ark-dma.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920
  1. /*
  2. * Arkmicro dma driver
  3. *
  4. * Licensed under GPLv2 or later.
  5. */
  6. #include <linux/module.h>
  7. #include <linux/device.h>
  8. #include <linux/clk.h>
  9. #include <linux/pm_runtime.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/dmaengine.h>
  12. #include <linux/dma-mapping.h>
  13. #include <linux/of.h>
  14. #include <linux/of_dma.h>
  15. #include <linux/bitops.h>
  16. #include <linux/delay.h>
  17. #include <linux/dmapool.h>
  18. #include <linux/err.h>
  19. #include <linux/init.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/mm.h>
  22. #include <linux/slab.h>
  23. #include "dmaengine.h"
  24. #include "ark-dma.h"
  25. #define DRV_NAME "dw_dmac"
  26. /*
  27. * This supports the Synopsys "DesignWare AHB Central DMA Controller",
  28. * (DW_ahb_dmac) which is used with various AMBA 2.0 systems (not all
  29. * of which use ARM any more). See the "Databook" from Synopsys for
  30. * information beyond what licensees probably provide.
  31. *
  32. * The driver has been tested with the Atmel AT32AP7000, which does not
  33. * support descriptor writeback.
  34. */
  35. #define DWC_DEFAULT_CTLLO(_chan) ({ \
  36. struct dw_dma_chan *_dwc = to_dw_dma_chan(_chan); \
  37. struct dma_slave_config *_sconfig = &_dwc->dma_sconfig; \
  38. bool _is_slave = is_slave_direction(_dwc->direction); \
  39. u8 _smsize = _is_slave ? _sconfig->src_maxburst : \
  40. DW_DMA_MSIZE_16; \
  41. u8 _dmsize = _is_slave ? _sconfig->dst_maxburst : \
  42. DW_DMA_MSIZE_16; \
  43. u8 _dms = (_dwc->direction == DMA_MEM_TO_DEV) ? \
  44. _dwc->dws.p_master : _dwc->dws.m_master; \
  45. u8 _sms = (_dwc->direction == DMA_DEV_TO_MEM) ? \
  46. _dwc->dws.p_master : _dwc->dws.m_master; \
  47. \
  48. (DWC_CTLL_DST_MSIZE(_dmsize) \
  49. | DWC_CTLL_SRC_MSIZE(_smsize) \
  50. | DWC_CTLL_LLP_D_EN \
  51. | DWC_CTLL_LLP_S_EN \
  52. | DWC_CTLL_DMS(_dms) \
  53. | DWC_CTLL_SMS(_sms)); \
  54. })
  55. /* The set of bus widths supported by the DMA controller */
  56. #define DW_DMA_BUSWIDTHS \
  57. BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  58. BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  59. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  60. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  61. /*----------------------------------------------------------------------*/
  62. static struct device *chan2dev(struct dma_chan *chan)
  63. {
  64. return &chan->dev->device;
  65. }
  66. static struct dw_desc *dwc_first_active(struct dw_dma_chan *dwc)
  67. {
  68. return to_dw_desc(dwc->active_list.next);
  69. }
  70. static dma_cookie_t dwc_tx_submit(struct dma_async_tx_descriptor *tx)
  71. {
  72. struct dw_desc *desc = txd_to_dw_desc(tx);
  73. struct dw_dma_chan *dwc = to_dw_dma_chan(tx->chan);
  74. dma_cookie_t cookie;
  75. unsigned long flags;
  76. spin_lock_irqsave(&dwc->lock, flags);
  77. cookie = dma_cookie_assign(tx);
  78. /*
  79. * REVISIT: We should attempt to chain as many descriptors as
  80. * possible, perhaps even appending to those already submitted
  81. * for DMA. But this is hard to do in a race-free manner.
  82. */
  83. list_add_tail(&desc->desc_node, &dwc->queue);
  84. spin_unlock_irqrestore(&dwc->lock, flags);
  85. dev_vdbg(chan2dev(tx->chan), "%s: queued %u\n",
  86. __func__, desc->txd.cookie);
  87. return cookie;
  88. }
  89. static struct dw_desc *dwc_desc_get(struct dw_dma_chan *dwc)
  90. {
  91. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  92. struct dw_desc *desc;
  93. dma_addr_t phys;
  94. desc = dma_pool_zalloc(dw->desc_pool, GFP_ATOMIC, &phys);
  95. if (!desc)
  96. return NULL;
  97. dwc->descs_allocated++;
  98. INIT_LIST_HEAD(&desc->tx_list);
  99. dma_async_tx_descriptor_init(&desc->txd, &dwc->chan);
  100. desc->txd.tx_submit = dwc_tx_submit;
  101. desc->txd.flags = DMA_CTRL_ACK;
  102. desc->txd.phys = phys;
  103. return desc;
  104. }
  105. static void dwc_desc_put(struct dw_dma_chan *dwc, struct dw_desc *desc)
  106. {
  107. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  108. struct dw_desc *child, *_next;
  109. if (unlikely(!desc))
  110. return;
  111. list_for_each_entry_safe(child, _next, &desc->tx_list, desc_node) {
  112. list_del(&child->desc_node);
  113. dma_pool_free(dw->desc_pool, child, child->txd.phys);
  114. dwc->descs_allocated--;
  115. }
  116. dma_pool_free(dw->desc_pool, desc, desc->txd.phys);
  117. dwc->descs_allocated--;
  118. }
  119. static void dwc_initialize(struct dw_dma_chan *dwc)
  120. {
  121. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  122. u32 cfghi = DWC_CFGH_FIFO_MODE;
  123. u32 cfglo = DWC_CFGL_CH_PRIOR(dwc->priority);
  124. bool hs_polarity = dwc->dws.hs_polarity;
  125. if (test_bit(DW_DMA_IS_INITIALIZED, &dwc->flags))
  126. return;
  127. cfghi |= DWC_CFGH_DST_PER(dwc->dws.dst_id);
  128. cfghi |= DWC_CFGH_SRC_PER(dwc->dws.src_id);
  129. /* Set polarity of handshake interface */
  130. cfglo |= hs_polarity ? DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL : 0;
  131. channel_writel(dwc, CFG_LO, cfglo);
  132. channel_writel(dwc, CFG_HI, cfghi);
  133. /* Enable interrupts */
  134. channel_set_bit(dw, MASK.XFER, dwc->mask);
  135. channel_set_bit(dw, MASK.ERROR, dwc->mask);
  136. set_bit(DW_DMA_IS_INITIALIZED, &dwc->flags);
  137. }
  138. /*----------------------------------------------------------------------*/
  139. static inline void dwc_dump_chan_regs(struct dw_dma_chan *dwc)
  140. {
  141. dev_err(chan2dev(&dwc->chan),
  142. " SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
  143. channel_readl(dwc, SAR),
  144. channel_readl(dwc, DAR),
  145. channel_readl(dwc, LLP),
  146. channel_readl(dwc, CTL_HI),
  147. channel_readl(dwc, CTL_LO));
  148. }
  149. static inline void dwc_chan_disable(struct dw_dma *dw, struct dw_dma_chan *dwc)
  150. {
  151. channel_clear_bit(dw, CH_EN, dwc->mask);
  152. while (dma_readl(dw, CH_EN) & dwc->mask)
  153. cpu_relax();
  154. }
  155. /*----------------------------------------------------------------------*/
  156. /* Perform single block transfer */
  157. static inline void dwc_do_single_block(struct dw_dma_chan *dwc,
  158. struct dw_desc *desc)
  159. {
  160. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  161. u32 ctllo;
  162. /*
  163. * Software emulation of LLP mode relies on interrupts to continue
  164. * multi block transfer.
  165. */
  166. ctllo = lli_read(desc, ctllo) | DWC_CTLL_INT_EN;
  167. channel_writel(dwc, SAR, lli_read(desc, sar));
  168. channel_writel(dwc, DAR, lli_read(desc, dar));
  169. channel_writel(dwc, CTL_LO, ctllo);
  170. channel_writel(dwc, CTL_HI, lli_read(desc, ctlhi));
  171. channel_set_bit(dw, CH_EN, dwc->mask);
  172. /* Move pointer to next descriptor */
  173. dwc->tx_node_active = dwc->tx_node_active->next;
  174. }
  175. /* Called with dwc->lock held and bh disabled */
  176. static void dwc_dostart(struct dw_dma_chan *dwc, struct dw_desc *first)
  177. {
  178. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  179. u8 lms = DWC_LLP_LMS(dwc->dws.m_master);
  180. unsigned long was_soft_llp;
  181. /* ASSERT: channel is idle */
  182. if (dma_readl(dw, CH_EN) & dwc->mask) {
  183. dev_err(chan2dev(&dwc->chan),
  184. "%s: BUG: Attempted to start non-idle channel\n",
  185. __func__);
  186. dwc_dump_chan_regs(dwc);
  187. /* The tasklet will hopefully advance the queue... */
  188. return;
  189. }
  190. if (dwc->nollp) {
  191. was_soft_llp = test_and_set_bit(DW_DMA_IS_SOFT_LLP,
  192. &dwc->flags);
  193. if (was_soft_llp) {
  194. dev_err(chan2dev(&dwc->chan),
  195. "BUG: Attempted to start new LLP transfer inside ongoing one\n");
  196. return;
  197. }
  198. dwc_initialize(dwc);
  199. first->residue = first->total_len;
  200. dwc->tx_node_active = &first->tx_list;
  201. /* Submit first block */
  202. dwc_do_single_block(dwc, first);
  203. return;
  204. }
  205. dwc_initialize(dwc);
  206. channel_writel(dwc, LLP, first->txd.phys | lms);
  207. channel_writel(dwc, CTL_LO, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  208. channel_writel(dwc, CTL_HI, 0);
  209. channel_set_bit(dw, CH_EN, dwc->mask);
  210. }
  211. static void dwc_dostart_first_queued(struct dw_dma_chan *dwc)
  212. {
  213. struct dw_desc *desc;
  214. if (list_empty(&dwc->queue))
  215. return;
  216. list_move(dwc->queue.next, &dwc->active_list);
  217. desc = dwc_first_active(dwc);
  218. dev_vdbg(chan2dev(&dwc->chan), "%s: started %u\n", __func__, desc->txd.cookie);
  219. dwc_dostart(dwc, desc);
  220. }
  221. /*----------------------------------------------------------------------*/
  222. static void
  223. dwc_descriptor_complete(struct dw_dma_chan *dwc, struct dw_desc *desc,
  224. bool callback_required)
  225. {
  226. struct dma_async_tx_descriptor *txd = &desc->txd;
  227. struct dw_desc *child;
  228. unsigned long flags;
  229. struct dmaengine_desc_callback cb;
  230. dev_vdbg(chan2dev(&dwc->chan), "descriptor %u complete\n", txd->cookie);
  231. spin_lock_irqsave(&dwc->lock, flags);
  232. dma_cookie_complete(txd);
  233. if (callback_required)
  234. dmaengine_desc_get_callback(txd, &cb);
  235. else
  236. memset(&cb, 0, sizeof(cb));
  237. /* async_tx_ack */
  238. list_for_each_entry(child, &desc->tx_list, desc_node)
  239. async_tx_ack(&child->txd);
  240. async_tx_ack(&desc->txd);
  241. dwc_desc_put(dwc, desc);
  242. spin_unlock_irqrestore(&dwc->lock, flags);
  243. dmaengine_desc_callback_invoke(&cb, NULL);
  244. }
  245. static void dwc_complete_all(struct dw_dma *dw, struct dw_dma_chan *dwc)
  246. {
  247. struct dw_desc *desc, *_desc;
  248. LIST_HEAD(list);
  249. unsigned long flags;
  250. spin_lock_irqsave(&dwc->lock, flags);
  251. if (dma_readl(dw, CH_EN) & dwc->mask) {
  252. dev_err(chan2dev(&dwc->chan),
  253. "BUG: XFER bit set, but channel not idle!\n");
  254. /* Try to continue after resetting the channel... */
  255. dwc_chan_disable(dw, dwc);
  256. }
  257. /*
  258. * Submit queued descriptors ASAP, i.e. before we go through
  259. * the completed ones.
  260. */
  261. list_splice_init(&dwc->active_list, &list);
  262. dwc_dostart_first_queued(dwc);
  263. spin_unlock_irqrestore(&dwc->lock, flags);
  264. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  265. dwc_descriptor_complete(dwc, desc, true);
  266. }
  267. /* Returns how many bytes were already received from source */
  268. static inline u32 dwc_get_sent(struct dw_dma_chan *dwc)
  269. {
  270. u32 ctlhi = channel_readl(dwc, CTL_HI);
  271. u32 ctllo = channel_readl(dwc, CTL_LO);
  272. return (ctlhi & DWC_CTLH_BLOCK_TS_MASK) * (1 << (ctllo >> 4 & 7));
  273. }
  274. static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc)
  275. {
  276. dma_addr_t llp;
  277. struct dw_desc *desc, *_desc;
  278. struct dw_desc *child;
  279. u32 status_xfer;
  280. unsigned long flags;
  281. spin_lock_irqsave(&dwc->lock, flags);
  282. llp = channel_readl(dwc, LLP);
  283. status_xfer = dma_readl(dw, RAW.XFER);
  284. if (status_xfer & dwc->mask) {
  285. /* Everything we've submitted is done */
  286. dma_writel(dw, CLEAR.XFER, dwc->mask);
  287. if (test_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags)) {
  288. struct list_head *head, *active = dwc->tx_node_active;
  289. /*
  290. * We are inside first active descriptor.
  291. * Otherwise something is really wrong.
  292. */
  293. desc = dwc_first_active(dwc);
  294. head = &desc->tx_list;
  295. if (active != head) {
  296. /* Update residue to reflect last sent descriptor */
  297. if (active == head->next)
  298. desc->residue -= desc->len;
  299. else
  300. desc->residue -= to_dw_desc(active->prev)->len;
  301. child = to_dw_desc(active);
  302. /* Submit next block */
  303. dwc_do_single_block(dwc, child);
  304. spin_unlock_irqrestore(&dwc->lock, flags);
  305. return;
  306. }
  307. /* We are done here */
  308. clear_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags);
  309. }
  310. spin_unlock_irqrestore(&dwc->lock, flags);
  311. dwc_complete_all(dw, dwc);
  312. return;
  313. }
  314. if (list_empty(&dwc->active_list)) {
  315. spin_unlock_irqrestore(&dwc->lock, flags);
  316. return;
  317. }
  318. if (test_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags)) {
  319. dev_vdbg(chan2dev(&dwc->chan), "%s: soft LLP mode\n", __func__);
  320. spin_unlock_irqrestore(&dwc->lock, flags);
  321. return;
  322. }
  323. dev_vdbg(chan2dev(&dwc->chan), "%s: llp=%pad\n", __func__, &llp);
  324. list_for_each_entry_safe(desc, _desc, &dwc->active_list, desc_node) {
  325. /* Initial residue value */
  326. desc->residue = desc->total_len;
  327. /* Check first descriptors addr */
  328. if (desc->txd.phys == DWC_LLP_LOC(llp)) {
  329. spin_unlock_irqrestore(&dwc->lock, flags);
  330. return;
  331. }
  332. /* Check first descriptors llp */
  333. if (lli_read(desc, llp) == llp) {
  334. /* This one is currently in progress */
  335. desc->residue -= dwc_get_sent(dwc);
  336. spin_unlock_irqrestore(&dwc->lock, flags);
  337. return;
  338. }
  339. desc->residue -= desc->len;
  340. list_for_each_entry(child, &desc->tx_list, desc_node) {
  341. if (lli_read(child, llp) == llp) {
  342. /* Currently in progress */
  343. desc->residue -= dwc_get_sent(dwc);
  344. spin_unlock_irqrestore(&dwc->lock, flags);
  345. return;
  346. }
  347. desc->residue -= child->len;
  348. }
  349. /*
  350. * No descriptors so far seem to be in progress, i.e.
  351. * this one must be done.
  352. */
  353. spin_unlock_irqrestore(&dwc->lock, flags);
  354. dwc_descriptor_complete(dwc, desc, true);
  355. spin_lock_irqsave(&dwc->lock, flags);
  356. }
  357. dev_err(chan2dev(&dwc->chan),
  358. "BUG: All descriptors done, but channel not idle!\n");
  359. /* Try to continue after resetting the channel... */
  360. dwc_chan_disable(dw, dwc);
  361. dwc_dostart_first_queued(dwc);
  362. spin_unlock_irqrestore(&dwc->lock, flags);
  363. }
  364. static inline void dwc_dump_lli(struct dw_dma_chan *dwc, struct dw_desc *desc)
  365. {
  366. dev_crit(chan2dev(&dwc->chan), " desc: s0x%x d0x%x l0x%x c0x%x:%x\n",
  367. lli_read(desc, sar),
  368. lli_read(desc, dar),
  369. lli_read(desc, llp),
  370. lli_read(desc, ctlhi),
  371. lli_read(desc, ctllo));
  372. }
  373. static void dwc_handle_error(struct dw_dma *dw, struct dw_dma_chan *dwc)
  374. {
  375. struct dw_desc *bad_desc;
  376. struct dw_desc *child;
  377. unsigned long flags;
  378. dwc_scan_descriptors(dw, dwc);
  379. spin_lock_irqsave(&dwc->lock, flags);
  380. /*
  381. * The descriptor currently at the head of the active list is
  382. * borked. Since we don't have any way to report errors, we'll
  383. * just have to scream loudly and try to carry on.
  384. */
  385. bad_desc = dwc_first_active(dwc);
  386. list_del_init(&bad_desc->desc_node);
  387. list_move(dwc->queue.next, dwc->active_list.prev);
  388. /* Clear the error flag and try to restart the controller */
  389. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  390. if (!list_empty(&dwc->active_list))
  391. dwc_dostart(dwc, dwc_first_active(dwc));
  392. /*
  393. * WARN may seem harsh, but since this only happens
  394. * when someone submits a bad physical address in a
  395. * descriptor, we should consider ourselves lucky that the
  396. * controller flagged an error instead of scribbling over
  397. * random memory locations.
  398. */
  399. dev_WARN(chan2dev(&dwc->chan), "Bad descriptor submitted for DMA!\n"
  400. " cookie: %d\n", bad_desc->txd.cookie);
  401. dwc_dump_lli(dwc, bad_desc);
  402. list_for_each_entry(child, &bad_desc->tx_list, desc_node)
  403. dwc_dump_lli(dwc, child);
  404. spin_unlock_irqrestore(&dwc->lock, flags);
  405. /* Pretend the descriptor completed successfully */
  406. dwc_descriptor_complete(dwc, bad_desc, true);
  407. }
  408. /* --------------------- Cyclic DMA API extensions -------------------- */
  409. dma_addr_t dw_dma_get_src_addr(struct dma_chan *chan)
  410. {
  411. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  412. return channel_readl(dwc, SAR);
  413. }
  414. EXPORT_SYMBOL(dw_dma_get_src_addr);
  415. dma_addr_t dw_dma_get_dst_addr(struct dma_chan *chan)
  416. {
  417. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  418. return channel_readl(dwc, DAR);
  419. }
  420. EXPORT_SYMBOL(dw_dma_get_dst_addr);
  421. /* Called with dwc->lock held and all DMAC interrupts disabled */
  422. static void dwc_handle_cyclic(struct dw_dma *dw, struct dw_dma_chan *dwc,
  423. u32 status_block, u32 status_err, u32 status_xfer)
  424. {
  425. unsigned long flags;
  426. if (status_block & dwc->mask) {
  427. void (*callback)(void *param);
  428. void *callback_param;
  429. dev_vdbg(chan2dev(&dwc->chan), "new cyclic period llp 0x%08x\n",
  430. channel_readl(dwc, LLP));
  431. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  432. callback = dwc->cdesc->period_callback;
  433. callback_param = dwc->cdesc->period_callback_param;
  434. if (callback)
  435. callback(callback_param);
  436. }
  437. /*
  438. * Error and transfer complete are highly unlikely, and will most
  439. * likely be due to a configuration error by the user.
  440. */
  441. if (unlikely(status_err & dwc->mask) ||
  442. unlikely(status_xfer & dwc->mask)) {
  443. unsigned int i;
  444. dev_err(chan2dev(&dwc->chan),
  445. "cyclic DMA unexpected %s interrupt, stopping DMA transfer\n",
  446. status_xfer ? "xfer" : "error");
  447. spin_lock_irqsave(&dwc->lock, flags);
  448. dwc_dump_chan_regs(dwc);
  449. dwc_chan_disable(dw, dwc);
  450. /* Make sure DMA does not restart by loading a new list */
  451. channel_writel(dwc, LLP, 0);
  452. channel_writel(dwc, CTL_LO, 0);
  453. channel_writel(dwc, CTL_HI, 0);
  454. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  455. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  456. dma_writel(dw, CLEAR.XFER, dwc->mask);
  457. for (i = 0; i < dwc->cdesc->periods; i++)
  458. dwc_dump_lli(dwc, dwc->cdesc->desc[i]);
  459. spin_unlock_irqrestore(&dwc->lock, flags);
  460. }
  461. /* Re-enable interrupts */
  462. channel_set_bit(dw, MASK.BLOCK, dwc->mask);
  463. }
  464. /* ------------------------------------------------------------------------- */
  465. static void dw_dma_tasklet(unsigned long data)
  466. {
  467. struct dw_dma *dw = (struct dw_dma *)data;
  468. struct dw_dma_chan *dwc;
  469. u32 status_block;
  470. u32 status_xfer;
  471. u32 status_err;
  472. unsigned int i;
  473. status_block = dma_readl(dw, RAW.BLOCK);
  474. status_xfer = dma_readl(dw, RAW.XFER);
  475. status_err = dma_readl(dw, RAW.ERROR);
  476. dev_vdbg(dw->dma.dev, "%s: status_err=%x\n", __func__, status_err);
  477. for (i = 0; i < dw->dma.chancnt; i++) {
  478. dwc = &dw->chan[i];
  479. if (test_bit(DW_DMA_IS_CYCLIC, &dwc->flags))
  480. dwc_handle_cyclic(dw, dwc, status_block, status_err,
  481. status_xfer);
  482. else if (status_err & (1 << i))
  483. dwc_handle_error(dw, dwc);
  484. else if (status_xfer & (1 << i))
  485. dwc_scan_descriptors(dw, dwc);
  486. }
  487. /* Re-enable interrupts */
  488. channel_set_bit(dw, MASK.XFER, dw->all_chan_mask);
  489. channel_set_bit(dw, MASK.ERROR, dw->all_chan_mask);
  490. }
  491. static irqreturn_t dw_dma_interrupt(int irq, void *dev_id)
  492. {
  493. struct dw_dma *dw = dev_id;
  494. u32 status;
  495. /* Check if we have any interrupt from the DMAC which is not in use */
  496. if (!dw->in_use)
  497. return IRQ_NONE;
  498. status = dma_readl(dw, STATUS_INT);
  499. dev_vdbg(dw->dma.dev, "%s: status=0x%x\n", __func__, status);
  500. /* Check if we have any interrupt from the DMAC */
  501. if (!status)
  502. return IRQ_NONE;
  503. /*
  504. * Just disable the interrupts. We'll turn them back on in the
  505. * softirq handler.
  506. */
  507. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  508. channel_clear_bit(dw, MASK.BLOCK, dw->all_chan_mask);
  509. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  510. status = dma_readl(dw, STATUS_INT);
  511. if (status) {
  512. dev_err(dw->dma.dev,
  513. "BUG: Unexpected interrupts pending: 0x%x\n",
  514. status);
  515. /* Try to recover */
  516. channel_clear_bit(dw, MASK.XFER, (1 << 8) - 1);
  517. channel_clear_bit(dw, MASK.BLOCK, (1 << 8) - 1);
  518. channel_clear_bit(dw, MASK.SRC_TRAN, (1 << 8) - 1);
  519. channel_clear_bit(dw, MASK.DST_TRAN, (1 << 8) - 1);
  520. channel_clear_bit(dw, MASK.ERROR, (1 << 8) - 1);
  521. }
  522. tasklet_schedule(&dw->tasklet);
  523. return IRQ_HANDLED;
  524. }
  525. /*----------------------------------------------------------------------*/
  526. static struct dma_async_tx_descriptor *
  527. dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  528. size_t len, unsigned long flags)
  529. {
  530. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  531. struct dw_dma *dw = to_dw_dma(chan->device);
  532. struct dw_desc *desc;
  533. struct dw_desc *first;
  534. struct dw_desc *prev;
  535. size_t xfer_count;
  536. size_t offset;
  537. u8 m_master = dwc->dws.m_master;
  538. unsigned int src_width;
  539. unsigned int dst_width;
  540. unsigned int data_width = dw->pdata->data_width[m_master];
  541. u32 ctllo;
  542. u8 lms = DWC_LLP_LMS(m_master);
  543. dev_vdbg(chan2dev(chan),
  544. "%s: d%pad s%pad l0x%zx f0x%lx\n", __func__,
  545. &dest, &src, len, flags);
  546. if (unlikely(!len)) {
  547. dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
  548. return NULL;
  549. }
  550. dwc->direction = DMA_MEM_TO_MEM;
  551. src_width = dst_width = __ffs(data_width | src | dest | len);
  552. ctllo = DWC_DEFAULT_CTLLO(chan)
  553. | DWC_CTLL_DST_WIDTH(dst_width)
  554. | DWC_CTLL_SRC_WIDTH(src_width)
  555. | DWC_CTLL_DST_INC
  556. | DWC_CTLL_SRC_INC
  557. | DWC_CTLL_FC_M2M;
  558. prev = first = NULL;
  559. for (offset = 0; offset < len; offset += xfer_count << src_width) {
  560. xfer_count = min_t(size_t, (len - offset) >> src_width,
  561. dwc->block_size);
  562. desc = dwc_desc_get(dwc);
  563. if (!desc)
  564. goto err_desc_get;
  565. lli_write(desc, sar, src + offset);
  566. lli_write(desc, dar, dest + offset);
  567. lli_write(desc, ctllo, ctllo);
  568. lli_write(desc, ctlhi, xfer_count);
  569. desc->len = xfer_count << src_width;
  570. if (!first) {
  571. first = desc;
  572. } else {
  573. lli_write(prev, llp, desc->txd.phys | lms);
  574. list_add_tail(&desc->desc_node, &first->tx_list);
  575. }
  576. prev = desc;
  577. }
  578. if (flags & DMA_PREP_INTERRUPT)
  579. /* Trigger interrupt after last block */
  580. lli_set(prev, ctllo, DWC_CTLL_INT_EN);
  581. prev->lli.llp = 0;
  582. lli_clear(prev, ctllo, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  583. first->txd.flags = flags;
  584. first->total_len = len;
  585. return &first->txd;
  586. err_desc_get:
  587. dwc_desc_put(dwc, first);
  588. return NULL;
  589. }
  590. static struct dma_async_tx_descriptor *
  591. dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  592. unsigned int sg_len, enum dma_transfer_direction direction,
  593. unsigned long flags, void *context)
  594. {
  595. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  596. struct dw_dma *dw = to_dw_dma(chan->device);
  597. struct dma_slave_config *sconfig = &dwc->dma_sconfig;
  598. struct dw_desc *prev;
  599. struct dw_desc *first;
  600. u32 ctllo;
  601. u8 m_master = dwc->dws.m_master;
  602. u8 lms = DWC_LLP_LMS(m_master);
  603. dma_addr_t reg;
  604. unsigned int reg_width;
  605. unsigned int mem_width;
  606. unsigned int data_width = dw->pdata->data_width[m_master];
  607. unsigned int i;
  608. struct scatterlist *sg;
  609. size_t total_len = 0;
  610. dev_vdbg(chan2dev(chan), "%s\n", __func__);
  611. if (unlikely(!is_slave_direction(direction) || !sg_len))
  612. return NULL;
  613. dwc->direction = direction;
  614. prev = first = NULL;
  615. switch (direction) {
  616. case DMA_MEM_TO_DEV:
  617. reg_width = __ffs(sconfig->dst_addr_width);
  618. reg = sconfig->dst_addr;
  619. ctllo = (DWC_DEFAULT_CTLLO(chan)
  620. | DWC_CTLL_DST_WIDTH(reg_width)
  621. | DWC_CTLL_DST_FIX
  622. | DWC_CTLL_SRC_INC);
  623. ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
  624. DWC_CTLL_FC(DW_DMA_FC_D_M2P);
  625. for_each_sg(sgl, sg, sg_len, i) {
  626. struct dw_desc *desc;
  627. u32 len, dlen, mem;
  628. mem = sg_dma_address(sg);
  629. len = sg_dma_len(sg);
  630. mem_width = __ffs(data_width | mem | len);
  631. slave_sg_todev_fill_desc:
  632. desc = dwc_desc_get(dwc);
  633. if (!desc)
  634. goto err_desc_get;
  635. lli_write(desc, sar, mem);
  636. lli_write(desc, dar, reg);
  637. lli_write(desc, ctllo, ctllo | DWC_CTLL_SRC_WIDTH(mem_width));
  638. if ((len >> mem_width) > dwc->block_size) {
  639. dlen = dwc->block_size << mem_width;
  640. mem += dlen;
  641. len -= dlen;
  642. } else {
  643. dlen = len;
  644. len = 0;
  645. }
  646. lli_write(desc, ctlhi, dlen >> mem_width);
  647. desc->len = dlen;
  648. if (!first) {
  649. first = desc;
  650. } else {
  651. lli_write(prev, llp, desc->txd.phys | lms);
  652. list_add_tail(&desc->desc_node, &first->tx_list);
  653. }
  654. prev = desc;
  655. total_len += dlen;
  656. if (len)
  657. goto slave_sg_todev_fill_desc;
  658. }
  659. break;
  660. case DMA_DEV_TO_MEM:
  661. reg_width = __ffs(sconfig->src_addr_width);
  662. reg = sconfig->src_addr;
  663. ctllo = (DWC_DEFAULT_CTLLO(chan)
  664. | DWC_CTLL_SRC_WIDTH(reg_width)
  665. | DWC_CTLL_DST_INC
  666. | DWC_CTLL_SRC_FIX);
  667. ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
  668. DWC_CTLL_FC(DW_DMA_FC_D_P2M);
  669. for_each_sg(sgl, sg, sg_len, i) {
  670. struct dw_desc *desc;
  671. u32 len, dlen, mem;
  672. mem = sg_dma_address(sg);
  673. len = sg_dma_len(sg);
  674. mem_width = __ffs(data_width | mem | len);
  675. slave_sg_fromdev_fill_desc:
  676. desc = dwc_desc_get(dwc);
  677. if (!desc)
  678. goto err_desc_get;
  679. lli_write(desc, sar, reg);
  680. lli_write(desc, dar, mem);
  681. lli_write(desc, ctllo, ctllo | DWC_CTLL_DST_WIDTH(mem_width));
  682. if ((len >> reg_width) > dwc->block_size) {
  683. dlen = dwc->block_size << reg_width;
  684. mem += dlen;
  685. len -= dlen;
  686. } else {
  687. dlen = len;
  688. len = 0;
  689. }
  690. lli_write(desc, ctlhi, dlen >> reg_width);
  691. desc->len = dlen;
  692. if (!first) {
  693. first = desc;
  694. } else {
  695. lli_write(prev, llp, desc->txd.phys | lms);
  696. list_add_tail(&desc->desc_node, &first->tx_list);
  697. }
  698. prev = desc;
  699. total_len += dlen;
  700. if (len)
  701. goto slave_sg_fromdev_fill_desc;
  702. }
  703. break;
  704. default:
  705. return NULL;
  706. }
  707. if (flags & DMA_PREP_INTERRUPT)
  708. /* Trigger interrupt after last block */
  709. lli_set(prev, ctllo, DWC_CTLL_INT_EN);
  710. prev->lli.llp = 0;
  711. lli_clear(prev, ctllo, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  712. first->total_len = total_len;
  713. return &first->txd;
  714. err_desc_get:
  715. dev_err(chan2dev(chan),
  716. "not enough descriptors available. Direction %d\n", direction);
  717. dwc_desc_put(dwc, first);
  718. return NULL;
  719. }
  720. bool dw_dma_filter(struct dma_chan *chan, void *param)
  721. {
  722. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  723. struct dw_dma_slave *dws = param;
  724. if (dws->dma_dev != chan->device->dev)
  725. return false;
  726. /* We have to copy data since dws can be temporary storage */
  727. memcpy(&dwc->dws, dws, sizeof(struct dw_dma_slave));
  728. return true;
  729. }
  730. EXPORT_SYMBOL_GPL(dw_dma_filter);
  731. /*
  732. * Fix sconfig's burst size according to dw_dmac. We need to convert them as:
  733. * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3.
  734. *
  735. * NOTE: burst size 2 is not supported by controller.
  736. *
  737. * This can be done by finding least significant bit set: n & (n - 1)
  738. */
  739. static inline void convert_burst(u32 *maxburst)
  740. {
  741. if (*maxburst > 1)
  742. *maxburst = fls(*maxburst) - 2;
  743. else
  744. *maxburst = 0;
  745. }
  746. static int dwc_config(struct dma_chan *chan, struct dma_slave_config *sconfig)
  747. {
  748. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  749. /* Check if chan will be configured for slave transfers */
  750. if (!is_slave_direction(sconfig->direction))
  751. return -EINVAL;
  752. memcpy(&dwc->dma_sconfig, sconfig, sizeof(*sconfig));
  753. dwc->direction = sconfig->direction;
  754. convert_burst(&dwc->dma_sconfig.src_maxburst);
  755. convert_burst(&dwc->dma_sconfig.dst_maxburst);
  756. return 0;
  757. }
  758. static int dwc_pause(struct dma_chan *chan)
  759. {
  760. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  761. unsigned long flags;
  762. unsigned int count = 20; /* timeout iterations */
  763. u32 cfglo;
  764. spin_lock_irqsave(&dwc->lock, flags);
  765. cfglo = channel_readl(dwc, CFG_LO);
  766. channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP);
  767. while (!(channel_readl(dwc, CFG_LO) & DWC_CFGL_FIFO_EMPTY) && count--)
  768. udelay(2);
  769. set_bit(DW_DMA_IS_PAUSED, &dwc->flags);
  770. spin_unlock_irqrestore(&dwc->lock, flags);
  771. return 0;
  772. }
  773. static inline void dwc_chan_resume(struct dw_dma_chan *dwc)
  774. {
  775. u32 cfglo = channel_readl(dwc, CFG_LO);
  776. channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP);
  777. clear_bit(DW_DMA_IS_PAUSED, &dwc->flags);
  778. }
  779. static int dwc_resume(struct dma_chan *chan)
  780. {
  781. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  782. unsigned long flags;
  783. spin_lock_irqsave(&dwc->lock, flags);
  784. if (test_bit(DW_DMA_IS_PAUSED, &dwc->flags))
  785. dwc_chan_resume(dwc);
  786. spin_unlock_irqrestore(&dwc->lock, flags);
  787. return 0;
  788. }
  789. static int dwc_terminate_all(struct dma_chan *chan)
  790. {
  791. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  792. struct dw_dma *dw = to_dw_dma(chan->device);
  793. struct dw_desc *desc, *_desc;
  794. unsigned long flags;
  795. LIST_HEAD(list);
  796. spin_lock_irqsave(&dwc->lock, flags);
  797. clear_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags);
  798. dwc_chan_disable(dw, dwc);
  799. dwc_chan_resume(dwc);
  800. /* active_list entries will end up before queued entries */
  801. list_splice_init(&dwc->queue, &list);
  802. list_splice_init(&dwc->active_list, &list);
  803. spin_unlock_irqrestore(&dwc->lock, flags);
  804. /* Flush all pending and queued descriptors */
  805. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  806. dwc_descriptor_complete(dwc, desc, false);
  807. return 0;
  808. }
  809. static struct dw_desc *dwc_find_desc(struct dw_dma_chan *dwc, dma_cookie_t c)
  810. {
  811. struct dw_desc *desc;
  812. list_for_each_entry(desc, &dwc->active_list, desc_node)
  813. if (desc->txd.cookie == c)
  814. return desc;
  815. return NULL;
  816. }
  817. static u32 dwc_get_residue(struct dw_dma_chan *dwc, dma_cookie_t cookie)
  818. {
  819. struct dw_desc *desc;
  820. unsigned long flags;
  821. u32 residue;
  822. spin_lock_irqsave(&dwc->lock, flags);
  823. desc = dwc_find_desc(dwc, cookie);
  824. if (desc) {
  825. if (desc == dwc_first_active(dwc)) {
  826. residue = desc->residue;
  827. if (test_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags) && residue)
  828. residue -= dwc_get_sent(dwc);
  829. } else {
  830. residue = desc->total_len;
  831. }
  832. } else {
  833. residue = 0;
  834. }
  835. spin_unlock_irqrestore(&dwc->lock, flags);
  836. return residue;
  837. }
  838. static enum dma_status
  839. dwc_tx_status(struct dma_chan *chan,
  840. dma_cookie_t cookie,
  841. struct dma_tx_state *txstate)
  842. {
  843. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  844. enum dma_status ret;
  845. ret = dma_cookie_status(chan, cookie, txstate);
  846. if (ret == DMA_COMPLETE)
  847. return ret;
  848. dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
  849. ret = dma_cookie_status(chan, cookie, txstate);
  850. if (ret == DMA_COMPLETE)
  851. return ret;
  852. dma_set_residue(txstate, dwc_get_residue(dwc, cookie));
  853. if (test_bit(DW_DMA_IS_PAUSED, &dwc->flags) && ret == DMA_IN_PROGRESS)
  854. return DMA_PAUSED;
  855. return ret;
  856. }
  857. static void dwc_issue_pending(struct dma_chan *chan)
  858. {
  859. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  860. unsigned long flags;
  861. spin_lock_irqsave(&dwc->lock, flags);
  862. if (list_empty(&dwc->active_list))
  863. dwc_dostart_first_queued(dwc);
  864. spin_unlock_irqrestore(&dwc->lock, flags);
  865. }
  866. /*----------------------------------------------------------------------*/
  867. static void dw_dma_off(struct dw_dma *dw)
  868. {
  869. unsigned int i;
  870. dma_writel(dw, CFG, 0);
  871. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  872. channel_clear_bit(dw, MASK.BLOCK, dw->all_chan_mask);
  873. channel_clear_bit(dw, MASK.SRC_TRAN, dw->all_chan_mask);
  874. channel_clear_bit(dw, MASK.DST_TRAN, dw->all_chan_mask);
  875. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  876. while (dma_readl(dw, CFG) & DW_CFG_DMA_EN)
  877. cpu_relax();
  878. for (i = 0; i < dw->dma.chancnt; i++)
  879. clear_bit(DW_DMA_IS_INITIALIZED, &dw->chan[i].flags);
  880. }
  881. static void dw_dma_on(struct dw_dma *dw)
  882. {
  883. dma_writel(dw, CFG, DW_CFG_DMA_EN);
  884. }
  885. static int dwc_alloc_chan_resources(struct dma_chan *chan)
  886. {
  887. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  888. struct dw_dma *dw = to_dw_dma(chan->device);
  889. dev_vdbg(chan2dev(chan), "%s\n", __func__);
  890. /* ASSERT: channel is idle */
  891. if (dma_readl(dw, CH_EN) & dwc->mask) {
  892. dev_dbg(chan2dev(chan), "DMA channel not idle?\n");
  893. return -EIO;
  894. }
  895. dma_cookie_init(chan);
  896. /*
  897. * NOTE: some controllers may have additional features that we
  898. * need to initialize here, like "scatter-gather" (which
  899. * doesn't mean what you think it means), and status writeback.
  900. */
  901. /*
  902. * We need controller-specific data to set up slave transfers.
  903. */
  904. if (chan->private && !dw_dma_filter(chan, chan->private)) {
  905. dev_warn(chan2dev(chan), "Wrong controller-specific data\n");
  906. return -EINVAL;
  907. }
  908. /* Enable controller here if needed */
  909. if (!dw->in_use)
  910. dw_dma_on(dw);
  911. dw->in_use |= dwc->mask;
  912. return 0;
  913. }
  914. static void dwc_free_chan_resources(struct dma_chan *chan)
  915. {
  916. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  917. struct dw_dma *dw = to_dw_dma(chan->device);
  918. unsigned long flags;
  919. LIST_HEAD(list);
  920. dev_dbg(chan2dev(chan), "%s: descs allocated=%u\n", __func__,
  921. dwc->descs_allocated);
  922. /* ASSERT: channel is idle */
  923. BUG_ON(!list_empty(&dwc->active_list));
  924. BUG_ON(!list_empty(&dwc->queue));
  925. BUG_ON(dma_readl(to_dw_dma(chan->device), CH_EN) & dwc->mask);
  926. spin_lock_irqsave(&dwc->lock, flags);
  927. /* Clear custom channel configuration */
  928. memset(&dwc->dws, 0, sizeof(struct dw_dma_slave));
  929. clear_bit(DW_DMA_IS_INITIALIZED, &dwc->flags);
  930. /* Disable interrupts */
  931. channel_clear_bit(dw, MASK.XFER, dwc->mask);
  932. channel_clear_bit(dw, MASK.BLOCK, dwc->mask);
  933. channel_clear_bit(dw, MASK.ERROR, dwc->mask);
  934. spin_unlock_irqrestore(&dwc->lock, flags);
  935. /* Disable controller in case it was a last user */
  936. dw->in_use &= ~dwc->mask;
  937. if (!dw->in_use)
  938. dw_dma_off(dw);
  939. dev_vdbg(chan2dev(chan), "%s: done\n", __func__);
  940. }
  941. /* --------------------- Cyclic DMA API extensions -------------------- */
  942. /**
  943. * dw_dma_cyclic_start - start the cyclic DMA transfer
  944. * @chan: the DMA channel to start
  945. *
  946. * Must be called with soft interrupts disabled. Returns zero on success or
  947. * -errno on failure.
  948. */
  949. int dw_dma_cyclic_start(struct dma_chan *chan)
  950. {
  951. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  952. struct dw_dma *dw = to_dw_dma(chan->device);
  953. unsigned long flags;
  954. if (!test_bit(DW_DMA_IS_CYCLIC, &dwc->flags)) {
  955. dev_err(chan2dev(&dwc->chan), "missing prep for cyclic DMA\n");
  956. return -ENODEV;
  957. }
  958. spin_lock_irqsave(&dwc->lock, flags);
  959. /* Enable interrupts to perform cyclic transfer */
  960. channel_set_bit(dw, MASK.BLOCK, dwc->mask);
  961. dwc_dostart(dwc, dwc->cdesc->desc[0]);
  962. spin_unlock_irqrestore(&dwc->lock, flags);
  963. return 0;
  964. }
  965. EXPORT_SYMBOL(dw_dma_cyclic_start);
  966. /**
  967. * dw_dma_cyclic_stop - stop the cyclic DMA transfer
  968. * @chan: the DMA channel to stop
  969. *
  970. * Must be called with soft interrupts disabled.
  971. */
  972. void dw_dma_cyclic_stop(struct dma_chan *chan)
  973. {
  974. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  975. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  976. unsigned long flags;
  977. spin_lock_irqsave(&dwc->lock, flags);
  978. dwc_chan_disable(dw, dwc);
  979. spin_unlock_irqrestore(&dwc->lock, flags);
  980. }
  981. EXPORT_SYMBOL(dw_dma_cyclic_stop);
  982. /**
  983. * dw_dma_cyclic_prep - prepare the cyclic DMA transfer
  984. * @chan: the DMA channel to prepare
  985. * @buf_addr: physical DMA address where the buffer starts
  986. * @buf_len: total number of bytes for the entire buffer
  987. * @period_len: number of bytes for each period
  988. * @direction: transfer direction, to or from device
  989. *
  990. * Must be called before trying to start the transfer. Returns a valid struct
  991. * dw_cyclic_desc if successful or an ERR_PTR(-errno) if not successful.
  992. */
  993. struct dw_cyclic_desc *dw_dma_cyclic_prep(struct dma_chan *chan,
  994. dma_addr_t buf_addr, size_t buf_len, size_t period_len,
  995. enum dma_transfer_direction direction)
  996. {
  997. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  998. struct dma_slave_config *sconfig = &dwc->dma_sconfig;
  999. struct dw_cyclic_desc *cdesc;
  1000. struct dw_cyclic_desc *retval = NULL;
  1001. struct dw_desc *desc;
  1002. struct dw_desc *last = NULL;
  1003. u8 lms = DWC_LLP_LMS(dwc->dws.m_master);
  1004. unsigned long was_cyclic;
  1005. unsigned int reg_width;
  1006. unsigned int periods;
  1007. unsigned int i;
  1008. unsigned long flags;
  1009. spin_lock_irqsave(&dwc->lock, flags);
  1010. if (dwc->nollp) {
  1011. spin_unlock_irqrestore(&dwc->lock, flags);
  1012. dev_dbg(chan2dev(&dwc->chan),
  1013. "channel doesn't support LLP transfers\n");
  1014. return ERR_PTR(-EINVAL);
  1015. }
  1016. if (!list_empty(&dwc->queue) || !list_empty(&dwc->active_list)) {
  1017. spin_unlock_irqrestore(&dwc->lock, flags);
  1018. dev_dbg(chan2dev(&dwc->chan),
  1019. "queue and/or active list are not empty\n");
  1020. return ERR_PTR(-EBUSY);
  1021. }
  1022. was_cyclic = test_and_set_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1023. spin_unlock_irqrestore(&dwc->lock, flags);
  1024. if (was_cyclic) {
  1025. dev_dbg(chan2dev(&dwc->chan),
  1026. "channel already prepared for cyclic DMA\n");
  1027. return ERR_PTR(-EBUSY);
  1028. }
  1029. retval = ERR_PTR(-EINVAL);
  1030. if (unlikely(!is_slave_direction(direction)))
  1031. goto out_err;
  1032. dwc->direction = direction;
  1033. if (direction == DMA_MEM_TO_DEV)
  1034. reg_width = __ffs(sconfig->dst_addr_width);
  1035. else
  1036. reg_width = __ffs(sconfig->src_addr_width);
  1037. periods = buf_len / period_len;
  1038. /* Check for too big/unaligned periods and unaligned DMA buffer. */
  1039. if (period_len > (dwc->block_size << reg_width))
  1040. goto out_err;
  1041. if (unlikely(period_len & ((1 << reg_width) - 1)))
  1042. goto out_err;
  1043. if (unlikely(buf_addr & ((1 << reg_width) - 1)))
  1044. goto out_err;
  1045. retval = ERR_PTR(-ENOMEM);
  1046. cdesc = kzalloc(sizeof(struct dw_cyclic_desc), GFP_KERNEL);
  1047. if (!cdesc)
  1048. goto out_err;
  1049. cdesc->desc = kzalloc(sizeof(struct dw_desc *) * periods, GFP_KERNEL);
  1050. if (!cdesc->desc)
  1051. goto out_err_alloc;
  1052. for (i = 0; i < periods; i++) {
  1053. desc = dwc_desc_get(dwc);
  1054. if (!desc)
  1055. goto out_err_desc_get;
  1056. switch (direction) {
  1057. case DMA_MEM_TO_DEV:
  1058. lli_write(desc, dar, sconfig->dst_addr);
  1059. lli_write(desc, sar, buf_addr + period_len * i);
  1060. lli_write(desc, ctllo, (DWC_DEFAULT_CTLLO(chan)
  1061. | DWC_CTLL_DST_WIDTH(reg_width)
  1062. | DWC_CTLL_SRC_WIDTH(reg_width)
  1063. | DWC_CTLL_DST_FIX
  1064. | DWC_CTLL_SRC_INC
  1065. | DWC_CTLL_INT_EN));
  1066. lli_set(desc, ctllo, sconfig->device_fc ?
  1067. DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
  1068. DWC_CTLL_FC(DW_DMA_FC_D_M2P));
  1069. break;
  1070. case DMA_DEV_TO_MEM:
  1071. lli_write(desc, dar, buf_addr + period_len * i);
  1072. lli_write(desc, sar, sconfig->src_addr);
  1073. lli_write(desc, ctllo, (DWC_DEFAULT_CTLLO(chan)
  1074. | DWC_CTLL_SRC_WIDTH(reg_width)
  1075. | DWC_CTLL_DST_WIDTH(reg_width)
  1076. | DWC_CTLL_DST_INC
  1077. | DWC_CTLL_SRC_FIX
  1078. | DWC_CTLL_INT_EN));
  1079. lli_set(desc, ctllo, sconfig->device_fc ?
  1080. DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
  1081. DWC_CTLL_FC(DW_DMA_FC_D_P2M));
  1082. break;
  1083. default:
  1084. break;
  1085. }
  1086. lli_write(desc, ctlhi, period_len >> reg_width);
  1087. cdesc->desc[i] = desc;
  1088. if (last)
  1089. lli_write(last, llp, desc->txd.phys | lms);
  1090. last = desc;
  1091. }
  1092. /* Let's make a cyclic list */
  1093. lli_write(last, llp, cdesc->desc[0]->txd.phys | lms);
  1094. dev_dbg(chan2dev(&dwc->chan),
  1095. "cyclic prepared buf %pad len %zu period %zu periods %d\n",
  1096. &buf_addr, buf_len, period_len, periods);
  1097. cdesc->periods = periods;
  1098. dwc->cdesc = cdesc;
  1099. return cdesc;
  1100. out_err_desc_get:
  1101. while (i--)
  1102. dwc_desc_put(dwc, cdesc->desc[i]);
  1103. out_err_alloc:
  1104. kfree(cdesc);
  1105. out_err:
  1106. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1107. return (struct dw_cyclic_desc *)retval;
  1108. }
  1109. EXPORT_SYMBOL(dw_dma_cyclic_prep);
  1110. /**
  1111. * dw_dma_cyclic_free - free a prepared cyclic DMA transfer
  1112. * @chan: the DMA channel to free
  1113. */
  1114. void dw_dma_cyclic_free(struct dma_chan *chan)
  1115. {
  1116. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  1117. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  1118. struct dw_cyclic_desc *cdesc = dwc->cdesc;
  1119. unsigned int i;
  1120. unsigned long flags;
  1121. dev_dbg(chan2dev(&dwc->chan), "%s\n", __func__);
  1122. if (!cdesc)
  1123. return;
  1124. spin_lock_irqsave(&dwc->lock, flags);
  1125. dwc_chan_disable(dw, dwc);
  1126. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  1127. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  1128. dma_writel(dw, CLEAR.XFER, dwc->mask);
  1129. spin_unlock_irqrestore(&dwc->lock, flags);
  1130. for (i = 0; i < cdesc->periods; i++)
  1131. dwc_desc_put(dwc, cdesc->desc[i]);
  1132. kfree(cdesc->desc);
  1133. kfree(cdesc);
  1134. dwc->cdesc = NULL;
  1135. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1136. }
  1137. EXPORT_SYMBOL(dw_dma_cyclic_free);
  1138. /*----------------------------------------------------------------------*/
  1139. static int dw_dma_probe(struct dw_dma_chip *chip)
  1140. {
  1141. struct dw_dma_platform_data *pdata;
  1142. struct dw_dma *dw;
  1143. bool autocfg = false;
  1144. unsigned int dw_params;
  1145. unsigned int i;
  1146. int err;
  1147. dw = devm_kzalloc(chip->dev, sizeof(*dw), GFP_KERNEL);
  1148. if (!dw)
  1149. return -ENOMEM;
  1150. dw->pdata = devm_kzalloc(chip->dev, sizeof(*dw->pdata), GFP_KERNEL);
  1151. if (!dw->pdata)
  1152. return -ENOMEM;
  1153. dw->regs = chip->regs;
  1154. chip->dw = dw;
  1155. pm_runtime_get_sync(chip->dev);
  1156. if (!chip->pdata) {
  1157. dw_params = dma_readl(dw, DW_PARAMS);
  1158. dev_dbg(chip->dev, "DW_PARAMS: 0x%08x\n", dw_params);
  1159. autocfg = dw_params >> DW_PARAMS_EN & 1;
  1160. if (!autocfg) {
  1161. err = -EINVAL;
  1162. goto err_pdata;
  1163. }
  1164. /* Reassign the platform data pointer */
  1165. pdata = dw->pdata;
  1166. /* Get hardware configuration parameters */
  1167. pdata->nr_channels = (dw_params >> DW_PARAMS_NR_CHAN & 7) + 1;
  1168. pdata->nr_masters = (dw_params >> DW_PARAMS_NR_MASTER & 3) + 1;
  1169. for (i = 0; i < pdata->nr_masters; i++) {
  1170. pdata->data_width[i] =
  1171. 4 << (dw_params >> DW_PARAMS_DATA_WIDTH(i) & 3);
  1172. }
  1173. pdata->block_size = dma_readl(dw, MAX_BLK_SIZE);
  1174. /* Fill platform data with the default values */
  1175. pdata->is_private = true;
  1176. pdata->is_memcpy = true;
  1177. pdata->chan_allocation_order = CHAN_ALLOCATION_ASCENDING;
  1178. pdata->chan_priority = CHAN_PRIORITY_ASCENDING;
  1179. } else if (chip->pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS) {
  1180. err = -EINVAL;
  1181. goto err_pdata;
  1182. } else {
  1183. memcpy(dw->pdata, chip->pdata, sizeof(*dw->pdata));
  1184. /* Reassign the platform data pointer */
  1185. pdata = dw->pdata;
  1186. }
  1187. dw->chan = devm_kcalloc(chip->dev, pdata->nr_channels, sizeof(*dw->chan),
  1188. GFP_KERNEL);
  1189. if (!dw->chan) {
  1190. err = -ENOMEM;
  1191. goto err_pdata;
  1192. }
  1193. /* Calculate all channel mask before DMA setup */
  1194. dw->all_chan_mask = (1 << pdata->nr_channels) - 1;
  1195. /* Force dma off, just in case */
  1196. //dw_dma_off(dw); //dma is in use to play audio in u-boot
  1197. /* Create a pool of consistent memory blocks for hardware descriptors */
  1198. dw->desc_pool = dmam_pool_create("dw_dmac_desc_pool", chip->dev,
  1199. sizeof(struct dw_desc), 4, 0);
  1200. if (!dw->desc_pool) {
  1201. dev_err(chip->dev, "No memory for descriptors dma pool\n");
  1202. err = -ENOMEM;
  1203. goto err_pdata;
  1204. }
  1205. tasklet_init(&dw->tasklet, dw_dma_tasklet, (unsigned long)dw);
  1206. err = request_irq(chip->irq, dw_dma_interrupt, IRQF_SHARED,
  1207. "dw_dmac", dw);
  1208. if (err)
  1209. goto err_pdata;
  1210. INIT_LIST_HEAD(&dw->dma.channels);
  1211. for (i = 0; i < pdata->nr_channels; i++) {
  1212. struct dw_dma_chan *dwc = &dw->chan[i];
  1213. dwc->chan.device = &dw->dma;
  1214. dma_cookie_init(&dwc->chan);
  1215. if (pdata->chan_allocation_order == CHAN_ALLOCATION_ASCENDING)
  1216. list_add_tail(&dwc->chan.device_node,
  1217. &dw->dma.channels);
  1218. else
  1219. list_add(&dwc->chan.device_node, &dw->dma.channels);
  1220. /* 7 is highest priority & 0 is lowest. */
  1221. if (pdata->chan_priority == CHAN_PRIORITY_ASCENDING)
  1222. dwc->priority = pdata->nr_channels - i - 1;
  1223. else
  1224. dwc->priority = i;
  1225. dwc->ch_regs = &__dw_regs(dw)->CHAN[i];
  1226. spin_lock_init(&dwc->lock);
  1227. dwc->mask = 1 << i;
  1228. INIT_LIST_HEAD(&dwc->active_list);
  1229. INIT_LIST_HEAD(&dwc->queue);
  1230. if (i != 0)
  1231. channel_clear_bit(dw, CH_EN, dwc->mask); /* ch0 used in u-boot */
  1232. dwc->direction = DMA_TRANS_NONE;
  1233. /* Hardware configuration */
  1234. if (autocfg) {
  1235. unsigned int r = DW_DMA_MAX_NR_CHANNELS - i - 1;
  1236. void __iomem *addr = &__dw_regs(dw)->DWC_PARAMS[r];
  1237. unsigned int dwc_params = dma_readl_native(addr);
  1238. dev_dbg(chip->dev, "DWC_PARAMS[%d]: 0x%08x\n", i,
  1239. dwc_params);
  1240. /*
  1241. * Decode maximum block size for given channel. The
  1242. * stored 4 bit value represents blocks from 0x00 for 3
  1243. * up to 0x0a for 4095.
  1244. */
  1245. dwc->block_size =
  1246. (4 << ((pdata->block_size >> 4 * i) & 0xf)) - 1;
  1247. dwc->nollp =
  1248. (dwc_params >> DWC_PARAMS_MBLK_EN & 0x1) == 0;
  1249. } else {
  1250. dwc->block_size = pdata->block_size;
  1251. dwc->nollp = pdata->is_nollp;
  1252. }
  1253. }
  1254. /* Clear all interrupts on all channels. */
  1255. dma_writel(dw, CLEAR.XFER, dw->all_chan_mask);
  1256. dma_writel(dw, CLEAR.BLOCK, dw->all_chan_mask);
  1257. dma_writel(dw, CLEAR.SRC_TRAN, dw->all_chan_mask);
  1258. dma_writel(dw, CLEAR.DST_TRAN, dw->all_chan_mask);
  1259. dma_writel(dw, CLEAR.ERROR, dw->all_chan_mask);
  1260. /* Set capabilities */
  1261. dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
  1262. if (pdata->is_private)
  1263. dma_cap_set(DMA_PRIVATE, dw->dma.cap_mask);
  1264. if (pdata->is_memcpy)
  1265. dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
  1266. dw->dma.dev = chip->dev;
  1267. dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources;
  1268. dw->dma.device_free_chan_resources = dwc_free_chan_resources;
  1269. dw->dma.device_prep_dma_memcpy = dwc_prep_dma_memcpy;
  1270. dw->dma.device_prep_slave_sg = dwc_prep_slave_sg;
  1271. dw->dma.device_config = dwc_config;
  1272. dw->dma.device_pause = dwc_pause;
  1273. dw->dma.device_resume = dwc_resume;
  1274. dw->dma.device_terminate_all = dwc_terminate_all;
  1275. dw->dma.device_tx_status = dwc_tx_status;
  1276. dw->dma.device_issue_pending = dwc_issue_pending;
  1277. /* DMA capabilities */
  1278. dw->dma.src_addr_widths = DW_DMA_BUSWIDTHS;
  1279. dw->dma.dst_addr_widths = DW_DMA_BUSWIDTHS;
  1280. dw->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
  1281. BIT(DMA_MEM_TO_MEM);
  1282. dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1283. err = dma_async_device_register(&dw->dma);
  1284. if (err)
  1285. goto err_dma_register;
  1286. dev_info(chip->dev, "DesignWare DMA Controller, %d channels\n",
  1287. pdata->nr_channels);
  1288. pm_runtime_put_sync_suspend(chip->dev);
  1289. return 0;
  1290. err_dma_register:
  1291. free_irq(chip->irq, dw);
  1292. err_pdata:
  1293. pm_runtime_put_sync_suspend(chip->dev);
  1294. return err;
  1295. }
  1296. static int dw_dma_remove(struct dw_dma_chip *chip)
  1297. {
  1298. struct dw_dma *dw = chip->dw;
  1299. struct dw_dma_chan *dwc, *_dwc;
  1300. pm_runtime_get_sync(chip->dev);
  1301. dw_dma_off(dw);
  1302. dma_async_device_unregister(&dw->dma);
  1303. free_irq(chip->irq, dw);
  1304. tasklet_kill(&dw->tasklet);
  1305. list_for_each_entry_safe(dwc, _dwc, &dw->dma.channels,
  1306. chan.device_node) {
  1307. list_del(&dwc->chan.device_node);
  1308. channel_clear_bit(dw, CH_EN, dwc->mask);
  1309. }
  1310. pm_runtime_put_sync_suspend(chip->dev);
  1311. return 0;
  1312. }
  1313. int dw_dma_disable(struct dw_dma_chip *chip)
  1314. {
  1315. struct dw_dma *dw = chip->dw;
  1316. dw_dma_off(dw);
  1317. return 0;
  1318. }
  1319. EXPORT_SYMBOL_GPL(dw_dma_disable);
  1320. int dw_dma_enable(struct dw_dma_chip *chip)
  1321. {
  1322. struct dw_dma *dw = chip->dw;
  1323. dw_dma_on(dw);
  1324. return 0;
  1325. }
  1326. EXPORT_SYMBOL_GPL(dw_dma_enable);
  1327. static struct dma_chan *dw_dma_of_xlate(struct of_phandle_args *dma_spec,
  1328. struct of_dma *ofdma)
  1329. {
  1330. struct dw_dma *dw = ofdma->of_dma_data;
  1331. struct dw_dma_slave slave = {
  1332. .dma_dev = dw->dma.dev,
  1333. };
  1334. dma_cap_mask_t cap;
  1335. if (dma_spec->args_count != 3)
  1336. return NULL;
  1337. slave.src_id = dma_spec->args[0];
  1338. slave.dst_id = dma_spec->args[0];
  1339. slave.m_master = dma_spec->args[1];
  1340. slave.p_master = dma_spec->args[2];
  1341. if (WARN_ON(slave.src_id >= DW_DMA_MAX_NR_REQUESTS ||
  1342. slave.dst_id >= DW_DMA_MAX_NR_REQUESTS ||
  1343. slave.m_master >= dw->pdata->nr_masters ||
  1344. slave.p_master >= dw->pdata->nr_masters))
  1345. return NULL;
  1346. dma_cap_zero(cap);
  1347. dma_cap_set(DMA_SLAVE, cap);
  1348. /* TODO: there should be a simpler way to do this */
  1349. return dma_request_channel(cap, dw_dma_filter, &slave);
  1350. }
  1351. #ifdef CONFIG_OF
  1352. static struct dw_dma_platform_data *
  1353. dw_dma_parse_dt(struct platform_device *pdev)
  1354. {
  1355. struct device_node *np = pdev->dev.of_node;
  1356. struct dw_dma_platform_data *pdata;
  1357. u32 tmp, arr[DW_DMA_MAX_NR_MASTERS];
  1358. u32 nr_masters;
  1359. u32 nr_channels;
  1360. if (!np) {
  1361. dev_err(&pdev->dev, "Missing DT data\n");
  1362. return NULL;
  1363. }
  1364. if (of_property_read_u32(np, "dma-masters", &nr_masters))
  1365. return NULL;
  1366. if (nr_masters < 1 || nr_masters > DW_DMA_MAX_NR_MASTERS)
  1367. return NULL;
  1368. if (of_property_read_u32(np, "dma-channels", &nr_channels))
  1369. return NULL;
  1370. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1371. if (!pdata)
  1372. return NULL;
  1373. pdata->nr_masters = nr_masters;
  1374. pdata->nr_channels = nr_channels;
  1375. if (of_property_read_bool(np, "is_private"))
  1376. pdata->is_private = true;
  1377. if (!of_property_read_u32(np, "chan_allocation_order", &tmp))
  1378. pdata->chan_allocation_order = (unsigned char)tmp;
  1379. if (!of_property_read_u32(np, "chan_priority", &tmp))
  1380. pdata->chan_priority = tmp;
  1381. if (!of_property_read_u32(np, "block_size", &tmp))
  1382. pdata->block_size = tmp;
  1383. if (!of_property_read_u32_array(np, "data-width", arr, nr_masters)) {
  1384. for (tmp = 0; tmp < nr_masters; tmp++)
  1385. pdata->data_width[tmp] = arr[tmp];
  1386. } else if (!of_property_read_u32_array(np, "data_width", arr, nr_masters)) {
  1387. for (tmp = 0; tmp < nr_masters; tmp++)
  1388. pdata->data_width[tmp] = BIT(arr[tmp] & 0x07);
  1389. }
  1390. return pdata;
  1391. }
  1392. #else
  1393. static inline struct dw_dma_platform_data *
  1394. dw_dma_parse_dt(struct platform_device *pdev)
  1395. {
  1396. return NULL;
  1397. }
  1398. #endif
  1399. static int dw_probe(struct platform_device *pdev)
  1400. {
  1401. struct dw_dma_chip *chip;
  1402. struct device *dev = &pdev->dev;
  1403. struct resource *mem;
  1404. const struct dw_dma_platform_data *pdata;
  1405. int err;
  1406. chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
  1407. if (!chip)
  1408. return -ENOMEM;
  1409. chip->irq = platform_get_irq(pdev, 0);
  1410. if (chip->irq < 0)
  1411. return chip->irq;
  1412. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1413. chip->regs = devm_ioremap_resource(dev, mem);
  1414. if (IS_ERR(chip->regs))
  1415. return PTR_ERR(chip->regs);
  1416. err = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
  1417. if (err)
  1418. return err;
  1419. pdata = dev_get_platdata(dev);
  1420. if (!pdata)
  1421. pdata = dw_dma_parse_dt(pdev);
  1422. chip->dev = dev;
  1423. chip->pdata = pdata;
  1424. chip->clk = devm_clk_get(chip->dev, "hclk");
  1425. if (IS_ERR(chip->clk))
  1426. return PTR_ERR(chip->clk);
  1427. err = clk_prepare_enable(chip->clk);
  1428. if (err)
  1429. return err;
  1430. pm_runtime_enable(&pdev->dev);
  1431. err = dw_dma_probe(chip);
  1432. if (err)
  1433. goto err_dw_dma_probe;
  1434. platform_set_drvdata(pdev, chip);
  1435. if (pdev->dev.of_node) {
  1436. err = of_dma_controller_register(pdev->dev.of_node,
  1437. dw_dma_of_xlate, chip->dw);
  1438. if (err)
  1439. dev_err(&pdev->dev,
  1440. "could not register of_dma_controller\n");
  1441. }
  1442. return 0;
  1443. err_dw_dma_probe:
  1444. pm_runtime_disable(&pdev->dev);
  1445. clk_disable_unprepare(chip->clk);
  1446. return err;
  1447. }
  1448. static int dw_remove(struct platform_device *pdev)
  1449. {
  1450. struct dw_dma_chip *chip = platform_get_drvdata(pdev);
  1451. if (pdev->dev.of_node)
  1452. of_dma_controller_free(pdev->dev.of_node);
  1453. dw_dma_remove(chip);
  1454. pm_runtime_disable(&pdev->dev);
  1455. clk_disable_unprepare(chip->clk);
  1456. return 0;
  1457. }
  1458. static void dw_shutdown(struct platform_device *pdev)
  1459. {
  1460. struct dw_dma_chip *chip = platform_get_drvdata(pdev);
  1461. /*
  1462. * We have to call dw_dma_disable() to stop any ongoing transfer. On
  1463. * some platforms we can't do that since DMA device is powered off.
  1464. * Moreover we have no possibility to check if the platform is affected
  1465. * or not. That's why we call pm_runtime_get_sync() / pm_runtime_put()
  1466. * unconditionally. On the other hand we can't use
  1467. * pm_runtime_suspended() because runtime PM framework is not fully
  1468. * used by the driver.
  1469. */
  1470. pm_runtime_get_sync(chip->dev);
  1471. dw_dma_disable(chip);
  1472. pm_runtime_put_sync_suspend(chip->dev);
  1473. clk_disable_unprepare(chip->clk);
  1474. }
  1475. #ifdef CONFIG_OF
  1476. static const struct of_device_id dw_dma_of_id_table[] = {
  1477. { .compatible = "arkmicro,ark-dma" },
  1478. {}
  1479. };
  1480. MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
  1481. #endif
  1482. #ifdef CONFIG_PM_SLEEP
  1483. static int dw_suspend_late(struct device *dev)
  1484. {
  1485. struct platform_device *pdev = to_platform_device(dev);
  1486. struct dw_dma_chip *chip = platform_get_drvdata(pdev);
  1487. dw_dma_disable(chip);
  1488. clk_disable_unprepare(chip->clk);
  1489. return 0;
  1490. }
  1491. static int dw_resume_early(struct device *dev)
  1492. {
  1493. struct platform_device *pdev = to_platform_device(dev);
  1494. struct dw_dma_chip *chip = platform_get_drvdata(pdev);
  1495. clk_prepare_enable(chip->clk);
  1496. return dw_dma_enable(chip);
  1497. }
  1498. #endif /* CONFIG_PM_SLEEP */
  1499. static const struct dev_pm_ops dw_dev_pm_ops = {
  1500. SET_LATE_SYSTEM_SLEEP_PM_OPS(dw_suspend_late, dw_resume_early)
  1501. };
  1502. static struct platform_driver dw_driver = {
  1503. .probe = dw_probe,
  1504. .remove = dw_remove,
  1505. .shutdown = dw_shutdown,
  1506. .driver = {
  1507. .name = DRV_NAME,
  1508. .pm = &dw_dev_pm_ops,
  1509. .of_match_table = of_match_ptr(dw_dma_of_id_table),
  1510. },
  1511. };
  1512. static int __init dw_init(void)
  1513. {
  1514. return platform_driver_register(&dw_driver);
  1515. }
  1516. subsys_initcall(dw_init);
  1517. static void __exit dw_exit(void)
  1518. {
  1519. platform_driver_unregister(&dw_driver);
  1520. }
  1521. module_exit(dw_exit);
  1522. MODULE_AUTHOR("Sim");
  1523. MODULE_DESCRIPTION("Arkmicro dma driver");
  1524. MODULE_LICENSE("GPL v2");