one has been completed. In contrast, a soft
  2825. * real-time application spends some time processing data, after a
  2826. * batch of its requests has been completed.
  2827. *
  2828. * (b) Current value of bfqq->soft_rt_next_start. As pointed out
  2829. * above, greedy applications may happen to meet both the
  2830. * bandwidth and isochrony requirements under heavy CPU or
  2831. * storage-device load. In more detail, in these scenarios, these
  2832. * applications happen, only for limited time periods, to do I/O
  2833. * slowly enough to meet all the requirements described so far,
  2834. * including the filtering in above item (a). These slow-speed
  2835. * time intervals are usually interspersed between other time
  2836. * intervals during which these applications do I/O at a very high
  2837. * speed. Fortunately, exactly because of the high speed of the
  2838. * I/O in the high-speed intervals, the values returned by this
  2839. * function happen to be so high, near the end of any such
  2840. * high-speed interval, to be likely to fall *after* the end of
  2841. * the low-speed time interval that follows. These high values are
  2842. * stored in bfqq->soft_rt_next_start after each invocation of
  2843. * this function. As a consequence, if the last value of
  2844. * bfqq->soft_rt_next_start is constantly used to lower-bound the
  2845. * next value that this function may return, then, from the very
  2846. * beginning of a low-speed interval, bfqq->soft_rt_next_start is
  2847. * likely to be constantly kept so high that any I/O request
  2848. * issued during the low-speed interval is considered as arriving
  2849. * to soon for the application to be deemed as soft
  2850. * real-time. Then, in the high-speed interval that follows, the
  2851. * application will not be deemed as soft real-time, just because
  2852. * it will do I/O at a high speed. And so on.
  2853. *
  2854. * Getting back to the filtering in item (a), in the following two
  2855. * cases this filtering might be easily passed by a greedy
  2856. * application, if the reference quantity was just
  2857. * bfqd->bfq_slice_idle:
  2858. * 1) HZ is so low that the duration of a jiffy is comparable to or
  2859. * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
  2860. * devices with HZ=100. The time granularity may be so coarse
  2861. * that the approximation, in jiffies, of bfqd->bfq_slice_idle
  2862. * is rather lower than the exact value.
  2863. * 2) jiffies, instead of increasing at a constant rate, may stop increasing
  2864. * for a while, then suddenly 'jump' by several units to recover the lost
  2865. * increments. This seems to happen, e.g., inside virtual machines.
  2866. * To address this issue, in the filtering in (a) we do not use as a
  2867. * reference time interval just bfqd->bfq_slice_idle, but
  2868. * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
  2869. * minimum number of jiffies for which the filter seems to be quite
  2870. * precise also in embedded systems and KVM/QEMU virtual machines.
  2871. */
  2872. static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
  2873. struct bfq_queue *bfqq)
  2874. {
  2875. return max3(bfqq->soft_rt_next_start,
  2876. bfqq->last_idle_bklogged +
  2877. HZ * bfqq->service_from_backlogged /
  2878. bfqd->bfq_wr_max_softrt_rate,
  2879. jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
  2880. }
  2881. static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
  2882. {
  2883. return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
  2884. blk_queue_nonrot(bfqq->bfqd->queue) &&
  2885. bfqq->bfqd->hw_tag;
  2886. }
  2887. /**
  2888. * bfq_bfqq_expire - expire a queue.
  2889. * @bfqd: device owning the queue.
  2890. * @bfqq: the queue to expire.
  2891. * @compensate: if true, compensate for the time spent idling.
  2892. * @reason: the reason causing the expiration.
  2893. *
  2894. * If the process associated with bfqq does slow I/O (e.g., because it
  2895. * issues random requests), we charge bfqq with the time it has been
  2896. * in service instead of the service it has received (see
  2897. * bfq_bfqq_charge_time for details on how this goal is achieved). As
  2898. * a consequence, bfqq will typically get higher timestamps upon
  2899. * reactivation, and hence it will be rescheduled as if it had
  2900. * received more service than what it has actually received. In the
  2901. * end, bfqq receives less service in proportion to how slowly its
  2902. * associated process consumes its budgets (and hence how seriously it
  2903. * tends to lower the throughput). In addition, this time-charging
  2904. * strategy guarantees time fairness among slow processes. In
  2905. * contrast, if the process associated with bfqq is not slow, we
  2906. * charge bfqq exactly with the service it has received.
  2907. *
  2908. * Charging time to the first type of queues and the exact service to
  2909. * the other has the effect of using the WF2Q+ policy to schedule the
  2910. * former on a timeslice basis, without violating service domain
  2911. * guarantees among the latter.
  2912. */
  2913. void bfq_bfqq_expire(struct bfq_data *bfqd,
  2914. struct bfq_queue *bfqq,
  2915. bool compensate,
  2916. enum bfqq_expiration reason)
  2917. {
  2918. bool slow;
  2919. unsigned long delta = 0;
  2920. struct bfq_entity *entity = &bfqq->entity;
  2921. int ref;
  2922. /*
  2923. * Check whether the process is slow (see bfq_bfqq_is_slow).
  2924. */
  2925. slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
  2926. /*
  2927. * As above explained, charge slow (typically seeky) and
  2928. * timed-out queues with the time and not the service
  2929. * received, to favor sequential workloads.
  2930. *
  2931. * Processes doing I/O in the slower disk zones will tend to
  2932. * be slow(er) even if not seeky. Therefore, since the
  2933. * estimated peak rate is actually an average over the disk
  2934. * surface, these processes may timeout just for bad luck. To
  2935. * avoid punishing them, do not charge time to processes that
  2936. * succeeded in consuming at least 2/3 of their budget. This
  2937. * allows BFQ to preserve enough elasticity to still perform
  2938. * bandwidth, and not time, distribution with little unlucky
  2939. * or quasi-sequential processes.
  2940. */
  2941. if (bfqq->wr_coeff == 1 &&
  2942. (slow ||
  2943. (reason == BFQQE_BUDGET_TIMEOUT &&
  2944. bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
  2945. bfq_bfqq_charge_time(bfqd, bfqq, delta);
  2946. if (reason == BFQQE_TOO_IDLE &&
  2947. entity->service <= 2 * entity->budget / 10)
  2948. bfq_clear_bfqq_IO_bound(bfqq);
  2949. if (bfqd->low_latency && bfqq->wr_coeff == 1)
  2950. bfqq->last_wr_start_finish = jiffies;
  2951. if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
  2952. RB_EMPTY_ROOT(&bfqq->sort_list)) {
  2953. /*
  2954. * If we get here, and there are no outstanding
  2955. * requests, then the request pattern is isochronous
  2956. * (see the comments on the function
  2957. * bfq_bfqq_softrt_next_start()). Thus we can compute
  2958. * soft_rt_next_start. If, instead, the queue still
  2959. * has outstanding requests, then we have to wait for
  2960. * the completion of all the outstanding requests to
  2961. * discover whether the request pattern is actually
  2962. * isochronous.
  2963. */
  2964. if (bfqq->dispatched == 0)
  2965. bfqq->soft_rt_next_start =
  2966. bfq_bfqq_softrt_next_start(bfqd, bfqq);
  2967. else {
  2968. /*
  2969. * Schedule an update of soft_rt_next_start to when
  2970. * the task may be discovered to be isochronous.
  2971. */
  2972. bfq_mark_bfqq_softrt_update(bfqq);
  2973. }
  2974. }
  2975. bfq_log_bfqq(bfqd, bfqq,
  2976. "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
  2977. slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
  2978. /*
  2979. * Increase, decrease or leave budget unchanged according to
  2980. * reason.
  2981. */
  2982. __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
  2983. ref = bfqq->ref;
  2984. __bfq_bfqq_expire(bfqd, bfqq);
  2985. if (ref == 1) /* bfqq is gone, no more actions on it */
  2986. return;
  2987. bfqq->injected_service = 0;
  2988. /* mark bfqq as waiting a request only if a bic still points to it */
  2989. if (!bfq_bfqq_busy(bfqq) &&
  2990. reason != BFQQE_BUDGET_TIMEOUT &&
  2991. reason != BFQQE_BUDGET_EXHAUSTED) {
  2992. bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
  2993. /*
  2994. * Not setting service to 0, because, if the next rq
  2995. * arrives in time, the queue will go on receiving
  2996. * service with this same budget (as if it never expired)
  2997. */
  2998. } else
  2999. entity->service = 0;
  3000. /*
  3001. * Reset the received-service counter for every parent entity.
  3002. * Differently from what happens with bfqq->entity.service,
  3003. * the resetting of this counter never needs to be postponed
  3004. * for parent entities. In fact, in case bfqq may have a
  3005. * chance to go on being served using the last, partially
  3006. * consumed budget, bfqq->entity.service needs to be kept,
  3007. * because if bfqq then actually goes on being served using
  3008. * the same budget, the last value of bfqq->entity.service is
  3009. * needed to properly decrement bfqq->entity.budget by the
  3010. * portion already consumed. In contrast, it is not necessary
  3011. * to keep entity->service for parent entities too, because
  3012. * the bubble up of the new value of bfqq->entity.budget will
  3013. * make sure that the budgets of parent entities are correct,
  3014. * even in case bfqq and thus parent entities go on receiving
  3015. * service with the same budget.
  3016. */
  3017. entity = entity->parent;
  3018. for_each_entity(entity)
  3019. entity->service = 0;
  3020. }
  3021. /*
  3022. * Budget timeout is not implemented through a dedicated timer, but
  3023. * just checked on request arrivals and completions, as well as on
  3024. * idle timer expirations.
  3025. */
  3026. static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
  3027. {
  3028. return time_is_before_eq_jiffies(bfqq->budget_timeout);
  3029. }
  3030. /*
  3031. * If we expire a queue that is actively waiting (i.e., with the
  3032. * device idled) for the arrival of a new request, then we may incur
  3033. * the timestamp misalignment problem described in the body of the
  3034. * function __bfq_activate_entity. Hence we return true only if this
  3035. * condition does not hold, or if the queue is slow enough to deserve
  3036. * only to be kicked off for preserving a high throughput.
  3037. */
  3038. static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
  3039. {
  3040. bfq_log_bfqq(bfqq->bfqd, bfqq,
  3041. "may_budget_timeout: wait_request %d left %d timeout %d",
  3042. bfq_bfqq_wait_request(bfqq),
  3043. bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
  3044. bfq_bfqq_budget_timeout(bfqq));
  3045. return (!bfq_bfqq_wait_request(bfqq) ||
  3046. bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
  3047. &&
  3048. bfq_bfqq_budget_timeout(bfqq);
  3049. }
  3050. /*
  3051. * For a queue that becomes empty, device idling is allowed only if
  3052. * this function returns true for the queue. As a consequence, since
  3053. * device idling plays a critical role in both throughput boosting and
  3054. * service guarantees, the return value of this function plays a
  3055. * critical role in both these aspects as well.
  3056. *
  3057. * In a nutshell, this function returns true only if idling is
  3058. * beneficial for throughput or, even if detrimental for throughput,
  3059. * idling is however necessary to preserve service guarantees (low
  3060. * latency, desired throughput distribution, ...). In particular, on
  3061. * NCQ-capable devices, this function tries to return false, so as to
  3062. * help keep the drives' internal queues full, whenever this helps the
  3063. * device boost the throughput without causing any service-guarantee
  3064. * issue.
  3065. *
  3066. * In more detail, the return value of this function is obtained by,
  3067. * first, computing a number of boolean variables that take into
  3068. * account throughput and service-guarantee issues, and, then,
  3069. * combining these variables in a logical expression. Most of the
  3070. * issues taken into account are not trivial. We discuss these issues
  3071. * individually while introducing the variables.
  3072. */
  3073. static bool bfq_better_to_idle(struct bfq_queue *bfqq)
  3074. {
  3075. struct bfq_data *bfqd = bfqq->bfqd;
  3076. bool rot_without_queueing =
  3077. !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
  3078. bfqq_sequential_and_IO_bound,
  3079. idling_boosts_thr, idling_boosts_thr_without_issues,
  3080. idling_needed_for_service_guarantees,
  3081. asymmetric_scenario;
  3082. if (bfqd->strict_guarantees)
  3083. return true;
  3084. /*
  3085. * Idling is performed only if slice_idle > 0. In addition, we
  3086. * do not idle if
  3087. * (a) bfqq is async
  3088. * (b) bfqq is in the idle io prio class: in this case we do
  3089. * not idle because we want to minimize the bandwidth that
  3090. * queues in this class can steal to higher-priority queues
  3091. */
  3092. if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
  3093. bfq_class_idle(bfqq))
  3094. return false;
  3095. bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
  3096. bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
  3097. /*
  3098. * The next variable takes into account the cases where idling
  3099. * boosts the throughput.
  3100. *
  3101. * The value of the variable is computed considering, first, that
  3102. * idling is virtually always beneficial for the throughput if:
  3103. * (a) the device is not NCQ-capable and rotational, or
  3104. * (b) regardless of the presence of NCQ, the device is rotational and
  3105. * the request pattern for bfqq is I/O-bound and sequential, or
  3106. * (c) regardless of whether it is rotational, the device is
  3107. * not NCQ-capable and the request pattern for bfqq is
  3108. * I/O-bound and sequential.
  3109. *
  3110. * Secondly, and in contrast to the above item (b), idling an
  3111. * NCQ-capable flash-based device would not boost the
  3112. * throughput even with sequential I/O; rather it would lower
  3113. * the throughput in proportion to how fast the device
  3114. * is. Accordingly, the next variable is true if any of the
  3115. * above conditions (a), (b) or (c) is true, and, in
  3116. * particular, happens to be false if bfqd is an NCQ-capable
  3117. * flash-based device.
  3118. */
  3119. idling_boosts_thr = rot_without_queueing ||
  3120. ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
  3121. bfqq_sequential_and_IO_bound);
  3122. /*
  3123. * The value of the next variable,
  3124. * idling_boosts_thr_without_issues, is equal to that of
  3125. * idling_boosts_thr, unless a special case holds. In this
  3126. * special case, described below, idling may cause problems to
  3127. * weight-raised queues.
  3128. *
  3129. * When the request pool is saturated (e.g., in the presence
  3130. * of write hogs), if the processes associated with
  3131. * non-weight-raised queues ask for requests at a lower rate,
  3132. * then processes associated with weight-raised queues have a
  3133. * higher probability to get a request from the pool
  3134. * immediately (or at least soon) when they need one. Thus
  3135. * they have a higher probability to actually get a fraction
  3136. * of the device throughput proportional to their high
  3137. * weight. This is especially true with NCQ-capable drives,
  3138. * which enqueue several requests in advance, and further
  3139. * reorder internally-queued requests.
  3140. *
  3141. * For this reason, we force to false the value of
  3142. * idling_boosts_thr_without_issues if there are weight-raised
  3143. * busy queues. In this case, and if bfqq is not weight-raised,
  3144. * this guarantees that the device is not idled for bfqq (if,
  3145. * instead, bfqq is weight-raised, then idling will be
  3146. * guaranteed by another variable, see below). Combined with
  3147. * the timestamping rules of BFQ (see [1] for details), this
  3148. * behavior causes bfqq, and hence any sync non-weight-raised
  3149. * queue, to get a lower number of requests served, and thus
  3150. * to ask for a lower number of requests from the request
  3151. * pool, before the busy weight-raised queues get served
  3152. * again. This often mitigates starvation problems in the
  3153. * presence of heavy write workloads and NCQ, thereby
  3154. * guaranteeing a higher application and system responsiveness
  3155. * in these hostile scenarios.
  3156. */
  3157. idling_boosts_thr_without_issues = idling_boosts_thr &&
  3158. bfqd->wr_busy_queues == 0;
  3159. /*
  3160. * There is then a case where idling must be performed not
  3161. * for throughput concerns, but to preserve service
  3162. * guarantees.
  3163. *
  3164. * To introduce this case, we can note that allowing the drive
  3165. * to enqueue more than one request at a time, and hence
  3166. * delegating de facto final scheduling decisions to the
  3167. * drive's internal scheduler, entails loss of control on the
  3168. * actual request service order. In particular, the critical
  3169. * situation is when requests from different processes happen
  3170. * to be present, at the same time, in the internal queue(s)
  3171. * of the drive. In such a situation, the drive, by deciding
  3172. * the service order of the internally-queued requests, does
  3173. * determine also the actual throughput distribution among
  3174. * these processes. But the drive typically has no notion or
  3175. * concern about per-process throughput distribution, and
  3176. * makes its decisions only on a per-request basis. Therefore,
  3177. * the service distribution enforced by the drive's internal
  3178. * scheduler is likely to coincide with the desired
  3179. * device-throughput distribution only in a completely
  3180. * symmetric scenario where:
  3181. * (i) each of these processes must get the same throughput as
  3182. * the others;
  3183. * (ii) all these processes have the same I/O pattern
  3184. (either sequential or random).
  3185. * In fact, in such a scenario, the drive will tend to treat
  3186. * the requests of each of these processes in about the same
  3187. * way as the requests of the others, and thus to provide
  3188. * each of these processes with about the same throughput
  3189. * (which is exactly the desired throughput distribution). In
  3190. * contrast, in any asymmetric scenario, device idling is
  3191. * certainly needed to guarantee that bfqq receives its
  3192. * assigned fraction of the device throughput (see [1] for
  3193. * details).
  3194. *
  3195. * We address this issue by controlling, actually, only the
  3196. * symmetry sub-condition (i), i.e., provided that
  3197. * sub-condition (i) holds, idling is not performed,
  3198. * regardless of whether sub-condition (ii) holds. In other
  3199. * words, only if sub-condition (i) holds, then idling is
  3200. * allowed, and the device tends to be prevented from queueing
  3201. * many requests, possibly of several processes. The reason
  3202. * for not controlling also sub-condition (ii) is that we
  3203. * exploit preemption to preserve guarantees in case of
  3204. * symmetric scenarios, even if (ii) does not hold, as
  3205. * explained in the next two paragraphs.
  3206. *
  3207. * Even if a queue, say Q, is expired when it remains idle, Q
  3208. * can still preempt the new in-service queue if the next
  3209. * request of Q arrives soon (see the comments on
  3210. * bfq_bfqq_update_budg_for_activation). If all queues and
  3211. * groups have the same weight, this form of preemption,
  3212. * combined with the hole-recovery heuristic described in the
  3213. * comments on function bfq_bfqq_update_budg_for_activation,
  3214. * are enough to preserve a correct bandwidth distribution in
  3215. * the mid term, even without idling. In fact, even if not
  3216. * idling allows the internal queues of the device to contain
  3217. * many requests, and thus to reorder requests, we can rather
  3218. * safely assume that the internal scheduler still preserves a
  3219. * minimum of mid-term fairness. The motivation for using
  3220. * preemption instead of idling is that, by not idling,
  3221. * service guarantees are preserved without minimally
  3222. * sacrificing throughput. In other words, both a high
  3223. * throughput and its desired distribution are obtained.
  3224. *
  3225. * More precisely, this preemption-based, idleless approach
  3226. * provides fairness in terms of IOPS, and not sectors per
  3227. * second. This can be seen with a simple example. Suppose
  3228. * that there are two queues with the same weight, but that
  3229. * the first queue receives requests of 8 sectors, while the
  3230. * second queue receives requests of 1024 sectors. In
  3231. * addition, suppose that each of the two queues contains at
  3232. * most one request at a time, which implies that each queue
  3233. * always remains idle after it is served. Finally, after
  3234. * remaining idle, each queue receives very quickly a new
  3235. * request. It follows that the two queues are served
  3236. * alternatively, preempting each other if needed. This
  3237. * implies that, although both queues have the same weight,
  3238. * the queue with large requests receives a service that is
  3239. * 1024/8 times as high as the service received by the other
  3240. * queue.
  3241. *
  3242. * On the other hand, device idling is performed, and thus
  3243. * pure sector-domain guarantees are provided, for the
  3244. * following queues, which are likely to need stronger
  3245. * throughput guarantees: weight-raised queues, and queues
  3246. * with a higher weight than other queues. When such queues
  3247. * are active, sub-condition (i) is false, which triggers
  3248. * device idling.
  3249. *
  3250. * According to the above considerations, the next variable is
  3251. * true (only) if sub-condition (i) holds. To compute the
  3252. * value of this variable, we not only use the return value of
  3253. * the function bfq_symmetric_scenario(), but also check
  3254. * whether bfqq is being weight-raised, because
  3255. * bfq_symmetric_scenario() does not take into account also
  3256. * weight-raised queues (see comments on
  3257. * bfq_weights_tree_add()). In particular, if bfqq is being
  3258. * weight-raised, it is important to idle only if there are
  3259. * other, non-weight-raised queues that may steal throughput
  3260. * to bfqq. Actually, we should be even more precise, and
  3261. * differentiate between interactive weight raising and
  3262. * soft real-time weight raising.
  3263. *
  3264. * As a side note, it is worth considering that the above
  3265. * device-idling countermeasures may however fail in the
  3266. * following unlucky scenario: if idling is (correctly)
  3267. * disabled in a time period during which all symmetry
  3268. * sub-conditions hold, and hence the device is allowed to
  3269. * enqueue many requests, but at some later point in time some
  3270. * sub-condition stops to hold, then it may become impossible
  3271. * to let requests be served in the desired order until all
  3272. * the requests already queued in the device have been served.
  3273. */
  3274. asymmetric_scenario = (bfqq->wr_coeff > 1 &&
  3275. bfqd->wr_busy_queues < bfqd->busy_queues) ||
  3276. !bfq_symmetric_scenario(bfqd);
  3277. /*
  3278. * Finally, there is a case where maximizing throughput is the
  3279. * best choice even if it may cause unfairness toward
  3280. * bfqq. Such a case is when bfqq became active in a burst of
  3281. * queue activations. Queues that became active during a large
  3282. * burst benefit only from throughput, as discussed in the
  3283. * comments on bfq_handle_burst. Thus, if bfqq became active
  3284. * in a burst and not idling the device maximizes throughput,
  3285. * then the device must no be idled, because not idling the
  3286. * device provides bfqq and all other queues in the burst with
  3287. * maximum benefit. Combining this and the above case, we can
  3288. * now establish when idling is actually needed to preserve
  3289. * service guarantees.
  3290. */
  3291. idling_needed_for_service_guarantees =
  3292. asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
  3293. /*
  3294. * We have now all the components we need to compute the
  3295. * return value of the function, which is true only if idling
  3296. * either boosts the throughput (without issues), or is
  3297. * necessary to preserve service guarantees.
  3298. */
  3299. return idling_boosts_thr_without_issues ||
  3300. idling_needed_for_service_guarantees;
  3301. }
  3302. /*
  3303. * If the in-service queue is empty but the function bfq_better_to_idle
  3304. * returns true, then:
  3305. * 1) the queue must remain in service and cannot be expired, and
  3306. * 2) the device must be idled to wait for the possible arrival of a new
  3307. * request for the queue.
  3308. * See the comments on the function bfq_better_to_idle for the reasons
  3309. * why performing device idling is the best choice to boost the throughput
  3310. * and preserve service guarantees when bfq_better_to_idle itself
  3311. * returns true.
  3312. */
  3313. static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
  3314. {
  3315. return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
  3316. }
  3317. static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
  3318. {
  3319. struct bfq_queue *bfqq;
  3320. /*
  3321. * A linear search; but, with a high probability, very few
  3322. * steps are needed to find a candidate queue, i.e., a queue
  3323. * with enough budget left for its next request. In fact:
  3324. * - BFQ dynamically updates the budget of every queue so as
  3325. * to accommodate the expected backlog of the queue;
  3326. * - if a queue gets all its requests dispatched as injected
  3327. * service, then the queue is removed from the active list
  3328. * (and re-added only if it gets new requests, but with
  3329. * enough budget for its new backlog).
  3330. */
  3331. list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
  3332. if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
  3333. bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
  3334. bfq_bfqq_budget_left(bfqq))
  3335. return bfqq;
  3336. return NULL;
  3337. }
  3338. /*
  3339. * Select a queue for service. If we have a current queue in service,
  3340. * check whether to continue servicing it, or retrieve and set a new one.
  3341. */
  3342. static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
  3343. {
  3344. struct bfq_queue *bfqq;
  3345. struct request *next_rq;
  3346. enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
  3347. bfqq = bfqd->in_service_queue;
  3348. if (!bfqq)
  3349. goto new_queue;
  3350. bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
  3351. /*
  3352. * Do not expire bfqq for budget timeout if bfqq may be about
  3353. * to enjoy device idling. The reason why, in this case, we
  3354. * prevent bfqq from expiring is the same as in the comments
  3355. * on the case where bfq_bfqq_must_idle() returns true, in
  3356. * bfq_completed_request().
  3357. */
  3358. if (bfq_may_expire_for_budg_timeout(bfqq) &&
  3359. !bfq_bfqq_must_idle(bfqq))
  3360. goto expire;
  3361. check_queue:
  3362. /*
  3363. * This loop is rarely executed more than once. Even when it
  3364. * happens, it is much more convenient to re-execute this loop
  3365. * than to return NULL and trigger a new dispatch to get a
  3366. * request served.
  3367. */
  3368. next_rq = bfqq->next_rq;
  3369. /*
  3370. * If bfqq has requests queued and it has enough budget left to
  3371. * serve them, keep the queue, otherwise expire it.
  3372. */
  3373. if (next_rq) {
  3374. if (bfq_serv_to_charge(next_rq, bfqq) >
  3375. bfq_bfqq_budget_left(bfqq)) {
  3376. /*
  3377. * Expire the queue for budget exhaustion,
  3378. * which makes sure that the next budget is
  3379. * enough to serve the next request, even if
  3380. * it comes from the fifo expired path.
  3381. */
  3382. reason = BFQQE_BUDGET_EXHAUSTED;
  3383. goto expire;
  3384. } else {
  3385. /*
  3386. * The idle timer may be pending because we may
  3387. * not disable disk idling even when a new request
  3388. * arrives.
  3389. */
  3390. if (bfq_bfqq_wait_request(bfqq)) {
  3391. /*
  3392. * If we get here: 1) at least a new request
  3393. * has arrived but we have not disabled the
  3394. * timer because the request was too small,
  3395. * 2) then the block layer has unplugged
  3396. * the device, causing the dispatch to be
  3397. * invoked.
  3398. *
  3399. * Since the device is unplugged, now the
  3400. * requests are probably large enough to
  3401. * provide a reasonable throughput.
  3402. * So we disable idling.
  3403. */
  3404. bfq_clear_bfqq_wait_request(bfqq);
  3405. hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
  3406. }
  3407. goto keep_queue;
  3408. }
  3409. }
  3410. /*
  3411. * No requests pending. However, if the in-service queue is idling
  3412. * for a new request, or has requests waiting for a completion and
  3413. * may idle after their completion, then keep it anyway.
  3414. *
  3415. * Yet, to boost throughput, inject service from other queues if
  3416. * possible.
  3417. */
  3418. if (bfq_bfqq_wait_request(bfqq) ||
  3419. (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
  3420. if (bfq_bfqq_injectable(bfqq) &&
  3421. bfqq->injected_service * bfqq->inject_coeff <
  3422. bfqq->entity.service * 10)
  3423. bfqq = bfq_choose_bfqq_for_injection(bfqd);
  3424. else
  3425. bfqq = NULL;
  3426. goto keep_queue;
  3427. }
  3428. reason = BFQQE_NO_MORE_REQUESTS;
  3429. expire:
  3430. bfq_bfqq_expire(bfqd, bfqq, false, reason);
  3431. new_queue:
  3432. bfqq = bfq_set_in_service_queue(bfqd);
  3433. if (bfqq) {
  3434. bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
  3435. goto check_queue;
  3436. }
  3437. keep_queue:
  3438. if (bfqq)
  3439. bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
  3440. else
  3441. bfq_log(bfqd, "select_queue: no queue returned");
  3442. return bfqq;
  3443. }
  3444. static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  3445. {
  3446. struct bfq_entity *entity = &bfqq->entity;
  3447. if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
  3448. bfq_log_bfqq(bfqd, bfqq,
  3449. "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
  3450. jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
  3451. jiffies_to_msecs(bfqq->wr_cur_max_time),
  3452. bfqq->wr_coeff,
  3453. bfqq->entity.weight, bfqq->entity.orig_weight);
  3454. if (entity->prio_changed)
  3455. bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
  3456. /*
  3457. * If the queue was activated in a burst, or too much
  3458. * time has elapsed from the beginning of this
  3459. * weight-raising period, then end weight raising.
  3460. */
  3461. if (bfq_bfqq_in_large_burst(bfqq))
  3462. bfq_bfqq_end_wr(bfqq);
  3463. else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
  3464. bfqq->wr_cur_max_time)) {
  3465. if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
  3466. time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
  3467. bfq_wr_duration(bfqd)))
  3468. bfq_bfqq_end_wr(bfqq);
  3469. else {
  3470. switch_back_to_interactive_wr(bfqq, bfqd);
  3471. bfqq->entity.prio_changed = 1;
  3472. }
  3473. }
  3474. if (bfqq->wr_coeff > 1 &&
  3475. bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
  3476. bfqq->service_from_wr > max_service_from_wr) {
  3477. /* see comments on max_service_from_wr */
  3478. bfq_bfqq_end_wr(bfqq);
  3479. }
  3480. }
  3481. /*
  3482. * To improve latency (for this or other queues), immediately
  3483. * update weight both if it must be raised and if it must be
  3484. * lowered. Since, entity may be on some active tree here, and
  3485. * might have a pending change of its ioprio class, invoke
  3486. * next function with the last parameter unset (see the
  3487. * comments on the function).
  3488. */
  3489. if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
  3490. __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
  3491. entity, false);
  3492. }
  3493. /*
  3494. * Dispatch next request from bfqq.
  3495. */
  3496. static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
  3497. struct bfq_queue *bfqq)
  3498. {
  3499. struct request *rq = bfqq->next_rq;
  3500. unsigned long service_to_charge;
  3501. service_to_charge = bfq_serv_to_charge(rq, bfqq);
  3502. bfq_bfqq_served(bfqq, service_to_charge);
  3503. bfq_dispatch_remove(bfqd->queue, rq);
  3504. if (bfqq != bfqd->in_service_queue) {
  3505. if (likely(bfqd->in_service_queue))
  3506. bfqd->in_service_queue->injected_service +=
  3507. bfq_serv_to_charge(rq, bfqq);
  3508. goto return_rq;
  3509. }
  3510. /*
  3511. * If weight raising has to terminate for bfqq, then next
  3512. * function causes an immediate update of bfqq's weight,
  3513. * without waiting for next activation. As a consequence, on
  3514. * expiration, bfqq will be timestamped as if has never been
  3515. * weight-raised during this service slot, even if it has
  3516. * received part or even most of the service as a
  3517. * weight-raised queue. This inflates bfqq's timestamps, which
  3518. * is beneficial, as bfqq is then more willing to leave the
  3519. * device immediately to possible other weight-raised queues.
  3520. */
  3521. bfq_update_wr_data(bfqd, bfqq);
  3522. /*
  3523. * Expire bfqq, pretending that its budget expired, if bfqq
  3524. * belongs to CLASS_IDLE and other queues are waiting for
  3525. * service.
  3526. */
  3527. if (!(bfqd->busy_queues > 1 && bfq_class_idle(bfqq)))
  3528. goto return_rq;
  3529. bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
  3530. return_rq:
  3531. return rq;
  3532. }
  3533. static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
  3534. {
  3535. struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
  3536. /*
  3537. * Avoiding lock: a race on bfqd->busy_queues should cause at
  3538. * most a call to dispatch for nothing
  3539. */
  3540. return !list_empty_careful(&bfqd->dispatch) ||
  3541. bfqd->busy_queues > 0;
  3542. }
  3543. static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
  3544. {
  3545. struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
  3546. struct request *rq = NULL;
  3547. struct bfq_queue *bfqq = NULL;
  3548. if (!list_empty(&bfqd->dispatch)) {
  3549. rq = list_first_entry(&bfqd->dispatch, struct request,
  3550. queuelist);
  3551. list_del_init(&rq->queuelist);
  3552. bfqq = RQ_BFQQ(rq);
  3553. if (bfqq) {
  3554. /*
  3555. * Increment counters here, because this
  3556. * dispatch does not follow the standard
  3557. * dispatch flow (where counters are
  3558. * incremented)
  3559. */
  3560. bfqq->dispatched++;
  3561. goto inc_in_driver_start_rq;
  3562. }
  3563. /*
  3564. * We exploit the bfq_finish_requeue_request hook to
  3565. * decrement rq_in_driver, but
  3566. * bfq_finish_requeue_request will not be invoked on
  3567. * this request. So, to avoid unbalance, just start
  3568. * this request, without incrementing rq_in_driver. As
  3569. * a negative consequence, rq_in_driver is deceptively
  3570. * lower than it should be while this request is in
  3571. * service. This may cause bfq_schedule_dispatch to be
  3572. * invoked uselessly.
  3573. *
  3574. * As for implementing an exact solution, the
  3575. * bfq_finish_requeue_request hook, if defined, is
  3576. * probably invoked also on this request. So, by
  3577. * exploiting this hook, we could 1) increment
  3578. * rq_in_driver here, and 2) decrement it in
  3579. * bfq_finish_requeue_request. Such a solution would
  3580. * let the value of the counter be always accurate,
  3581. * but it would entail using an extra interface
  3582. * function. This cost seems higher than the benefit,
  3583. * being the frequency of non-elevator-private
  3584. * requests very low.
  3585. */
  3586. goto start_rq;
  3587. }
  3588. bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
  3589. if (bfqd->busy_queues == 0)
  3590. goto exit;
  3591. /*
  3592. * Force device to serve one request at a time if
  3593. * strict_guarantees is true. Forcing this service scheme is
  3594. * currently the ONLY way to guarantee that the request
  3595. * service order enforced by the scheduler is respected by a
  3596. * queueing device. Otherwise the device is free even to make
  3597. * some unlucky request wait for as long as the device
  3598. * wishes.
  3599. *
  3600. * Of course, serving one request at at time may cause loss of
  3601. * throughput.
  3602. */
  3603. if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
  3604. goto exit;
  3605. bfqq = bfq_select_queue(bfqd);
  3606. if (!bfqq)
  3607. goto exit;
  3608. rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
  3609. if (rq) {
  3610. inc_in_driver_start_rq:
  3611. bfqd->rq_in_driver++;
  3612. start_rq:
  3613. rq->rq_flags |= RQF_STARTED;
  3614. }
  3615. exit:
  3616. return rq;
  3617. }
  3618. #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
  3619. static void bfq_update_dispatch_stats(struct request_queue *q,
  3620. struct request *rq,
  3621. struct bfq_queue *in_serv_queue,
  3622. bool idle_timer_disabled)
  3623. {
  3624. struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
  3625. if (!idle_timer_disabled && !bfqq)
  3626. return;
  3627. /*
  3628. * rq and bfqq are guaranteed to exist until this function
  3629. * ends, for the following reasons. First, rq can be
  3630. * dispatched to the device, and then can be completed and
  3631. * freed, only after this function ends. Second, rq cannot be
  3632. * merged (and thus freed because of a merge) any longer,
  3633. * because it has already started. Thus rq cannot be freed
  3634. * before this function ends, and, since rq has a reference to
  3635. * bfqq, the same guarantee holds for bfqq too.
  3636. *
  3637. * In addition, the following queue lock guarantees that
  3638. * bfqq_group(bfqq) exists as well.
  3639. */
  3640. spin_lock_irq(q->queue_lock);
  3641. if (idle_timer_disabled)
  3642. /*
  3643. * Since the idle timer has been disabled,
  3644. * in_serv_queue contained some request when
  3645. * __bfq_dispatch_request was invoked above, which
  3646. * implies that rq was picked exactly from
  3647. * in_serv_queue. Thus in_serv_queue == bfqq, and is
  3648. * therefore guaranteed to exist because of the above
  3649. * arguments.
  3650. */
  3651. bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
  3652. if (bfqq) {
  3653. struct bfq_group *bfqg = bfqq_group(bfqq);
  3654. bfqg_stats_update_avg_queue_size(bfqg);
  3655. bfqg_stats_set_start_empty_time(bfqg);
  3656. bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
  3657. }
  3658. spin_unlock_irq(q->queue_lock);
  3659. }
  3660. #else
  3661. static inline void bfq_update_dispatch_stats(struct request_queue *q,
  3662. struct request *rq,
  3663. struct bfq_queue *in_serv_queue,
  3664. bool idle_timer_disabled) {}
  3665. #endif
  3666. static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
  3667. {
  3668. struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
  3669. struct request *rq;
  3670. struct bfq_queue *in_serv_queue;
  3671. bool waiting_rq, idle_timer_disabled;
  3672. spin_lock_irq(&bfqd->lock);
  3673. in_serv_queue = bfqd->in_service_queue;
  3674. waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
  3675. rq = __bfq_dispatch_request(hctx);
  3676. idle_timer_disabled =
  3677. waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
  3678. spin_unlock_irq(&bfqd->lock);
  3679. bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
  3680. idle_timer_disabled);
  3681. return rq;
  3682. }
  3683. /*
  3684. * Task holds one reference to the queue, dropped when task exits. Each rq
  3685. * in-flight on this queue also holds a reference, dropped when rq is freed.
  3686. *
  3687. * Scheduler lock must be held here. Recall not to use bfqq after calling
  3688. * this function on it.
  3689. */
  3690. void bfq_put_queue(struct bfq_queue *bfqq)
  3691. {
  3692. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  3693. struct bfq_group *bfqg = bfqq_group(bfqq);
  3694. #endif
  3695. if (bfqq->bfqd)
  3696. bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
  3697. bfqq, bfqq->ref);
  3698. bfqq->ref--;
  3699. if (bfqq->ref)
  3700. return;
  3701. if (!hlist_unhashed(&bfqq->burst_list_node)) {
  3702. hlist_del_init(&bfqq->burst_list_node);
  3703. /*
  3704. * Decrement also burst size after the removal, if the
  3705. * process associated with bfqq is exiting, and thus
  3706. * does not contribute to the burst any longer. This
  3707. * decrement helps filter out false positives of large
  3708. * bursts, when some short-lived process (often due to
  3709. * the execution of commands by some service) happens
  3710. * to start and exit while a complex application is
  3711. * starting, and thus spawning several processes that
  3712. * do I/O (and that *must not* be treated as a large
  3713. * burst, see comments on bfq_handle_burst).
  3714. *
  3715. * In particular, the decrement is performed only if:
  3716. * 1) bfqq is not a merged queue, because, if it is,
  3717. * then this free of bfqq is not triggered by the exit
  3718. * of the process bfqq is associated with, but exactly
  3719. * by the fact that bfqq has just been merged.
  3720. * 2) burst_size is greater than 0, to handle
  3721. * unbalanced decrements. Unbalanced decrements may
  3722. * happen in te following case: bfqq is inserted into
  3723. * the current burst list--without incrementing
  3724. * bust_size--because of a split, but the current
  3725. * burst list is not the burst list bfqq belonged to
  3726. * (see comments on the case of a split in
  3727. * bfq_set_request).
  3728. */
  3729. if (bfqq->bic && bfqq->bfqd->burst_size > 0)
  3730. bfqq->bfqd->burst_size--;
  3731. }
  3732. kmem_cache_free(bfq_pool, bfqq);
  3733. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  3734. bfqg_and_blkg_put(bfqg);
  3735. #endif
  3736. }
  3737. static void bfq_put_cooperator(struct bfq_queue *bfqq)
  3738. {
  3739. struct bfq_queue *__bfqq, *next;
  3740. /*
  3741. * If this queue was scheduled to merge with another queue, be
  3742. * sure to drop the reference taken on that queue (and others in
  3743. * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
  3744. */
  3745. __bfqq = bfqq->new_bfqq;
  3746. while (__bfqq) {
  3747. if (__bfqq == bfqq)
  3748. break;
  3749. next = __bfqq->new_bfqq;
  3750. bfq_put_queue(__bfqq);
  3751. __bfqq = next;
  3752. }
  3753. }
  3754. static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  3755. {
  3756. if (bfqq == bfqd->in_service_queue) {
  3757. __bfq_bfqq_expire(bfqd, bfqq);
  3758. bfq_schedule_dispatch(bfqd);
  3759. }
  3760. bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
  3761. bfq_put_cooperator(bfqq);
  3762. bfq_put_queue(bfqq); /* release process reference */
  3763. }
  3764. static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
  3765. {
  3766. struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
  3767. struct bfq_data *bfqd;
  3768. if (bfqq)
  3769. bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
  3770. if (bfqq && bfqd) {
  3771. unsigned long flags;
  3772. spin_lock_irqsave(&bfqd->lock, flags);
  3773. bfqq->bic = NULL;
  3774. bfq_exit_bfqq(bfqd, bfqq);
  3775. bic_set_bfqq(bic, NULL, is_sync);
  3776. spin_unlock_irqrestore(&bfqd->lock, flags);
  3777. }
  3778. }
  3779. static void bfq_exit_icq(struct io_cq *icq)
  3780. {
  3781. struct bfq_io_cq *bic = icq_to_bic(icq);
  3782. bfq_exit_icq_bfqq(bic, true);
  3783. bfq_exit_icq_bfqq(bic, false);
  3784. }
  3785. /*
  3786. * Update the entity prio values; note that the new values will not
  3787. * be used until the next (re)activation.
  3788. */
  3789. static void
  3790. bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
  3791. {
  3792. struct task_struct *tsk = current;
  3793. int ioprio_class;
  3794. struct bfq_data *bfqd = bfqq->bfqd;
  3795. if (!bfqd)
  3796. return;
  3797. ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
  3798. switch (ioprio_class) {
  3799. default:
  3800. dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
  3801. "bfq: bad prio class %d\n", ioprio_class);
  3802. /* fall through */
  3803. case IOPRIO_CLASS_NONE:
  3804. /*
  3805. * No prio set, inherit CPU scheduling settings.
  3806. */
  3807. bfqq->new_ioprio = task_nice_ioprio(tsk);
  3808. bfqq->new_ioprio_class = task_nice_ioclass(tsk);
  3809. break;
  3810. case IOPRIO_CLASS_RT:
  3811. bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
  3812. bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
  3813. break;
  3814. case IOPRIO_CLASS_BE:
  3815. bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
  3816. bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
  3817. break;
  3818. case IOPRIO_CLASS_IDLE:
  3819. bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
  3820. bfqq->new_ioprio = 7;
  3821. break;
  3822. }
  3823. if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
  3824. pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
  3825. bfqq->new_ioprio);
  3826. bfqq->new_ioprio = IOPRIO_BE_NR;
  3827. }
  3828. bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
  3829. bfqq->entity.prio_changed = 1;
  3830. }
  3831. static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
  3832. struct bio *bio, bool is_sync,
  3833. struct bfq_io_cq *bic);
  3834. static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
  3835. {
  3836. struct bfq_data *bfqd = bic_to_bfqd(bic);
  3837. struct bfq_queue *bfqq;
  3838. int ioprio = bic->icq.ioc->ioprio;
  3839. /*
  3840. * This condition may trigger on a newly created bic, be sure to
  3841. * drop the lock before returning.
  3842. */
  3843. if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
  3844. return;
  3845. bic->ioprio = ioprio;
  3846. bfqq = bic_to_bfqq(bic, false);
  3847. if (bfqq) {
  3848. /* release process reference on this queue */
  3849. bfq_put_queue(bfqq);
  3850. bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
  3851. bic_set_bfqq(bic, bfqq, false);
  3852. }
  3853. bfqq = bic_to_bfqq(bic, true);
  3854. if (bfqq)
  3855. bfq_set_next_ioprio_data(bfqq, bic);
  3856. }
  3857. static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  3858. struct bfq_io_cq *bic, pid_t pid, int is_sync)
  3859. {
  3860. RB_CLEAR_NODE(&bfqq->entity.rb_node);
  3861. INIT_LIST_HEAD(&bfqq->fifo);
  3862. INIT_HLIST_NODE(&bfqq->burst_list_node);
  3863. bfqq->ref = 0;
  3864. bfqq->bfqd = bfqd;
  3865. if (bic)
  3866. bfq_set_next_ioprio_data(bfqq, bic);
  3867. if (is_sync) {
  3868. /*
  3869. * No need to mark as has_short_ttime if in
  3870. * idle_class, because no device idling is performed
  3871. * for queues in idle class
  3872. */
  3873. if (!bfq_class_idle(bfqq))
  3874. /* tentatively mark as has_short_ttime */
  3875. bfq_mark_bfqq_has_short_ttime(bfqq);
  3876. bfq_mark_bfqq_sync(bfqq);
  3877. bfq_mark_bfqq_just_created(bfqq);
  3878. /*
  3879. * Aggressively inject a lot of service: up to 90%.
  3880. * This coefficient remains constant during bfqq life,
  3881. * but this behavior might be changed, after enough
  3882. * testing and tuning.
  3883. */
  3884. bfqq->inject_coeff = 1;
  3885. } else
  3886. bfq_clear_bfqq_sync(bfqq);
  3887. /* set end request to minus infinity from now */
  3888. bfqq->ttime.last_end_request = ktime_get_ns() + 1;
  3889. bfq_mark_bfqq_IO_bound(bfqq);
  3890. bfqq->pid = pid;
  3891. /* Tentative initial value to trade off between thr and lat */
  3892. bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
  3893. bfqq->budget_timeout = bfq_smallest_from_now();
  3894. bfqq->wr_coeff = 1;
  3895. bfqq->last_wr_start_finish = jiffies;
  3896. bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
  3897. bfqq->split_time = bfq_smallest_from_now();
  3898. /*
  3899. * To not forget the possibly high bandwidth consumed by a
  3900. * process/queue in the recent past,
  3901. * bfq_bfqq_softrt_next_start() returns a value at least equal
  3902. * to the current value of bfqq->soft_rt_next_start (see
  3903. * comments on bfq_bfqq_softrt_next_start). Set
  3904. * soft_rt_next_start to now, to mean that bfqq has consumed
  3905. * no bandwidth so far.
  3906. */
  3907. bfqq->soft_rt_next_start = jiffies;
  3908. /* first request is almost certainly seeky */
  3909. bfqq->seek_history = 1;
  3910. }
  3911. static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
  3912. struct bfq_group *bfqg,
  3913. int ioprio_class, int ioprio)
  3914. {
  3915. switch (ioprio_class) {
  3916. case IOPRIO_CLASS_RT:
  3917. return &bfqg->async_bfqq[0][ioprio];
  3918. case IOPRIO_CLASS_NONE:
  3919. ioprio = IOPRIO_NORM;
  3920. /* fall through */
  3921. case IOPRIO_CLASS_BE:
  3922. return &bfqg->async_bfqq[1][ioprio];
  3923. case IOPRIO_CLASS_IDLE:
  3924. return &bfqg->async_idle_bfqq;
  3925. default:
  3926. return NULL;
  3927. }
  3928. }
  3929. static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
  3930. struct bio *bio, bool is_sync,
  3931. struct bfq_io_cq *bic)
  3932. {
  3933. const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
  3934. const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
  3935. struct bfq_queue **async_bfqq = NULL;
  3936. struct bfq_queue *bfqq;
  3937. struct bfq_group *bfqg;
  3938. rcu_read_lock();
  3939. bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
  3940. if (!bfqg) {
  3941. bfqq = &bfqd->oom_bfqq;
  3942. goto out;
  3943. }
  3944. if (!is_sync) {
  3945. async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
  3946. ioprio);
  3947. bfqq = *async_bfqq;
  3948. if (bfqq)
  3949. goto out;
  3950. }
  3951. bfqq = kmem_cache_alloc_node(bfq_pool,
  3952. GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
  3953. bfqd->queue->node);
  3954. if (bfqq) {
  3955. bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
  3956. is_sync);
  3957. bfq_init_entity(&bfqq->entity, bfqg);
  3958. bfq_log_bfqq(bfqd, bfqq, "allocated");
  3959. } else {
  3960. bfqq = &bfqd->oom_bfqq;
  3961. bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
  3962. goto out;
  3963. }
  3964. /*
  3965. * Pin the queue now that it's allocated, scheduler exit will
  3966. * prune it.
  3967. */
  3968. if (async_bfqq) {
  3969. bfqq->ref++; /*
  3970. * Extra group reference, w.r.t. sync
  3971. * queue. This extra reference is removed
  3972. * only if bfqq->bfqg disappears, to
  3973. * guarantee that this queue is not freed
  3974. * until its group goes away.
  3975. */
  3976. bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
  3977. bfqq, bfqq->ref);
  3978. *async_bfqq = bfqq;
  3979. }
  3980. out:
  3981. bfqq->ref++; /* get a process reference to this queue */
  3982. bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
  3983. rcu_read_unlock();
  3984. return bfqq;
  3985. }
  3986. static void bfq_update_io_thinktime(struct bfq_data *bfqd,
  3987. struct bfq_queue *bfqq)
  3988. {
  3989. struct bfq_ttime *ttime = &bfqq->ttime;
  3990. u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
  3991. elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
  3992. ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
  3993. ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
  3994. ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
  3995. ttime->ttime_samples);
  3996. }
  3997. static void
  3998. bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  3999. struct request *rq)
  4000. {
  4001. bfqq->seek_history <<= 1;
  4002. bfqq->seek_history |=
  4003. get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
  4004. (!blk_queue_nonrot(bfqd->queue) ||
  4005. blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
  4006. }
  4007. static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
  4008. struct bfq_queue *bfqq,
  4009. struct bfq_io_cq *bic)
  4010. {
  4011. bool has_short_ttime = true;
  4012. /*
  4013. * No need to update has_short_ttime if bfqq is async or in
  4014. * idle io prio class, or if bfq_slice_idle is zero, because
  4015. * no device idling is performed for bfqq in this case.
  4016. */
  4017. if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
  4018. bfqd->bfq_slice_idle == 0)
  4019. return;
  4020. /* Idle window just restored, statistics are meaningless. */
  4021. if (time_is_after_eq_jiffies(bfqq->split_time +
  4022. bfqd->bfq_wr_min_idle_time))
  4023. return;
  4024. /* Think time is infinite if no process is linked to
  4025. * bfqq. Otherwise check average think time to
  4026. * decide whether to mark as has_short_ttime
  4027. */
  4028. if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
  4029. (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
  4030. bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
  4031. has_short_ttime = false;
  4032. bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
  4033. has_short_ttime);
  4034. if (has_short_ttime)
  4035. bfq_mark_bfqq_has_short_ttime(bfqq);
  4036. else
  4037. bfq_clear_bfqq_has_short_ttime(bfqq);
  4038. }
  4039. /*
  4040. * Called when a new fs request (rq) is added to bfqq. Check if there's
  4041. * something we should do about it.
  4042. */
  4043. static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
  4044. struct request *rq)
  4045. {
  4046. struct bfq_io_cq *bic = RQ_BIC(rq);
  4047. if (rq->cmd_flags & REQ_META)
  4048. bfqq->meta_pending++;
  4049. bfq_update_io_thinktime(bfqd, bfqq);
  4050. bfq_update_has_short_ttime(bfqd, bfqq, bic);
  4051. bfq_update_io_seektime(bfqd, bfqq, rq);
  4052. bfq_log_bfqq(bfqd, bfqq,
  4053. "rq_enqueued: has_short_ttime=%d (seeky %d)",
  4054. bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
  4055. bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  4056. if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
  4057. bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
  4058. blk_rq_sectors(rq) < 32;
  4059. bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
  4060. /*
  4061. * There is just this request queued: if the request
  4062. * is small and the queue is not to be expired, then
  4063. * just exit.
  4064. *
  4065. * In this way, if the device is being idled to wait
  4066. * for a new request from the in-service queue, we
  4067. * avoid unplugging the device and committing the
  4068. * device to serve just a small request. On the
  4069. * contrary, we wait for the block layer to decide
  4070. * when to unplug the device: hopefully, new requests
  4071. * will be merged to this one quickly, then the device
  4072. * will be unplugged and larger requests will be
  4073. * dispatched.
  4074. */
  4075. if (small_req && !budget_timeout)
  4076. return;
  4077. /*
  4078. * A large enough request arrived, or the queue is to
  4079. * be expired: in both cases disk idling is to be
  4080. * stopped, so clear wait_request flag and reset
  4081. * timer.
  4082. */
  4083. bfq_clear_bfqq_wait_request(bfqq);
  4084. hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
  4085. /*
  4086. * The queue is not empty, because a new request just
  4087. * arrived. Hence we can safely expire the queue, in
  4088. * case of budget timeout, without risking that the
  4089. * timestamps of the queue are not updated correctly.
  4090. * See [1] for more details.
  4091. */
  4092. if (budget_timeout)
  4093. bfq_bfqq_expire(bfqd, bfqq, false,
  4094. BFQQE_BUDGET_TIMEOUT);
  4095. }
  4096. }
  4097. /* returns true if it causes the idle timer to be disabled */
  4098. static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
  4099. {
  4100. struct bfq_queue *bfqq = RQ_BFQQ(rq),
  4101. *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
  4102. bool waiting, idle_timer_disabled = false;
  4103. if (new_bfqq) {
  4104. if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
  4105. new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
  4106. /*
  4107. * Release the request's reference to the old bfqq
  4108. * and make sure one is taken to the shared queue.
  4109. */
  4110. new_bfqq->allocated++;
  4111. bfqq->allocated--;
  4112. new_bfqq->ref++;
  4113. /*
  4114. * If the bic associated with the process
  4115. * issuing this request still points to bfqq
  4116. * (and thus has not been already redirected
  4117. * to new_bfqq or even some other bfq_queue),
  4118. * then complete the merge and redirect it to
  4119. * new_bfqq.
  4120. */
  4121. if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
  4122. bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
  4123. bfqq, new_bfqq);
  4124. bfq_clear_bfqq_just_created(bfqq);
  4125. /*
  4126. * rq is about to be enqueued into new_bfqq,
  4127. * release rq reference on bfqq
  4128. */
  4129. bfq_put_queue(bfqq);
  4130. rq->elv.priv[1] = new_bfqq;
  4131. bfqq = new_bfqq;
  4132. }
  4133. waiting = bfqq && bfq_bfqq_wait_request(bfqq);
  4134. bfq_add_request(rq);
  4135. idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
  4136. rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
  4137. list_add_tail(&rq->queuelist, &bfqq->fifo);
  4138. bfq_rq_enqueued(bfqd, bfqq, rq);
  4139. return idle_timer_disabled;
  4140. }
  4141. #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
  4142. static void bfq_update_insert_stats(struct request_queue *q,
  4143. struct bfq_queue *bfqq,
  4144. bool idle_timer_disabled,
  4145. unsigned int cmd_flags)
  4146. {
  4147. if (!bfqq)
  4148. return;
  4149. /*
  4150. * bfqq still exists, because it can disappear only after
  4151. * either it is merged with another queue, or the process it
  4152. * is associated with exits. But both actions must be taken by
  4153. * the same process currently executing this flow of
  4154. * instructions.
  4155. *
  4156. * In addition, the following queue lock guarantees that
  4157. * bfqq_group(bfqq) exists as well.
  4158. */
  4159. spin_lock_irq(q->queue_lock);
  4160. bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
  4161. if (idle_timer_disabled)
  4162. bfqg_stats_update_idle_time(bfqq_group(bfqq));
  4163. spin_unlock_irq(q->queue_lock);
  4164. }
  4165. #else
  4166. static inline void bfq_update_insert_stats(struct request_queue *q,
  4167. struct bfq_queue *bfqq,
  4168. bool idle_timer_disabled,
  4169. unsigned int cmd_flags) {}
  4170. #endif
  4171. static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
  4172. bool at_head)
  4173. {
  4174. struct request_queue *q = hctx->queue;
  4175. struct bfq_data *bfqd = q->elevator->elevator_data;
  4176. struct bfq_queue *bfqq;
  4177. bool idle_timer_disabled = false;
  4178. unsigned int cmd_flags;
  4179. spin_lock_irq(&bfqd->lock);
  4180. if (blk_mq_sched_try_insert_merge(q, rq)) {
  4181. spin_unlock_irq(&bfqd->lock);
  4182. return;
  4183. }
  4184. spin_unlock_irq(&bfqd->lock);
  4185. blk_mq_sched_request_inserted(rq);
  4186. spin_lock_irq(&bfqd->lock);
  4187. bfqq = bfq_init_rq(rq);
  4188. if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
  4189. if (at_head)
  4190. list_add(&rq->queuelist, &bfqd->dispatch);
  4191. else
  4192. list_add_tail(&rq->queuelist, &bfqd->dispatch);
  4193. } else {
  4194. idle_timer_disabled = __bfq_insert_request(bfqd, rq);
  4195. /*
  4196. * Update bfqq, because, if a queue merge has occurred
  4197. * in __bfq_insert_request, then rq has been
  4198. * redirected into a new queue.
  4199. */
  4200. bfqq = RQ_BFQQ(rq);
  4201. if (rq_mergeable(rq)) {
  4202. elv_rqhash_add(q, rq);
  4203. if (!q->last_merge)
  4204. q->last_merge = rq;
  4205. }
  4206. }
  4207. /*
  4208. * Cache cmd_flags before releasing scheduler lock, because rq
  4209. * may disappear afterwards (for example, because of a request
  4210. * merge).
  4211. */
  4212. cmd_flags = rq->cmd_flags;
  4213. spin_unlock_irq(&bfqd->lock);
  4214. bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
  4215. cmd_flags);
  4216. }
  4217. static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
  4218. struct list_head *list, bool at_head)
  4219. {
  4220. while (!list_empty(list)) {
  4221. struct request *rq;
  4222. rq = list_first_entry(list, struct request, queuelist);
  4223. list_del_init(&rq->queuelist);
  4224. bfq_insert_request(hctx, rq, at_head);
  4225. }
  4226. }
  4227. static void bfq_update_hw_tag(struct bfq_data *bfqd)
  4228. {
  4229. bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
  4230. bfqd->rq_in_driver);
  4231. if (bfqd->hw_tag == 1)
  4232. return;
  4233. /*
  4234. * This sample is valid if the number of outstanding requests
  4235. * is large enough to allow a queueing behavior. Note that the
  4236. * sum is not exact, as it's not taking into account deactivated
  4237. * requests.
  4238. */
  4239. if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
  4240. return;
  4241. if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
  4242. return;
  4243. bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
  4244. bfqd->max_rq_in_driver = 0;
  4245. bfqd->hw_tag_samples = 0;
  4246. }
  4247. static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
  4248. {
  4249. u64 now_ns;
  4250. u32 delta_us;
  4251. bfq_update_hw_tag(bfqd);
  4252. bfqd->rq_in_driver--;
  4253. bfqq->dispatched--;
  4254. if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
  4255. /*
  4256. * Set budget_timeout (which we overload to store the
  4257. * time at which the queue remains with no backlog and
  4258. * no outstanding request; used by the weight-raising
  4259. * mechanism).
  4260. */
  4261. bfqq->budget_timeout = jiffies;
  4262. bfq_weights_tree_remove(bfqd, bfqq);
  4263. }
  4264. now_ns = ktime_get_ns();
  4265. bfqq->ttime.last_end_request = now_ns;
  4266. /*
  4267. * Using us instead of ns, to get a reasonable precision in
  4268. * computing rate in next check.
  4269. */
  4270. delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
  4271. /*
  4272. * If the request took rather long to complete, and, according
  4273. * to the maximum request size recorded, this completion latency
  4274. * implies that the request was certainly served at a very low
  4275. * rate (less than 1M sectors/sec), then the whole observation
  4276. * interval that lasts up to this time instant cannot be a
  4277. * valid time interval for computing a new peak rate. Invoke
  4278. * bfq_update_rate_reset to have the following three steps
  4279. * taken:
  4280. * - close the observation interval at the last (previous)
  4281. * request dispatch or completion
  4282. * - compute rate, if possible, for that observation interval
  4283. * - reset to zero samples, which will trigger a proper
  4284. * re-initialization of the observation interval on next
  4285. * dispatch
  4286. */
  4287. if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
  4288. (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
  4289. 1UL<<(BFQ_RATE_SHIFT - 10))
  4290. bfq_update_rate_reset(bfqd, NULL);
  4291. bfqd->last_completion = now_ns;
  4292. /*
  4293. * If we are waiting to discover whether the request pattern
  4294. * of the task associated with the queue is actually
  4295. * isochronous, and both requisites for this condition to hold
  4296. * are now satisfied, then compute soft_rt_next_start (see the
  4297. * comments on the function bfq_bfqq_softrt_next_start()). We
  4298. * schedule this delayed check when bfqq expires, if it still
  4299. * has in-flight requests.
  4300. */
  4301. if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
  4302. RB_EMPTY_ROOT(&bfqq->sort_list))
  4303. bfqq->soft_rt_next_start =
  4304. bfq_bfqq_softrt_next_start(bfqd, bfqq);
  4305. /*
  4306. * If this is the in-service queue, check if it needs to be expired,
  4307. * or if we want to idle in case it has no pending requests.
  4308. */
  4309. if (bfqd->in_service_queue == bfqq) {
  4310. if (bfq_bfqq_must_idle(bfqq)) {
  4311. if (bfqq->dispatched == 0)
  4312. bfq_arm_slice_timer(bfqd);
  4313. /*
  4314. * If we get here, we do not expire bfqq, even
  4315. * if bfqq was in budget timeout or had no
  4316. * more requests (as controlled in the next
  4317. * conditional instructions). The reason for
  4318. * not expiring bfqq is as follows.
  4319. *
  4320. * Here bfqq->dispatched > 0 holds, but
  4321. * bfq_bfqq_must_idle() returned true. This
  4322. * implies that, even if no request arrives
  4323. * for bfqq before bfqq->dispatched reaches 0,
  4324. * bfqq will, however, not be expired on the
  4325. * completion event that causes bfqq->dispatch
  4326. * to reach zero. In contrast, on this event,
  4327. * bfqq will start enjoying device idling
  4328. * (I/O-dispatch plugging).
  4329. *
  4330. * But, if we expired bfqq here, bfqq would
  4331. * not have the chance to enjoy device idling
  4332. * when bfqq->dispatched finally reaches
  4333. * zero. This would expose bfqq to violation
  4334. * of its reserved service guarantees.
  4335. */
  4336. return;
  4337. } else if (bfq_may_expire_for_budg_timeout(bfqq))
  4338. bfq_bfqq_expire(bfqd, bfqq, false,
  4339. BFQQE_BUDGET_TIMEOUT);
  4340. else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
  4341. (bfqq->dispatched == 0 ||
  4342. !bfq_better_to_idle(bfqq)))
  4343. bfq_bfqq_expire(bfqd, bfqq, false,
  4344. BFQQE_NO_MORE_REQUESTS);
  4345. }
  4346. if (!bfqd->rq_in_driver)
  4347. bfq_schedule_dispatch(bfqd);
  4348. }
  4349. static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
  4350. {
  4351. bfqq->allocated--;
  4352. bfq_put_queue(bfqq);
  4353. }
  4354. /*
  4355. * Handle either a requeue or a finish for rq. The things to do are
  4356. * the same in both cases: all references to rq are to be dropped. In
  4357. * particular, rq is considered completed from the point of view of
  4358. * the scheduler.
  4359. */
  4360. static void bfq_finish_requeue_request(struct request *rq)
  4361. {
  4362. struct bfq_queue *bfqq = RQ_BFQQ(rq);
  4363. struct bfq_data *bfqd;
  4364. /*
  4365. * Requeue and finish hooks are invoked in blk-mq without
  4366. * checking whether the involved request is actually still
  4367. * referenced in the scheduler. To handle this fact, the
  4368. * following two checks make this function exit in case of
  4369. * spurious invocations, for which there is nothing to do.
  4370. *
  4371. * First, check whether rq has nothing to do with an elevator.
  4372. */
  4373. if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
  4374. return;
  4375. /*
  4376. * rq either is not associated with any icq, or is an already
  4377. * requeued request that has not (yet) been re-inserted into
  4378. * a bfq_queue.
  4379. */
  4380. if (!rq->elv.icq || !bfqq)
  4381. return;
  4382. bfqd = bfqq->bfqd;
  4383. if (rq->rq_flags & RQF_STARTED)
  4384. bfqg_stats_update_completion(bfqq_group(bfqq),
  4385. rq->start_time_ns,
  4386. rq->io_start_time_ns,
  4387. rq->cmd_flags);
  4388. if (likely(rq->rq_flags & RQF_STARTED)) {
  4389. unsigned long flags;
  4390. spin_lock_irqsave(&bfqd->lock, flags);
  4391. bfq_completed_request(bfqq, bfqd);
  4392. bfq_finish_requeue_request_body(bfqq);
  4393. spin_unlock_irqrestore(&bfqd->lock, flags);
  4394. } else {
  4395. /*
  4396. * Request rq may be still/already in the scheduler,
  4397. * in which case we need to remove it (this should
  4398. * never happen in case of requeue). And we cannot
  4399. * defer such a check and removal, to avoid
  4400. * inconsistencies in the time interval from the end
  4401. * of this function to the start of the deferred work.
  4402. * This situation seems to occur only in process
  4403. * context, as a consequence of a merge. In the
  4404. * current version of the code, this implies that the
  4405. * lock is held.
  4406. */
  4407. if (!RB_EMPTY_NODE(&rq->rb_node)) {
  4408. bfq_remove_request(rq->q, rq);
  4409. bfqg_stats_update_io_remove(bfqq_group(bfqq),
  4410. rq->cmd_flags);
  4411. }
  4412. bfq_finish_requeue_request_body(bfqq);
  4413. }
  4414. /*
  4415. * Reset private fields. In case of a requeue, this allows
  4416. * this function to correctly do nothing if it is spuriously
  4417. * invoked again on this same request (see the check at the
  4418. * beginning of the function). Probably, a better general
  4419. * design would be to prevent blk-mq from invoking the requeue
  4420. * or finish hooks of an elevator, for a request that is not
  4421. * referred by that elevator.
  4422. *
  4423. * Resetting the following fields would break the
  4424. * request-insertion logic if rq is re-inserted into a bfq
  4425. * internal queue, without a re-preparation. Here we assume
  4426. * that re-insertions of requeued requests, without
  4427. * re-preparation, can happen only for pass_through or at_head
  4428. * requests (which are not re-inserted into bfq internal
  4429. * queues).
  4430. */
  4431. rq->elv.priv[0] = NULL;
  4432. rq->elv.priv[1] = NULL;
  4433. }
  4434. /*
  4435. * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
  4436. * was the last process referring to that bfqq.
  4437. */
  4438. static struct bfq_queue *
  4439. bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
  4440. {
  4441. bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
  4442. if (bfqq_process_refs(bfqq) == 1) {
  4443. bfqq->pid = current->pid;
  4444. bfq_clear_bfqq_coop(bfqq);
  4445. bfq_clear_bfqq_split_coop(bfqq);
  4446. return bfqq;
  4447. }
  4448. bic_set_bfqq(bic, NULL, 1);
  4449. bfq_put_cooperator(bfqq);
  4450. bfq_put_queue(bfqq);
  4451. return NULL;
  4452. }
  4453. static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
  4454. struct bfq_io_cq *bic,
  4455. struct bio *bio,
  4456. bool split, bool is_sync,
  4457. bool *new_queue)
  4458. {
  4459. struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
  4460. if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
  4461. return bfqq;
  4462. if (new_queue)
  4463. *new_queue = true;
  4464. if (bfqq)
  4465. bfq_put_queue(bfqq);
  4466. bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
  4467. bic_set_bfqq(bic, bfqq, is_sync);
  4468. if (split && is_sync) {
  4469. if ((bic->was_in_burst_list && bfqd->large_burst) ||
  4470. bic->saved_in_large_burst)
  4471. bfq_mark_bfqq_in_large_burst(bfqq);
  4472. else {
  4473. bfq_clear_bfqq_in_large_burst(bfqq);
  4474. if (bic->was_in_burst_list)
  4475. /*
  4476. * If bfqq was in the current
  4477. * burst list before being
  4478. * merged, then we have to add
  4479. * it back. And we do not need
  4480. * to increase burst_size, as
  4481. * we did not decrement
  4482. * burst_size when we removed
  4483. * bfqq from the burst list as
  4484. * a consequence of a merge
  4485. * (see comments in
  4486. * bfq_put_queue). In this
  4487. * respect, it would be rather
  4488. * costly to know whether the
  4489. * current burst list is still
  4490. * the same burst list from
  4491. * which bfqq was removed on
  4492. * the merge. To avoid this
  4493. * cost, if bfqq was in a
  4494. * burst list, then we add
  4495. * bfqq to the current burst
  4496. * list without any further
  4497. * check. This can cause
  4498. * inappropriate insertions,
  4499. * but rarely enough to not
  4500. * harm the detection of large
  4501. * bursts significantly.
  4502. */
  4503. hlist_add_head(&bfqq->burst_list_node,
  4504. &bfqd->burst_list);
  4505. }
  4506. bfqq->split_time = jiffies;
  4507. }
  4508. return bfqq;
  4509. }
  4510. /*
  4511. * Only reset private fields. The actual request preparation will be
  4512. * performed by bfq_init_rq, when rq is either inserted or merged. See
  4513. * comments on bfq_init_rq for the reason behind this delayed
  4514. * preparation.
  4515. */
  4516. static void bfq_prepare_request(struct request *rq, struct bio *bio)
  4517. {
  4518. /*
  4519. * Regardless of whether we have an icq attached, we have to
  4520. * clear the scheduler pointers, as they might point to
  4521. * previously allocated bic/bfqq structs.
  4522. */
  4523. rq->elv.priv[0] = rq->elv.priv[1] = NULL;
  4524. }
  4525. /*
  4526. * If needed, init rq, allocate bfq data structures associated with
  4527. * rq, and increment reference counters in the destination bfq_queue
  4528. * for rq. Return the destination bfq_queue for rq, or NULL is rq is
  4529. * not associated with any bfq_queue.
  4530. *
  4531. * This function is invoked by the functions that perform rq insertion
  4532. * or merging. One may have expected the above preparation operations
  4533. * to be performed in bfq_prepare_request, and not delayed to when rq
  4534. * is inserted or merged. The rationale behind this delayed
  4535. * preparation is that, after the prepare_request hook is invoked for
  4536. * rq, rq may still be transformed into a request with no icq, i.e., a
  4537. * request not associated with any queue. No bfq hook is invoked to
  4538. * signal this tranformation. As a consequence, should these
  4539. * preparation operations be performed when the prepare_request hook
  4540. * is invoked, and should rq be transformed one moment later, bfq
  4541. * would end up in an inconsistent state, because it would have
  4542. * incremented some queue counters for an rq destined to
  4543. * transformation, without any chance to correctly lower these
  4544. * counters back. In contrast, no transformation can still happen for
  4545. * rq after rq has been inserted or merged. So, it is safe to execute
  4546. * these preparation operations when rq is finally inserted or merged.
  4547. */
  4548. static struct bfq_queue *bfq_init_rq(struct request *rq)
  4549. {
  4550. struct request_queue *q = rq->q;
  4551. struct bio *bio = rq->bio;
  4552. struct bfq_data *bfqd = q->elevator->elevator_data;
  4553. struct bfq_io_cq *bic;
  4554. const int is_sync = rq_is_sync(rq);
  4555. struct bfq_queue *bfqq;
  4556. bool new_queue = false;
  4557. bool bfqq_already_existing = false, split = false;
  4558. if (unlikely(!rq->elv.icq))
  4559. return NULL;
  4560. /*
  4561. * Assuming that elv.priv[1] is set only if everything is set
  4562. * for this rq. This holds true, because this function is
  4563. * invoked only for insertion or merging, and, after such
  4564. * events, a request cannot be manipulated any longer before
  4565. * being removed from bfq.
  4566. */
  4567. if (rq->elv.priv[1])
  4568. return rq->elv.priv[1];
  4569. bic = icq_to_bic(rq->elv.icq);
  4570. bfq_check_ioprio_change(bic, bio);
  4571. bfq_bic_update_cgroup(bic, bio);
  4572. bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
  4573. &new_queue);
  4574. if (likely(!new_queue)) {
  4575. /* If the queue was seeky for too long, break it apart. */
  4576. if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
  4577. bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
  4578. /* Update bic before losing reference to bfqq */
  4579. if (bfq_bfqq_in_large_burst(bfqq))
  4580. bic->saved_in_large_burst = true;
  4581. bfqq = bfq_split_bfqq(bic, bfqq);
  4582. split = true;
  4583. if (!bfqq)
  4584. bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
  4585. true, is_sync,
  4586. NULL);
  4587. else
  4588. bfqq_already_existing = true;
  4589. }
  4590. }
  4591. bfqq->allocated++;
  4592. bfqq->ref++;
  4593. bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
  4594. rq, bfqq, bfqq->ref);
  4595. rq->elv.priv[0] = bic;
  4596. rq->elv.priv[1] = bfqq;
  4597. /*
  4598. * If a bfq_queue has only one process reference, it is owned
  4599. * by only this bic: we can then set bfqq->bic = bic. in
  4600. * addition, if the queue has also just been split, we have to
  4601. * resume its state.
  4602. */
  4603. if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
  4604. bfqq->bic = bic;
  4605. if (split) {
  4606. /*
  4607. * The queue has just been split from a shared
  4608. * queue: restore the idle window and the
  4609. * possible weight raising period.
  4610. */
  4611. bfq_bfqq_resume_state(bfqq, bfqd, bic,
  4612. bfqq_already_existing);
  4613. }
  4614. }
  4615. if (unlikely(bfq_bfqq_just_created(bfqq)))
  4616. bfq_handle_burst(bfqd, bfqq);
  4617. return bfqq;
  4618. }
  4619. static void
  4620. bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
  4621. {
  4622. enum bfqq_expiration reason;
  4623. unsigned long flags;
  4624. spin_lock_irqsave(&bfqd->lock, flags);
  4625. /*
  4626. * Considering that bfqq may be in race, we should firstly check
  4627. * whether bfqq is in service before doing something on it. If
  4628. * the bfqq in race is not in service, it has already been expired
  4629. * through __bfq_bfqq_expire func and its wait_request flags has
  4630. * been cleared in __bfq_bfqd_reset_in_service func.
  4631. */
  4632. if (bfqq != bfqd->in_service_queue) {
  4633. spin_unlock_irqrestore(&bfqd->lock, flags);
  4634. return;
  4635. }
  4636. bfq_clear_bfqq_wait_request(bfqq);
  4637. if (bfq_bfqq_budget_timeout(bfqq))
  4638. /*
  4639. * Also here the queue can be safely expired
  4640. * for budget timeout without wasting
  4641. * guarantees
  4642. */
  4643. reason = BFQQE_BUDGET_TIMEOUT;
  4644. else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
  4645. /*
  4646. * The queue may not be empty upon timer expiration,
  4647. * because we may not disable the timer when the
  4648. * first request of the in-service queue arrives
  4649. * during disk idling.
  4650. */
  4651. reason = BFQQE_TOO_IDLE;
  4652. else
  4653. goto schedule_dispatch;
  4654. bfq_bfqq_expire(bfqd, bfqq, true, reason);
  4655. schedule_dispatch:
  4656. spin_unlock_irqrestore(&bfqd->lock, flags);
  4657. bfq_schedule_dispatch(bfqd);
  4658. }
  4659. /*
  4660. * Handler of the expiration of the timer running if the in-service queue
  4661. * is idling inside its time slice.
  4662. */
  4663. static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
  4664. {
  4665. struct bfq_data *bfqd = container_of(timer, struct bfq_data,
  4666. idle_slice_timer);
  4667. struct bfq_queue *bfqq = bfqd->in_service_queue;
  4668. /*
  4669. * Theoretical race here: the in-service queue can be NULL or
  4670. * different from the queue that was idling if a new request
  4671. * arrives for the current queue and there is a full dispatch
  4672. * cycle that changes the in-service queue. This can hardly
  4673. * happen, but in the worst case we just expire a queue too
  4674. * early.
  4675. */
  4676. if (bfqq)
  4677. bfq_idle_slice_timer_body(bfqd, bfqq);
  4678. return HRTIMER_NORESTART;
  4679. }
  4680. static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
  4681. struct bfq_queue **bfqq_ptr)
  4682. {
  4683. struct bfq_queue *bfqq = *bfqq_ptr;
  4684. bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
  4685. if (bfqq) {
  4686. bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
  4687. bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
  4688. bfqq, bfqq->ref);
  4689. bfq_put_queue(bfqq);
  4690. *bfqq_ptr = NULL;
  4691. }
  4692. }
  4693. /*
  4694. * Release all the bfqg references to its async queues. If we are
  4695. * deallocating the group these queues may still contain requests, so
  4696. * we reparent them to the root cgroup (i.e., the only one that will
  4697. * exist for sure until all the requests on a device are gone).
  4698. */
  4699. void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
  4700. {
  4701. int i, j;
  4702. for (i = 0; i < 2; i++)
  4703. for (j = 0; j < IOPRIO_BE_NR; j++)
  4704. __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
  4705. __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
  4706. }
  4707. /*
  4708. * See the comments on bfq_limit_depth for the purpose of
  4709. * the depths set in the function. Return minimum shallow depth we'll use.
  4710. */
  4711. static unsigned int bfq_update_depths(struct bfq_data *bfqd,
  4712. struct sbitmap_queue *bt)
  4713. {
  4714. unsigned int i, j, min_shallow = UINT_MAX;
  4715. /*
  4716. * In-word depths if no bfq_queue is being weight-raised:
  4717. * leaving 25% of tags only for sync reads.
  4718. *
  4719. * In next formulas, right-shift the value
  4720. * (1U<<bt->sb.shift), instead of computing directly
  4721. * (1U<<(bt->sb.shift - something)), to be robust against
  4722. * any possible value of bt->sb.shift, without having to
  4723. * limit 'something'.
  4724. */
  4725. /* no more than 50% of tags for async I/O */
  4726. bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
  4727. /*
  4728. * no more than 75% of tags for sync writes (25% extra tags
  4729. * w.r.t. async I/O, to prevent async I/O from starving sync
  4730. * writes)
  4731. */
  4732. bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
  4733. /*
  4734. * In-word depths in case some bfq_queue is being weight-
  4735. * raised: leaving ~63% of tags for sync reads. This is the
  4736. * highest percentage for which, in our tests, application
  4737. * start-up times didn't suffer from any regression due to tag
  4738. * shortage.
  4739. */
  4740. /* no more than ~18% of tags for async I/O */
  4741. bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
  4742. /* no more than ~37% of tags for sync writes (~20% extra tags) */
  4743. bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
  4744. for (i = 0; i < 2; i++)
  4745. for (j = 0; j < 2; j++)
  4746. min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
  4747. return min_shallow;
  4748. }
  4749. static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
  4750. {
  4751. struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
  4752. struct blk_mq_tags *tags = hctx->sched_tags;
  4753. unsigned int min_shallow;
  4754. min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
  4755. sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
  4756. }
  4757. static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
  4758. {
  4759. bfq_depth_updated(hctx);
  4760. return 0;
  4761. }
  4762. static void bfq_exit_queue(struct elevator_queue *e)
  4763. {
  4764. struct bfq_data *bfqd = e->elevator_data;
  4765. struct bfq_queue *bfqq, *n;
  4766. hrtimer_cancel(&bfqd->idle_slice_timer);
  4767. spin_lock_irq(&bfqd->lock);
  4768. list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
  4769. bfq_deactivate_bfqq(bfqd, bfqq, false, false);
  4770. spin_unlock_irq(&bfqd->lock);
  4771. hrtimer_cancel(&bfqd->idle_slice_timer);
  4772. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  4773. /* release oom-queue reference to root group */
  4774. bfqg_and_blkg_put(bfqd->root_group);
  4775. blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
  4776. #else
  4777. spin_lock_irq(&bfqd->lock);
  4778. bfq_put_async_queues(bfqd, bfqd->root_group);
  4779. kfree(bfqd->root_group);
  4780. spin_unlock_irq(&bfqd->lock);
  4781. #endif
  4782. kfree(bfqd);
  4783. }
  4784. static void bfq_init_root_group(struct bfq_group *root_group,
  4785. struct bfq_data *bfqd)
  4786. {
  4787. int i;
  4788. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  4789. root_group->entity.parent = NULL;
  4790. root_group->my_entity = NULL;
  4791. root_group->bfqd = bfqd;
  4792. #endif
  4793. root_group->rq_pos_tree = RB_ROOT;
  4794. for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
  4795. root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
  4796. root_group->sched_data.bfq_class_idle_last_service = jiffies;
  4797. }
  4798. static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
  4799. {
  4800. struct bfq_data *bfqd;
  4801. struct elevator_queue *eq;
  4802. eq = elevator_alloc(q, e);
  4803. if (!eq)
  4804. return -ENOMEM;
  4805. bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
  4806. if (!bfqd) {
  4807. kobject_put(&eq->kobj);
  4808. return -ENOMEM;
  4809. }
  4810. eq->elevator_data = bfqd;
  4811. spin_lock_irq(q->queue_lock);
  4812. q->elevator = eq;
  4813. spin_unlock_irq(q->queue_lock);
  4814. /*
  4815. * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
  4816. * Grab a permanent reference to it, so that the normal code flow
  4817. * will not attempt to free it.
  4818. */
  4819. bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
  4820. bfqd->oom_bfqq.ref++;
  4821. bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
  4822. bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
  4823. bfqd->oom_bfqq.entity.new_weight =
  4824. bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
  4825. /* oom_bfqq does not participate to bursts */
  4826. bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
  4827. /*
  4828. * Trigger weight initialization, according to ioprio, at the
  4829. * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
  4830. * class won't be changed any more.
  4831. */
  4832. bfqd->oom_bfqq.entity.prio_changed = 1;
  4833. bfqd->queue = q;
  4834. INIT_LIST_HEAD(&bfqd->dispatch);
  4835. hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
  4836. HRTIMER_MODE_REL);
  4837. bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
  4838. bfqd->queue_weights_tree = RB_ROOT;
  4839. bfqd->group_weights_tree = RB_ROOT;
  4840. INIT_LIST_HEAD(&bfqd->active_list);
  4841. INIT_LIST_HEAD(&bfqd->idle_list);
  4842. INIT_HLIST_HEAD(&bfqd->burst_list);
  4843. bfqd->hw_tag = -1;
  4844. bfqd->bfq_max_budget = bfq_default_max_budget;
  4845. bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
  4846. bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
  4847. bfqd->bfq_back_max = bfq_back_max;
  4848. bfqd->bfq_back_penalty = bfq_back_penalty;
  4849. bfqd->bfq_slice_idle = bfq_slice_idle;
  4850. bfqd->bfq_timeout = bfq_timeout;
  4851. bfqd->bfq_requests_within_timer = 120;
  4852. bfqd->bfq_large_burst_thresh = 8;
  4853. bfqd->bfq_burst_interval = msecs_to_jiffies(180);
  4854. bfqd->low_latency = true;
  4855. /*
  4856. * Trade-off between responsiveness and fairness.
  4857. */
  4858. bfqd->bfq_wr_coeff = 30;
  4859. bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
  4860. bfqd->bfq_wr_max_time = 0;
  4861. bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
  4862. bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
  4863. bfqd->bfq_wr_max_softrt_rate = 7000; /*
  4864. * Approximate rate required
  4865. * to playback or record a
  4866. * high-definition compressed
  4867. * video.
  4868. */
  4869. bfqd->wr_busy_queues = 0;
  4870. /*
  4871. * Begin by assuming, optimistically, that the device peak
  4872. * rate is equal to 2/3 of the highest reference rate.
  4873. */
  4874. bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
  4875. ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
  4876. bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
  4877. spin_lock_init(&bfqd->lock);
  4878. /*
  4879. * The invocation of the next bfq_create_group_hierarchy
  4880. * function is the head of a chain of function calls
  4881. * (bfq_create_group_hierarchy->blkcg_activate_policy->
  4882. * blk_mq_freeze_queue) that may lead to the invocation of the
  4883. * has_work hook function. For this reason,
  4884. * bfq_create_group_hierarchy is invoked only after all
  4885. * scheduler data has been initialized, apart from the fields
  4886. * that can be initialized only after invoking
  4887. * bfq_create_group_hierarchy. This, in particular, enables
  4888. * has_work to correctly return false. Of course, to avoid
  4889. * other inconsistencies, the blk-mq stack must then refrain
  4890. * from invoking further scheduler hooks before this init
  4891. * function is finished.
  4892. */
  4893. bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
  4894. if (!bfqd->root_group)
  4895. goto out_free;
  4896. bfq_init_root_group(bfqd->root_group, bfqd);
  4897. bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
  4898. wbt_disable_default(q);
  4899. return 0;
  4900. out_free:
  4901. kfree(bfqd);
  4902. kobject_put(&eq->kobj);
  4903. return -ENOMEM;
  4904. }
  4905. static void bfq_slab_kill(void)
  4906. {
  4907. kmem_cache_destroy(bfq_pool);
  4908. }
  4909. static int __init bfq_slab_setup(void)
  4910. {
  4911. bfq_pool = KMEM_CACHE(bfq_queue, 0);
  4912. if (!bfq_pool)
  4913. return -ENOMEM;
  4914. return 0;
  4915. }
  4916. static ssize_t bfq_var_show(unsigned int var, char *page)
  4917. {
  4918. return sprintf(page, "%u\n", var);
  4919. }
  4920. static int bfq_var_store(unsigned long *var, const char *page)
  4921. {
  4922. unsigned long new_val;
  4923. int ret = kstrtoul(page, 10, &new_val);
  4924. if (ret)
  4925. return ret;
  4926. *var = new_val;
  4927. return 0;
  4928. }
  4929. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  4930. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  4931. { \
  4932. struct bfq_data *bfqd = e->elevator_data; \
  4933. u64 __data = __VAR; \
  4934. if (__CONV == 1) \
  4935. __data = jiffies_to_msecs(__data); \
  4936. else if (__CONV == 2) \
  4937. __data = div_u64(__data, NSEC_PER_MSEC); \
  4938. return bfq_var_show(__data, (page)); \
  4939. }
  4940. SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
  4941. SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
  4942. SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
  4943. SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
  4944. SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
  4945. SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
  4946. SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
  4947. SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
  4948. SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
  4949. #undef SHOW_FUNCTION
  4950. #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
  4951. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  4952. { \
  4953. struct bfq_data *bfqd = e->elevator_data; \
  4954. u64 __data = __VAR; \
  4955. __data = div_u64(__data, NSEC_PER_USEC); \
  4956. return bfq_var_show(__data, (page)); \
  4957. }
  4958. USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
  4959. #undef USEC_SHOW_FUNCTION
  4960. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  4961. static ssize_t \
  4962. __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  4963. { \
  4964. struct bfq_data *bfqd = e->elevator_data; \
  4965. unsigned long __data, __min = (MIN), __max = (MAX); \
  4966. int ret; \
  4967. \
  4968. ret = bfq_var_store(&__data, (page)); \
  4969. if (ret) \
  4970. return ret; \
  4971. if (__data < __min) \
  4972. __data = __min; \
  4973. else if (__data > __max) \
  4974. __data = __max; \
  4975. if (__CONV == 1) \
  4976. *(__PTR) = msecs_to_jiffies(__data); \
  4977. else if (__CONV == 2) \
  4978. *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
  4979. else \
  4980. *(__PTR) = __data; \
  4981. return count; \
  4982. }
  4983. STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
  4984. INT_MAX, 2);
  4985. STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
  4986. INT_MAX, 2);
  4987. STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
  4988. STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
  4989. INT_MAX, 0);
  4990. STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
  4991. #undef STORE_FUNCTION
  4992. #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
  4993. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
  4994. { \
  4995. struct bfq_data *bfqd = e->elevator_data; \
  4996. unsigned long __data, __min = (MIN), __max = (MAX); \
  4997. int ret; \
  4998. \
  4999. ret = bfq_var_store(&__data, (page)); \
  5000. if (ret) \
  5001. return ret; \
  5002. if (__data < __min) \
  5003. __data = __min; \
  5004. else if (__data > __max) \
  5005. __data = __max; \
  5006. *(__PTR) = (u64)__data * NSEC_PER_USEC; \
  5007. return count; \
  5008. }
  5009. USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
  5010. UINT_MAX);
  5011. #undef USEC_STORE_FUNCTION
  5012. static ssize_t bfq_max_budget_store(struct elevator_queue *e,
  5013. const char *page, size_t count)
  5014. {
  5015. struct bfq_data *bfqd = e->elevator_data;
  5016. unsigned long __data;
  5017. int ret;
  5018. ret = bfq_var_store(&__data, (page));
  5019. if (ret)
  5020. return ret;
  5021. if (__data == 0)
  5022. bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
  5023. else {
  5024. if (__data > INT_MAX)
  5025. __data = INT_MAX;
  5026. bfqd->bfq_max_budget = __data;
  5027. }
  5028. bfqd->bfq_user_max_budget = __data;
  5029. return count;
  5030. }
  5031. /*
  5032. * Leaving this name to preserve name compatibility with cfq
  5033. * parameters, but this timeout is used for both sync and async.
  5034. */
  5035. static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
  5036. const char *page, size_t count)
  5037. {
  5038. struct bfq_data *bfqd = e->elevator_data;
  5039. unsigned long __data;
  5040. int ret;
  5041. ret = bfq_var_store(&__data, (page));
  5042. if (ret)
  5043. return ret;
  5044. if (__data < 1)
  5045. __data = 1;
  5046. else if (__data > INT_MAX)
  5047. __data = INT_MAX;
  5048. bfqd->bfq_timeout = msecs_to_jiffies(__data);
  5049. if (bfqd->bfq_user_max_budget == 0)
  5050. bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
  5051. return count;
  5052. }
  5053. static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
  5054. const char *page, size_t count)
  5055. {
  5056. struct bfq_data *bfqd = e->elevator_data;
  5057. unsigned long __data;
  5058. int ret;
  5059. ret = bfq_var_store(&__data, (page));
  5060. if (ret)
  5061. return ret;
  5062. if (__data > 1)
  5063. __data = 1;
  5064. if (!bfqd->strict_guarantees && __data == 1
  5065. && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
  5066. bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
  5067. bfqd->strict_guarantees = __data;
  5068. return count;
  5069. }
  5070. static ssize_t bfq_low_latency_store(struct elevator_queue *e,
  5071. const char *page, size_t count)
  5072. {
  5073. struct bfq_data *bfqd = e->elevator_data;
  5074. unsigned long __data;
  5075. int ret;
  5076. ret = bfq_var_store(&__data, (page));
  5077. if (ret)
  5078. return ret;
  5079. if (__data > 1)
  5080. __data = 1;
  5081. if (__data == 0 && bfqd->low_latency != 0)
  5082. bfq_end_wr(bfqd);
  5083. bfqd->low_latency = __data;
  5084. return count;
  5085. }
  5086. #define BFQ_ATTR(name) \
  5087. __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
  5088. static struct elv_fs_entry bfq_attrs[] = {
  5089. BFQ_ATTR(fifo_expire_sync),
  5090. BFQ_ATTR(fifo_expire_async),
  5091. BFQ_ATTR(back_seek_max),
  5092. BFQ_ATTR(back_seek_penalty),
  5093. BFQ_ATTR(slice_idle),
  5094. BFQ_ATTR(slice_idle_us),
  5095. BFQ_ATTR(max_budget),
  5096. BFQ_ATTR(timeout_sync),
  5097. BFQ_ATTR(strict_guarantees),
  5098. BFQ_ATTR(low_latency),
  5099. __ATTR_NULL
  5100. };
  5101. static struct elevator_type iosched_bfq_mq = {
  5102. .ops.mq = {
  5103. .limit_depth = bfq_limit_depth,
  5104. .prepare_request = bfq_prepare_request,
  5105. .requeue_request = bfq_finish_requeue_request,
  5106. .finish_request = bfq_finish_requeue_request,
  5107. .exit_icq = bfq_exit_icq,
  5108. .insert_requests = bfq_insert_requests,
  5109. .dispatch_request = bfq_dispatch_request,
  5110. .next_request = elv_rb_latter_request,
  5111. .former_request = elv_rb_former_request,
  5112. .allow_merge = bfq_allow_bio_merge,
  5113. .bio_merge = bfq_bio_merge,
  5114. .request_merge = bfq_request_merge,
  5115. .requests_merged = bfq_requests_merged,
  5116. .request_merged = bfq_request_merged,
  5117. .has_work = bfq_has_work,
  5118. .depth_updated = bfq_depth_updated,
  5119. .init_hctx = bfq_init_hctx,
  5120. .init_sched = bfq_init_queue,
  5121. .exit_sched = bfq_exit_queue,
  5122. },
  5123. .uses_mq = true,
  5124. .icq_size = sizeof(struct bfq_io_cq),
  5125. .icq_align = __alignof__(struct bfq_io_cq),
  5126. .elevator_attrs = bfq_attrs,
  5127. .elevator_name = "bfq",
  5128. .elevator_owner = THIS_MODULE,
  5129. };
  5130. MODULE_ALIAS("bfq-iosched");
  5131. static int __init bfq_init(void)
  5132. {
  5133. int ret;
  5134. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  5135. ret = blkcg_policy_register(&blkcg_policy_bfq);
  5136. if (ret)
  5137. return ret;
  5138. #endif
  5139. ret = -ENOMEM;
  5140. if (bfq_slab_setup())
  5141. goto err_pol_unreg;
  5142. /*
  5143. * Times to load large popular applications for the typical
  5144. * systems installed on the reference devices (see the
  5145. * comments before the definition of the next
  5146. * array). Actually, we use slightly lower values, as the
  5147. * estimated peak rate tends to be smaller than the actual
  5148. * peak rate. The reason for this last fact is that estimates
  5149. * are computed over much shorter time intervals than the long
  5150. * intervals typically used for benchmarking. Why? First, to
  5151. * adapt more quickly to variations. Second, because an I/O
  5152. * scheduler cannot rely on a peak-rate-evaluation workload to
  5153. * be run for a long time.
  5154. */
  5155. ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
  5156. ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
  5157. ret = elv_register(&iosched_bfq_mq);
  5158. if (ret)
  5159. goto slab_kill;
  5160. return 0;
  5161. slab_kill:
  5162. bfq_slab_kill();
  5163. err_pol_unreg:
  5164. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  5165. blkcg_policy_unregister(&blkcg_policy_bfq);
  5166. #endif
  5167. return ret;
  5168. }
  5169. static void __exit bfq_exit(void)
  5170. {
  5171. elv_unregister(&iosched_bfq_mq);
  5172. #ifdef CONFIG_BFQ_GROUP_IOSCHED
  5173. blkcg_policy_unregister(&blkcg_policy_bfq);
  5174. #endif
  5175. bfq_slab_kill();
  5176. }
  5177. module_init(bfq_init);
  5178. module_exit(bfq_exit);
  5179. MODULE_AUTHOR("Paolo Valente");
  5180. MODULE_LICENSE("GPL");
  5181. MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");