rcar_drif.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * R-Car Gen3 Digital Radio Interface (DRIF) driver
  4. *
  5. * Copyright (C) 2017 Renesas Electronics Corporation
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. */
  12. /*
  13. * The R-Car DRIF is a receive only MSIOF like controller with an
  14. * external master device driving the SCK. It receives data into a FIFO,
  15. * then this driver uses the SYS-DMAC engine to move the data from
  16. * the device to memory.
  17. *
  18. * Each DRIF channel DRIFx (as per datasheet) contains two internal
  19. * channels DRIFx0 & DRIFx1 within itself with each having its own resources
  20. * like module clk, register set, irq and dma. These internal channels share
  21. * common CLK & SYNC from master. The two data pins D0 & D1 shall be
  22. * considered to represent the two internal channels. This internal split
  23. * is not visible to the master device.
  24. *
  25. * Depending on the master device, a DRIF channel can use
  26. * (1) both internal channels (D0 & D1) to receive data in parallel (or)
  27. * (2) one internal channel (D0 or D1) to receive data
  28. *
  29. * The primary design goal of this controller is to act as a Digital Radio
  30. * Interface that receives digital samples from a tuner device. Hence the
  31. * driver exposes the device as a V4L2 SDR device. In order to qualify as
  32. * a V4L2 SDR device, it should possess a tuner interface as mandated by the
  33. * framework. This driver expects a tuner driver (sub-device) to bind
  34. * asynchronously with this device and the combined drivers shall expose
  35. * a V4L2 compliant SDR device. The DRIF driver is independent of the
  36. * tuner vendor.
  37. *
  38. * The DRIF h/w can support I2S mode and Frame start synchronization pulse mode.
  39. * This driver is tested for I2S mode only because of the availability of
  40. * suitable master devices. Hence, not all configurable options of DRIF h/w
  41. * like lsb/msb first, syncdl, dtdl etc. are exposed via DT and I2S defaults
  42. * are used. These can be exposed later if needed after testing.
  43. */
  44. #include <linux/bitops.h>
  45. #include <linux/clk.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/dmaengine.h>
  48. #include <linux/ioctl.h>
  49. #include <linux/iopoll.h>
  50. #include <linux/module.h>
  51. #include <linux/of_graph.h>
  52. #include <linux/of_device.h>
  53. #include <linux/platform_device.h>
  54. #include <linux/sched.h>
  55. #include <media/v4l2-async.h>
  56. #include <media/v4l2-ctrls.h>
  57. #include <media/v4l2-device.h>
  58. #include <media/v4l2-event.h>
  59. #include <media/v4l2-fh.h>
  60. #include <media/v4l2-ioctl.h>
  61. #include <media/videobuf2-v4l2.h>
  62. #include <media/videobuf2-vmalloc.h>
  63. /* DRIF register offsets */
  64. #define RCAR_DRIF_SITMDR1 0x00
  65. #define RCAR_DRIF_SITMDR2 0x04
  66. #define RCAR_DRIF_SITMDR3 0x08
  67. #define RCAR_DRIF_SIRMDR1 0x10
  68. #define RCAR_DRIF_SIRMDR2 0x14
  69. #define RCAR_DRIF_SIRMDR3 0x18
  70. #define RCAR_DRIF_SICTR 0x28
  71. #define RCAR_DRIF_SIFCTR 0x30
  72. #define RCAR_DRIF_SISTR 0x40
  73. #define RCAR_DRIF_SIIER 0x44
  74. #define RCAR_DRIF_SIRFDR 0x60
  75. #define RCAR_DRIF_RFOVF BIT(3) /* Receive FIFO overflow */
  76. #define RCAR_DRIF_RFUDF BIT(4) /* Receive FIFO underflow */
  77. #define RCAR_DRIF_RFSERR BIT(5) /* Receive frame sync error */
  78. #define RCAR_DRIF_REOF BIT(7) /* Frame reception end */
  79. #define RCAR_DRIF_RDREQ BIT(12) /* Receive data xfer req */
  80. #define RCAR_DRIF_RFFUL BIT(13) /* Receive FIFO full */
  81. /* SIRMDR1 */
  82. #define RCAR_DRIF_SIRMDR1_SYNCMD_FRAME (0 << 28)
  83. #define RCAR_DRIF_SIRMDR1_SYNCMD_LR (3 << 28)
  84. #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH (0 << 25)
  85. #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW (1 << 25)
  86. #define RCAR_DRIF_SIRMDR1_MSB_FIRST (0 << 24)
  87. #define RCAR_DRIF_SIRMDR1_LSB_FIRST (1 << 24)
  88. #define RCAR_DRIF_SIRMDR1_DTDL_0 (0 << 20)
  89. #define RCAR_DRIF_SIRMDR1_DTDL_1 (1 << 20)
  90. #define RCAR_DRIF_SIRMDR1_DTDL_2 (2 << 20)
  91. #define RCAR_DRIF_SIRMDR1_DTDL_0PT5 (5 << 20)
  92. #define RCAR_DRIF_SIRMDR1_DTDL_1PT5 (6 << 20)
  93. #define RCAR_DRIF_SIRMDR1_SYNCDL_0 (0 << 20)
  94. #define RCAR_DRIF_SIRMDR1_SYNCDL_1 (1 << 20)
  95. #define RCAR_DRIF_SIRMDR1_SYNCDL_2 (2 << 20)
  96. #define RCAR_DRIF_SIRMDR1_SYNCDL_3 (3 << 20)
  97. #define RCAR_DRIF_SIRMDR1_SYNCDL_0PT5 (5 << 20)
  98. #define RCAR_DRIF_SIRMDR1_SYNCDL_1PT5 (6 << 20)
  99. #define RCAR_DRIF_MDR_GRPCNT(n) (((n) - 1) << 30)
  100. #define RCAR_DRIF_MDR_BITLEN(n) (((n) - 1) << 24)
  101. #define RCAR_DRIF_MDR_WDCNT(n) (((n) - 1) << 16)
  102. /* Hidden Transmit register that controls CLK & SYNC */
  103. #define RCAR_DRIF_SITMDR1_PCON BIT(30)
  104. #define RCAR_DRIF_SICTR_RX_RISING_EDGE BIT(26)
  105. #define RCAR_DRIF_SICTR_RX_EN BIT(8)
  106. #define RCAR_DRIF_SICTR_RESET BIT(0)
  107. /* Constants */
  108. #define RCAR_DRIF_NUM_HWBUFS 32
  109. #define RCAR_DRIF_MAX_DEVS 4
  110. #define RCAR_DRIF_DEFAULT_NUM_HWBUFS 16
  111. #define RCAR_DRIF_DEFAULT_HWBUF_SIZE (4 * PAGE_SIZE)
  112. #define RCAR_DRIF_MAX_CHANNEL 2
  113. #define RCAR_SDR_BUFFER_SIZE SZ_64K
  114. /* Internal buffer status flags */
  115. #define RCAR_DRIF_BUF_DONE BIT(0) /* DMA completed */
  116. #define RCAR_DRIF_BUF_OVERFLOW BIT(1) /* Overflow detected */
  117. #define to_rcar_drif_buf_pair(sdr, ch_num, idx) \
  118. (&((sdr)->ch[!(ch_num)]->buf[(idx)]))
  119. #define for_each_rcar_drif_channel(ch, ch_mask) \
  120. for_each_set_bit(ch, ch_mask, RCAR_DRIF_MAX_CHANNEL)
  121. /* Debug */
  122. #define rdrif_dbg(sdr, fmt, arg...) \
  123. dev_dbg(sdr->v4l2_dev.dev, fmt, ## arg)
  124. #define rdrif_err(sdr, fmt, arg...) \
  125. dev_err(sdr->v4l2_dev.dev, fmt, ## arg)
  126. /* Stream formats */
  127. struct rcar_drif_format {
  128. u32 pixelformat;
  129. u32 buffersize;
  130. u32 bitlen;
  131. u32 wdcnt;
  132. u32 num_ch;
  133. };
  134. /* Format descriptions for capture */
  135. static const struct rcar_drif_format formats[] = {
  136. {
  137. .pixelformat = V4L2_SDR_FMT_PCU16BE,
  138. .buffersize = RCAR_SDR_BUFFER_SIZE,
  139. .bitlen = 16,
  140. .wdcnt = 1,
  141. .num_ch = 2,
  142. },
  143. {
  144. .pixelformat = V4L2_SDR_FMT_PCU18BE,
  145. .buffersize = RCAR_SDR_BUFFER_SIZE,
  146. .bitlen = 18,
  147. .wdcnt = 1,
  148. .num_ch = 2,
  149. },
  150. {
  151. .pixelformat = V4L2_SDR_FMT_PCU20BE,
  152. .buffersize = RCAR_SDR_BUFFER_SIZE,
  153. .bitlen = 20,
  154. .wdcnt = 1,
  155. .num_ch = 2,
  156. },
  157. };
  158. /* Buffer for a received frame from one or both internal channels */
  159. struct rcar_drif_frame_buf {
  160. /* Common v4l buffer stuff -- must be first */
  161. struct vb2_v4l2_buffer vb;
  162. struct list_head list;
  163. };
  164. /* OF graph endpoint's V4L2 async data */
  165. struct rcar_drif_graph_ep {
  166. struct v4l2_subdev *subdev; /* Async matched subdev */
  167. struct v4l2_async_subdev asd; /* Async sub-device descriptor */
  168. };
  169. /* DMA buffer */
  170. struct rcar_drif_hwbuf {
  171. void *addr; /* CPU-side address */
  172. unsigned int status; /* Buffer status flags */
  173. };
  174. /* Internal channel */
  175. struct rcar_drif {
  176. struct rcar_drif_sdr *sdr; /* Group device */
  177. struct platform_device *pdev; /* Channel's pdev */
  178. void __iomem *base; /* Base register address */
  179. resource_size_t start; /* I/O resource offset */
  180. struct dma_chan *dmach; /* Reserved DMA channel */
  181. struct clk *clk; /* Module clock */
  182. struct rcar_drif_hwbuf buf[RCAR_DRIF_NUM_HWBUFS]; /* H/W bufs */
  183. dma_addr_t dma_handle; /* Handle for all bufs */
  184. unsigned int num; /* Channel number */
  185. bool acting_sdr; /* Channel acting as SDR device */
  186. };
  187. /* DRIF V4L2 SDR */
  188. struct rcar_drif_sdr {
  189. struct device *dev; /* Platform device */
  190. struct video_device *vdev; /* V4L2 SDR device */
  191. struct v4l2_device v4l2_dev; /* V4L2 device */
  192. /* Videobuf2 queue and queued buffers list */
  193. struct vb2_queue vb_queue;
  194. struct list_head queued_bufs;
  195. spinlock_t queued_bufs_lock; /* Protects queued_bufs */
  196. spinlock_t dma_lock; /* To serialize DMA cb of channels */
  197. struct mutex v4l2_mutex; /* To serialize ioctls */
  198. struct mutex vb_queue_mutex; /* To serialize streaming ioctls */
  199. struct v4l2_ctrl_handler ctrl_hdl; /* SDR control handler */
  200. struct v4l2_async_notifier notifier; /* For subdev (tuner) */
  201. struct rcar_drif_graph_ep ep; /* Endpoint V4L2 async data */
  202. /* Current V4L2 SDR format ptr */
  203. const struct rcar_drif_format *fmt;
  204. /* Device tree SYNC properties */
  205. u32 mdr1;
  206. /* Internals */
  207. struct rcar_drif *ch[RCAR_DRIF_MAX_CHANNEL]; /* DRIFx0,1 */
  208. unsigned long hw_ch_mask; /* Enabled channels per DT */
  209. unsigned long cur_ch_mask; /* Used channels for an SDR FMT */
  210. u32 num_hw_ch; /* Num of DT enabled channels */
  211. u32 num_cur_ch; /* Num of used channels */
  212. u32 hwbuf_size; /* Each DMA buffer size */
  213. u32 produced; /* Buffers produced by sdr dev */
  214. };
  215. /* Register access functions */
  216. static void rcar_drif_write(struct rcar_drif *ch, u32 offset, u32 data)
  217. {
  218. writel(data, ch->base + offset);
  219. }
  220. static u32 rcar_drif_read(struct rcar_drif *ch, u32 offset)
  221. {
  222. return readl(ch->base + offset);
  223. }
  224. /* Release DMA channels */
  225. static void rcar_drif_release_dmachannels(struct rcar_drif_sdr *sdr)
  226. {
  227. unsigned int i;
  228. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
  229. if (sdr->ch[i]->dmach) {
  230. dma_release_channel(sdr->ch[i]->dmach);
  231. sdr->ch[i]->dmach = NULL;
  232. }
  233. }
  234. /* Allocate DMA channels */
  235. static int rcar_drif_alloc_dmachannels(struct rcar_drif_sdr *sdr)
  236. {
  237. struct dma_slave_config dma_cfg;
  238. unsigned int i;
  239. int ret;
  240. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  241. struct rcar_drif *ch = sdr->ch[i];
  242. ch->dmach = dma_request_slave_channel(&ch->pdev->dev, "rx");
  243. if (!ch->dmach) {
  244. rdrif_err(sdr, "ch%u: dma channel req failed\n", i);
  245. ret = -ENODEV;
  246. goto dmach_error;
  247. }
  248. /* Configure slave */
  249. memset(&dma_cfg, 0, sizeof(dma_cfg));
  250. dma_cfg.src_addr = (phys_addr_t)(ch->start + RCAR_DRIF_SIRFDR);
  251. dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  252. ret = dmaengine_slave_config(ch->dmach, &dma_cfg);
  253. if (ret) {
  254. rdrif_err(sdr, "ch%u: dma slave config failed\n", i);
  255. goto dmach_error;
  256. }
  257. }
  258. return 0;
  259. dmach_error:
  260. rcar_drif_release_dmachannels(sdr);
  261. return ret;
  262. }
  263. /* Release queued vb2 buffers */
  264. static void rcar_drif_release_queued_bufs(struct rcar_drif_sdr *sdr,
  265. enum vb2_buffer_state state)
  266. {
  267. struct rcar_drif_frame_buf *fbuf, *tmp;
  268. unsigned long flags;
  269. spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
  270. list_for_each_entry_safe(fbuf, tmp, &sdr->queued_bufs, list) {
  271. list_del(&fbuf->list);
  272. vb2_buffer_done(&fbuf->vb.vb2_buf, state);
  273. }
  274. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  275. }
  276. /* Set MDR defaults */
  277. static inline void rcar_drif_set_mdr1(struct rcar_drif_sdr *sdr)
  278. {
  279. unsigned int i;
  280. /* Set defaults for enabled internal channels */
  281. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  282. /* Refer MSIOF section in manual for this register setting */
  283. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SITMDR1,
  284. RCAR_DRIF_SITMDR1_PCON);
  285. /* Setup MDR1 value */
  286. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR1, sdr->mdr1);
  287. rdrif_dbg(sdr, "ch%u: mdr1 = 0x%08x",
  288. i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR1));
  289. }
  290. }
  291. /* Set DRIF receive format */
  292. static int rcar_drif_set_format(struct rcar_drif_sdr *sdr)
  293. {
  294. unsigned int i;
  295. rdrif_dbg(sdr, "setfmt: bitlen %u wdcnt %u num_ch %u\n",
  296. sdr->fmt->bitlen, sdr->fmt->wdcnt, sdr->fmt->num_ch);
  297. /* Sanity check */
  298. if (sdr->fmt->num_ch > sdr->num_cur_ch) {
  299. rdrif_err(sdr, "fmt num_ch %u cur_ch %u mismatch\n",
  300. sdr->fmt->num_ch, sdr->num_cur_ch);
  301. return -EINVAL;
  302. }
  303. /* Setup group, bitlen & wdcnt */
  304. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  305. u32 mdr;
  306. /* Two groups */
  307. mdr = RCAR_DRIF_MDR_GRPCNT(2) |
  308. RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
  309. RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
  310. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR2, mdr);
  311. mdr = RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
  312. RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
  313. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR3, mdr);
  314. rdrif_dbg(sdr, "ch%u: new mdr[2,3] = 0x%08x, 0x%08x\n",
  315. i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR2),
  316. rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR3));
  317. }
  318. return 0;
  319. }
  320. /* Release DMA buffers */
  321. static void rcar_drif_release_buf(struct rcar_drif_sdr *sdr)
  322. {
  323. unsigned int i;
  324. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  325. struct rcar_drif *ch = sdr->ch[i];
  326. /* First entry contains the dma buf ptr */
  327. if (ch->buf[0].addr) {
  328. dma_free_coherent(&ch->pdev->dev,
  329. sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
  330. ch->buf[0].addr, ch->dma_handle);
  331. ch->buf[0].addr = NULL;
  332. }
  333. }
  334. }
  335. /* Request DMA buffers */
  336. static int rcar_drif_request_buf(struct rcar_drif_sdr *sdr)
  337. {
  338. int ret = -ENOMEM;
  339. unsigned int i, j;
  340. void *addr;
  341. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  342. struct rcar_drif *ch = sdr->ch[i];
  343. /* Allocate DMA buffers */
  344. addr = dma_alloc_coherent(&ch->pdev->dev,
  345. sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
  346. &ch->dma_handle, GFP_KERNEL);
  347. if (!addr) {
  348. rdrif_err(sdr,
  349. "ch%u: dma alloc failed. num hwbufs %u size %u\n",
  350. i, RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
  351. goto error;
  352. }
  353. /* Split the chunk and populate bufctxt */
  354. for (j = 0; j < RCAR_DRIF_NUM_HWBUFS; j++) {
  355. ch->buf[j].addr = addr + (j * sdr->hwbuf_size);
  356. ch->buf[j].status = 0;
  357. }
  358. }
  359. return 0;
  360. error:
  361. return ret;
  362. }
  363. /* Setup vb_queue minimum buffer requirements */
  364. static int rcar_drif_queue_setup(struct vb2_queue *vq,
  365. unsigned int *num_buffers, unsigned int *num_planes,
  366. unsigned int sizes[], struct device *alloc_devs[])
  367. {
  368. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
  369. /* Need at least 16 buffers */
  370. if (vq->num_buffers + *num_buffers < 16)
  371. *num_buffers = 16 - vq->num_buffers;
  372. *num_planes = 1;
  373. sizes[0] = PAGE_ALIGN(sdr->fmt->buffersize);
  374. rdrif_dbg(sdr, "num_bufs %d sizes[0] %d\n", *num_buffers, sizes[0]);
  375. return 0;
  376. }
  377. /* Enqueue buffer */
  378. static void rcar_drif_buf_queue(struct vb2_buffer *vb)
  379. {
  380. struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
  381. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vb->vb2_queue);
  382. struct rcar_drif_frame_buf *fbuf =
  383. container_of(vbuf, struct rcar_drif_frame_buf, vb);
  384. unsigned long flags;
  385. rdrif_dbg(sdr, "buf_queue idx %u\n", vb->index);
  386. spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
  387. list_add_tail(&fbuf->list, &sdr->queued_bufs);
  388. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  389. }
  390. /* Get a frame buf from list */
  391. static struct rcar_drif_frame_buf *
  392. rcar_drif_get_fbuf(struct rcar_drif_sdr *sdr)
  393. {
  394. struct rcar_drif_frame_buf *fbuf;
  395. unsigned long flags;
  396. spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
  397. fbuf = list_first_entry_or_null(&sdr->queued_bufs, struct
  398. rcar_drif_frame_buf, list);
  399. if (!fbuf) {
  400. /*
  401. * App is late in enqueing buffers. Samples lost & there will
  402. * be a gap in sequence number when app recovers
  403. */
  404. rdrif_dbg(sdr, "\napp late: prod %u\n", sdr->produced);
  405. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  406. return NULL;
  407. }
  408. list_del(&fbuf->list);
  409. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  410. return fbuf;
  411. }
  412. /* Helpers to set/clear buf pair status */
  413. static inline bool rcar_drif_bufs_done(struct rcar_drif_hwbuf **buf)
  414. {
  415. return (buf[0]->status & buf[1]->status & RCAR_DRIF_BUF_DONE);
  416. }
  417. static inline bool rcar_drif_bufs_overflow(struct rcar_drif_hwbuf **buf)
  418. {
  419. return ((buf[0]->status | buf[1]->status) & RCAR_DRIF_BUF_OVERFLOW);
  420. }
  421. static inline void rcar_drif_bufs_clear(struct rcar_drif_hwbuf **buf,
  422. unsigned int bit)
  423. {
  424. unsigned int i;
  425. for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
  426. buf[i]->status &= ~bit;
  427. }
  428. /* Channel DMA complete */
  429. static void rcar_drif_channel_complete(struct rcar_drif *ch, u32 idx)
  430. {
  431. u32 str;
  432. ch->buf[idx].status |= RCAR_DRIF_BUF_DONE;
  433. /* Check for DRIF errors */
  434. str = rcar_drif_read(ch, RCAR_DRIF_SISTR);
  435. if (unlikely(str & RCAR_DRIF_RFOVF)) {
  436. /* Writing the same clears it */
  437. rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
  438. /* Overflow: some samples are lost */
  439. ch->buf[idx].status |= RCAR_DRIF_BUF_OVERFLOW;
  440. }
  441. }
  442. /* DMA callback for each stage */
  443. static void rcar_drif_dma_complete(void *dma_async_param)
  444. {
  445. struct rcar_drif *ch = dma_async_param;
  446. struct rcar_drif_sdr *sdr = ch->sdr;
  447. struct rcar_drif_hwbuf *buf[RCAR_DRIF_MAX_CHANNEL];
  448. struct rcar_drif_frame_buf *fbuf;
  449. bool overflow = false;
  450. u32 idx, produced;
  451. unsigned int i;
  452. spin_lock(&sdr->dma_lock);
  453. /* DMA can be terminated while the callback was waiting on lock */
  454. if (!vb2_is_streaming(&sdr->vb_queue)) {
  455. spin_unlock(&sdr->dma_lock);
  456. return;
  457. }
  458. idx = sdr->produced % RCAR_DRIF_NUM_HWBUFS;
  459. rcar_drif_channel_complete(ch, idx);
  460. if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL) {
  461. buf[0] = ch->num ? to_rcar_drif_buf_pair(sdr, ch->num, idx) :
  462. &ch->buf[idx];
  463. buf[1] = ch->num ? &ch->buf[idx] :
  464. to_rcar_drif_buf_pair(sdr, ch->num, idx);
  465. /* Check if both DMA buffers are done */
  466. if (!rcar_drif_bufs_done(buf)) {
  467. spin_unlock(&sdr->dma_lock);
  468. return;
  469. }
  470. /* Clear buf done status */
  471. rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_DONE);
  472. if (rcar_drif_bufs_overflow(buf)) {
  473. overflow = true;
  474. /* Clear the flag in status */
  475. rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_OVERFLOW);
  476. }
  477. } else {
  478. buf[0] = &ch->buf[idx];
  479. if (buf[0]->status & RCAR_DRIF_BUF_OVERFLOW) {
  480. overflow = true;
  481. /* Clear the flag in status */
  482. buf[0]->status &= ~RCAR_DRIF_BUF_OVERFLOW;
  483. }
  484. }
  485. /* Buffer produced for consumption */
  486. produced = sdr->produced++;
  487. spin_unlock(&sdr->dma_lock);
  488. rdrif_dbg(sdr, "ch%u: prod %u\n", ch->num, produced);
  489. /* Get fbuf */
  490. fbuf = rcar_drif_get_fbuf(sdr);
  491. if (!fbuf)
  492. return;
  493. for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
  494. memcpy(vb2_plane_vaddr(&fbuf->vb.vb2_buf, 0) +
  495. i * sdr->hwbuf_size, buf[i]->addr, sdr->hwbuf_size);
  496. fbuf->vb.field = V4L2_FIELD_NONE;
  497. fbuf->vb.sequence = produced;
  498. fbuf->vb.vb2_buf.timestamp = ktime_get_ns();
  499. vb2_set_plane_payload(&fbuf->vb.vb2_buf, 0, sdr->fmt->buffersize);
  500. /* Set error state on overflow */
  501. vb2_buffer_done(&fbuf->vb.vb2_buf,
  502. overflow ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
  503. }
  504. static int rcar_drif_qbuf(struct rcar_drif *ch)
  505. {
  506. struct rcar_drif_sdr *sdr = ch->sdr;
  507. dma_addr_t addr = ch->dma_handle;
  508. struct dma_async_tx_descriptor *rxd;
  509. dma_cookie_t cookie;
  510. int ret = -EIO;
  511. /* Setup cyclic DMA with given buffers */
  512. rxd = dmaengine_prep_dma_cyclic(ch->dmach, addr,
  513. sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
  514. sdr->hwbuf_size, DMA_DEV_TO_MEM,
  515. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  516. if (!rxd) {
  517. rdrif_err(sdr, "ch%u: prep dma cyclic failed\n", ch->num);
  518. return ret;
  519. }
  520. /* Submit descriptor */
  521. rxd->callback = rcar_drif_dma_complete;
  522. rxd->callback_param = ch;
  523. cookie = dmaengine_submit(rxd);
  524. if (dma_submit_error(cookie)) {
  525. rdrif_err(sdr, "ch%u: dma submit failed\n", ch->num);
  526. return ret;
  527. }
  528. dma_async_issue_pending(ch->dmach);
  529. return 0;
  530. }
  531. /* Enable reception */
  532. static int rcar_drif_enable_rx(struct rcar_drif_sdr *sdr)
  533. {
  534. unsigned int i;
  535. u32 ctr;
  536. int ret = -EINVAL;
  537. /*
  538. * When both internal channels are enabled, they can be synchronized
  539. * only by the master
  540. */
  541. /* Enable receive */
  542. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  543. ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
  544. ctr |= (RCAR_DRIF_SICTR_RX_RISING_EDGE |
  545. RCAR_DRIF_SICTR_RX_EN);
  546. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
  547. }
  548. /* Check receive enabled */
  549. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  550. ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
  551. ctr, ctr & RCAR_DRIF_SICTR_RX_EN, 7, 100000);
  552. if (ret) {
  553. rdrif_err(sdr, "ch%u: rx en failed. ctr 0x%08x\n", i,
  554. rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
  555. break;
  556. }
  557. }
  558. return ret;
  559. }
  560. /* Disable reception */
  561. static void rcar_drif_disable_rx(struct rcar_drif_sdr *sdr)
  562. {
  563. unsigned int i;
  564. u32 ctr;
  565. int ret;
  566. /* Disable receive */
  567. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  568. ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
  569. ctr &= ~RCAR_DRIF_SICTR_RX_EN;
  570. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
  571. }
  572. /* Check receive disabled */
  573. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  574. ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
  575. ctr, !(ctr & RCAR_DRIF_SICTR_RX_EN), 7, 100000);
  576. if (ret)
  577. dev_warn(&sdr->vdev->dev,
  578. "ch%u: failed to disable rx. ctr 0x%08x\n",
  579. i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
  580. }
  581. }
  582. /* Stop channel */
  583. static void rcar_drif_stop_channel(struct rcar_drif *ch)
  584. {
  585. /* Disable DMA receive interrupt */
  586. rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00000000);
  587. /* Terminate all DMA transfers */
  588. dmaengine_terminate_sync(ch->dmach);
  589. }
  590. /* Stop receive operation */
  591. static void rcar_drif_stop(struct rcar_drif_sdr *sdr)
  592. {
  593. unsigned int i;
  594. /* Disable Rx */
  595. rcar_drif_disable_rx(sdr);
  596. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
  597. rcar_drif_stop_channel(sdr->ch[i]);
  598. }
  599. /* Start channel */
  600. static int rcar_drif_start_channel(struct rcar_drif *ch)
  601. {
  602. struct rcar_drif_sdr *sdr = ch->sdr;
  603. u32 ctr, str;
  604. int ret;
  605. /* Reset receive */
  606. rcar_drif_write(ch, RCAR_DRIF_SICTR, RCAR_DRIF_SICTR_RESET);
  607. ret = readl_poll_timeout(ch->base + RCAR_DRIF_SICTR, ctr,
  608. !(ctr & RCAR_DRIF_SICTR_RESET), 7, 100000);
  609. if (ret) {
  610. rdrif_err(sdr, "ch%u: failed to reset rx. ctr 0x%08x\n",
  611. ch->num, rcar_drif_read(ch, RCAR_DRIF_SICTR));
  612. return ret;
  613. }
  614. /* Queue buffers for DMA */
  615. ret = rcar_drif_qbuf(ch);
  616. if (ret)
  617. return ret;
  618. /* Clear status register flags */
  619. str = RCAR_DRIF_RFFUL | RCAR_DRIF_REOF | RCAR_DRIF_RFSERR |
  620. RCAR_DRIF_RFUDF | RCAR_DRIF_RFOVF;
  621. rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
  622. /* Enable DMA receive interrupt */
  623. rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00009000);
  624. return ret;
  625. }
  626. /* Start receive operation */
  627. static int rcar_drif_start(struct rcar_drif_sdr *sdr)
  628. {
  629. unsigned long enabled = 0;
  630. unsigned int i;
  631. int ret;
  632. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  633. ret = rcar_drif_start_channel(sdr->ch[i]);
  634. if (ret)
  635. goto start_error;
  636. enabled |= BIT(i);
  637. }
  638. ret = rcar_drif_enable_rx(sdr);
  639. if (ret)
  640. goto enable_error;
  641. sdr->produced = 0;
  642. return ret;
  643. enable_error:
  644. rcar_drif_disable_rx(sdr);
  645. start_error:
  646. for_each_rcar_drif_channel(i, &enabled)
  647. rcar_drif_stop_channel(sdr->ch[i]);
  648. return ret;
  649. }
  650. /* Start streaming */
  651. static int rcar_drif_start_streaming(struct vb2_queue *vq, unsigned int count)
  652. {
  653. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
  654. unsigned long enabled = 0;
  655. unsigned int i;
  656. int ret;
  657. mutex_lock(&sdr->v4l2_mutex);
  658. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  659. ret = clk_prepare_enable(sdr->ch[i]->clk);
  660. if (ret)
  661. goto error;
  662. enabled |= BIT(i);
  663. }
  664. /* Set default MDRx settings */
  665. rcar_drif_set_mdr1(sdr);
  666. /* Set new format */
  667. ret = rcar_drif_set_format(sdr);
  668. if (ret)
  669. goto error;
  670. if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL)
  671. sdr->hwbuf_size = sdr->fmt->buffersize / RCAR_DRIF_MAX_CHANNEL;
  672. else
  673. sdr->hwbuf_size = sdr->fmt->buffersize;
  674. rdrif_dbg(sdr, "num hwbufs %u, hwbuf_size %u\n",
  675. RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
  676. /* Alloc DMA channel */
  677. ret = rcar_drif_alloc_dmachannels(sdr);
  678. if (ret)
  679. goto error;
  680. /* Request buffers */
  681. ret = rcar_drif_request_buf(sdr);
  682. if (ret)
  683. goto error;
  684. /* Start Rx */
  685. ret = rcar_drif_start(sdr);
  686. if (ret)
  687. goto error;
  688. mutex_unlock(&sdr->v4l2_mutex);
  689. return ret;
  690. error:
  691. rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_QUEUED);
  692. rcar_drif_release_buf(sdr);
  693. rcar_drif_release_dmachannels(sdr);
  694. for_each_rcar_drif_channel(i, &enabled)
  695. clk_disable_unprepare(sdr->ch[i]->clk);
  696. mutex_unlock(&sdr->v4l2_mutex);
  697. return ret;
  698. }
  699. /* Stop streaming */
  700. static void rcar_drif_stop_streaming(struct vb2_queue *vq)
  701. {
  702. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
  703. unsigned int i;
  704. mutex_lock(&sdr->v4l2_mutex);
  705. /* Stop hardware streaming */
  706. rcar_drif_stop(sdr);
  707. /* Return all queued buffers to vb2 */
  708. rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_ERROR);
  709. /* Release buf */
  710. rcar_drif_release_buf(sdr);
  711. /* Release DMA channel resources */
  712. rcar_drif_release_dmachannels(sdr);
  713. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
  714. clk_disable_unprepare(sdr->ch[i]->clk);
  715. mutex_unlock(&sdr->v4l2_mutex);
  716. }
  717. /* Vb2 ops */
  718. static const struct vb2_ops rcar_drif_vb2_ops = {
  719. .queue_setup = rcar_drif_queue_setup,
  720. .buf_queue = rcar_drif_buf_queue,
  721. .start_streaming = rcar_drif_start_streaming,
  722. .stop_streaming = rcar_drif_stop_streaming,
  723. .wait_prepare = vb2_ops_wait_prepare,
  724. .wait_finish = vb2_ops_wait_finish,
  725. };
  726. static int rcar_drif_querycap(struct file *file, void *fh,
  727. struct v4l2_capability *cap)
  728. {
  729. struct rcar_drif_sdr *sdr = video_drvdata(file);
  730. strlcpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver));
  731. strlcpy(cap->card, sdr->vdev->name, sizeof(cap->card));
  732. snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
  733. sdr->vdev->name);
  734. return 0;
  735. }
  736. static int rcar_drif_set_default_format(struct rcar_drif_sdr *sdr)
  737. {
  738. unsigned int i;
  739. for (i = 0; i < ARRAY_SIZE(formats); i++) {
  740. /* Matching fmt based on required channels is set as default */
  741. if (sdr->num_hw_ch == formats[i].num_ch) {
  742. sdr->fmt = &formats[i];
  743. sdr->cur_ch_mask = sdr->hw_ch_mask;
  744. sdr->num_cur_ch = sdr->num_hw_ch;
  745. dev_dbg(sdr->dev, "default fmt[%u]: mask %lu num %u\n",
  746. i, sdr->cur_ch_mask, sdr->num_cur_ch);
  747. return 0;
  748. }
  749. }
  750. return -EINVAL;
  751. }
  752. static int rcar_drif_enum_fmt_sdr_cap(struct file *file, void *priv,
  753. struct v4l2_fmtdesc *f)
  754. {
  755. if (f->index >= ARRAY_SIZE(formats))
  756. return -EINVAL;
  757. f->pixelformat = formats[f->index].pixelformat;
  758. return 0;
  759. }
  760. static int rcar_drif_g_fmt_sdr_cap(struct file *file, void *priv,
  761. struct v4l2_format *f)
  762. {
  763. struct rcar_drif_sdr *sdr = video_drvdata(file);
  764. f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
  765. f->fmt.sdr.buffersize = sdr->fmt->buffersize;
  766. return 0;
  767. }
  768. static int rcar_drif_s_fmt_sdr_cap(struct file *file, void *priv,
  769. struct v4l2_format *f)
  770. {
  771. struct rcar_drif_sdr *sdr = video_drvdata(file);
  772. struct vb2_queue *q = &sdr->vb_queue;
  773. unsigned int i;
  774. if (vb2_is_busy(q))
  775. return -EBUSY;
  776. for (i = 0; i < ARRAY_SIZE(formats); i++) {
  777. if (formats[i].pixelformat == f->fmt.sdr.pixelformat)
  778. break;
  779. }
  780. if (i == ARRAY_SIZE(formats))
  781. i = 0; /* Set the 1st format as default on no match */
  782. sdr->fmt = &formats[i];
  783. f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
  784. f->fmt.sdr.buffersize = formats[i].buffersize;
  785. memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
  786. /*
  787. * If a format demands one channel only out of two
  788. * enabled channels, pick the 0th channel.
  789. */
  790. if (formats[i].num_ch < sdr->num_hw_ch) {
  791. sdr->cur_ch_mask = BIT(0);
  792. sdr->num_cur_ch = formats[i].num_ch;
  793. } else {
  794. sdr->cur_ch_mask = sdr->hw_ch_mask;
  795. sdr->num_cur_ch = sdr->num_hw_ch;
  796. }
  797. rdrif_dbg(sdr, "cur: idx %u mask %lu num %u\n",
  798. i, sdr->cur_ch_mask, sdr->num_cur_ch);
  799. return 0;
  800. }
  801. static int rcar_drif_try_fmt_sdr_cap(struct file *file, void *priv,
  802. struct v4l2_format *f)
  803. {
  804. unsigned int i;
  805. for (i = 0; i < ARRAY_SIZE(formats); i++) {
  806. if (formats[i].pixelformat == f->fmt.sdr.pixelformat) {
  807. f->fmt.sdr.buffersize = formats[i].buffersize;
  808. return 0;
  809. }
  810. }
  811. f->fmt.sdr.pixelformat = formats[0].pixelformat;
  812. f->fmt.sdr.buffersize = formats[0].buffersize;
  813. memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
  814. return 0;
  815. }
  816. /* Tuner subdev ioctls */
  817. static int rcar_drif_enum_freq_bands(struct file *file, void *priv,
  818. struct v4l2_frequency_band *band)
  819. {
  820. struct rcar_drif_sdr *sdr = video_drvdata(file);
  821. return v4l2_subdev_call(sdr->ep.subdev, tuner, enum_freq_bands, band);
  822. }
  823. static int rcar_drif_g_frequency(struct file *file, void *priv,
  824. struct v4l2_frequency *f)
  825. {
  826. struct rcar_drif_sdr *sdr = video_drvdata(file);
  827. return v4l2_subdev_call(sdr->ep.subdev, tuner, g_frequency, f);
  828. }
  829. static int rcar_drif_s_frequency(struct file *file, void *priv,
  830. const struct v4l2_frequency *f)
  831. {
  832. struct rcar_drif_sdr *sdr = video_drvdata(file);
  833. return v4l2_subdev_call(sdr->ep.subdev, tuner, s_frequency, f);
  834. }
  835. static int rcar_drif_g_tuner(struct file *file, void *priv,
  836. struct v4l2_tuner *vt)
  837. {
  838. struct rcar_drif_sdr *sdr = video_drvdata(file);
  839. return v4l2_subdev_call(sdr->ep.subdev, tuner, g_tuner, vt);
  840. }
  841. static int rcar_drif_s_tuner(struct file *file, void *priv,
  842. const struct v4l2_tuner *vt)
  843. {
  844. struct rcar_drif_sdr *sdr = video_drvdata(file);
  845. return v4l2_subdev_call(sdr->ep.subdev, tuner, s_tuner, vt);
  846. }
  847. static const struct v4l2_ioctl_ops rcar_drif_ioctl_ops = {
  848. .vidioc_querycap = rcar_drif_querycap,
  849. .vidioc_enum_fmt_sdr_cap = rcar_drif_enum_fmt_sdr_cap,
  850. .vidioc_g_fmt_sdr_cap = rcar_drif_g_fmt_sdr_cap,
  851. .vidioc_s_fmt_sdr_cap = rcar_drif_s_fmt_sdr_cap,
  852. .vidioc_try_fmt_sdr_cap = rcar_drif_try_fmt_sdr_cap,
  853. .vidioc_reqbufs = vb2_ioctl_reqbufs,
  854. .vidioc_create_bufs = vb2_ioctl_create_bufs,
  855. .vidioc_prepare_buf = vb2_ioctl_prepare_buf,
  856. .vidioc_querybuf = vb2_ioctl_querybuf,
  857. .vidioc_qbuf = vb2_ioctl_qbuf,
  858. .vidioc_dqbuf = vb2_ioctl_dqbuf,
  859. .vidioc_streamon = vb2_ioctl_streamon,
  860. .vidioc_streamoff = vb2_ioctl_streamoff,
  861. .vidioc_s_frequency = rcar_drif_s_frequency,
  862. .vidioc_g_frequency = rcar_drif_g_frequency,
  863. .vidioc_s_tuner = rcar_drif_s_tuner,
  864. .vidioc_g_tuner = rcar_drif_g_tuner,
  865. .vidioc_enum_freq_bands = rcar_drif_enum_freq_bands,
  866. .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
  867. .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
  868. .vidioc_log_status = v4l2_ctrl_log_status,
  869. };
  870. static const struct v4l2_file_operations rcar_drif_fops = {
  871. .owner = THIS_MODULE,
  872. .open = v4l2_fh_open,
  873. .release = vb2_fop_release,
  874. .read = vb2_fop_read,
  875. .poll = vb2_fop_poll,
  876. .mmap = vb2_fop_mmap,
  877. .unlocked_ioctl = video_ioctl2,
  878. };
  879. static int rcar_drif_sdr_register(struct rcar_drif_sdr *sdr)
  880. {
  881. int ret;
  882. /* Init video_device structure */
  883. sdr->vdev = video_device_alloc();
  884. if (!sdr->vdev)
  885. return -ENOMEM;
  886. snprintf(sdr->vdev->name, sizeof(sdr->vdev->name), "R-Car DRIF");
  887. sdr->vdev->fops = &rcar_drif_fops;
  888. sdr->vdev->ioctl_ops = &rcar_drif_ioctl_ops;
  889. sdr->vdev->release = video_device_release;
  890. sdr->vdev->lock = &sdr->v4l2_mutex;
  891. sdr->vdev->queue = &sdr->vb_queue;
  892. sdr->vdev->queue->lock = &sdr->vb_queue_mutex;
  893. sdr->vdev->ctrl_handler = &sdr->ctrl_hdl;
  894. sdr->vdev->v4l2_dev = &sdr->v4l2_dev;
  895. sdr->vdev->device_caps = V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER |
  896. V4L2_CAP_STREAMING | V4L2_CAP_READWRITE;
  897. video_set_drvdata(sdr->vdev, sdr);
  898. /* Register V4L2 SDR device */
  899. ret = video_register_device(sdr->vdev, VFL_TYPE_SDR, -1);
  900. if (ret) {
  901. video_device_release(sdr->vdev);
  902. sdr->vdev = NULL;
  903. dev_err(sdr->dev, "failed video_register_device (%d)\n", ret);
  904. }
  905. return ret;
  906. }
  907. static void rcar_drif_sdr_unregister(struct rcar_drif_sdr *sdr)
  908. {
  909. video_unregister_device(sdr->vdev);
  910. sdr->vdev = NULL;
  911. }
  912. /* Sub-device bound callback */
  913. static int rcar_drif_notify_bound(struct v4l2_async_notifier *notifier,
  914. struct v4l2_subdev *subdev,
  915. struct v4l2_async_subdev *asd)
  916. {
  917. struct rcar_drif_sdr *sdr =
  918. container_of(notifier, struct rcar_drif_sdr, notifier);
  919. if (sdr->ep.asd.match.fwnode !=
  920. of_fwnode_handle(subdev->dev->of_node)) {
  921. rdrif_err(sdr, "subdev %s cannot bind\n", subdev->name);
  922. return -EINVAL;
  923. }
  924. v4l2_set_subdev_hostdata(subdev, sdr);
  925. sdr->ep.subdev = subdev;
  926. rdrif_dbg(sdr, "bound asd %s\n", subdev->name);
  927. return 0;
  928. }
  929. /* Sub-device unbind callback */
  930. static void rcar_drif_notify_unbind(struct v4l2_async_notifier *notifier,
  931. struct v4l2_subdev *subdev,
  932. struct v4l2_async_subdev *asd)
  933. {
  934. struct rcar_drif_sdr *sdr =
  935. container_of(notifier, struct rcar_drif_sdr, notifier);
  936. if (sdr->ep.subdev != subdev) {
  937. rdrif_err(sdr, "subdev %s is not bound\n", subdev->name);
  938. return;
  939. }
  940. /* Free ctrl handler if initialized */
  941. v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
  942. sdr->v4l2_dev.ctrl_handler = NULL;
  943. sdr->ep.subdev = NULL;
  944. rcar_drif_sdr_unregister(sdr);
  945. rdrif_dbg(sdr, "unbind asd %s\n", subdev->name);
  946. }
  947. /* Sub-device registered notification callback */
  948. static int rcar_drif_notify_complete(struct v4l2_async_notifier *notifier)
  949. {
  950. struct rcar_drif_sdr *sdr =
  951. container_of(notifier, struct rcar_drif_sdr, notifier);
  952. int ret;
  953. /*
  954. * The subdev tested at this point uses 4 controls. Using 10 as a worst
  955. * case scenario hint. When less controls are needed there will be some
  956. * unused memory and when more controls are needed the framework uses
  957. * hash to manage controls within this number.
  958. */
  959. ret = v4l2_ctrl_handler_init(&sdr->ctrl_hdl, 10);
  960. if (ret)
  961. return -ENOMEM;
  962. sdr->v4l2_dev.ctrl_handler = &sdr->ctrl_hdl;
  963. ret = v4l2_device_register_subdev_nodes(&sdr->v4l2_dev);
  964. if (ret) {
  965. rdrif_err(sdr, "failed: register subdev nodes ret %d\n", ret);
  966. goto error;
  967. }
  968. ret = v4l2_ctrl_add_handler(&sdr->ctrl_hdl,
  969. sdr->ep.subdev->ctrl_handler, NULL);
  970. if (ret) {
  971. rdrif_err(sdr, "failed: ctrl add hdlr ret %d\n", ret);
  972. goto error;
  973. }
  974. ret = rcar_drif_sdr_register(sdr);
  975. if (ret)
  976. goto error;
  977. return ret;
  978. error:
  979. v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
  980. return ret;
  981. }
  982. static const struct v4l2_async_notifier_operations rcar_drif_notify_ops = {
  983. .bound = rcar_drif_notify_bound,
  984. .unbind = rcar_drif_notify_unbind,
  985. .complete = rcar_drif_notify_complete,
  986. };
  987. /* Read endpoint properties */
  988. static void rcar_drif_get_ep_properties(struct rcar_drif_sdr *sdr,
  989. struct fwnode_handle *fwnode)
  990. {
  991. u32 val;
  992. /* Set the I2S defaults for SIRMDR1*/
  993. sdr->mdr1 = RCAR_DRIF_SIRMDR1_SYNCMD_LR | RCAR_DRIF_SIRMDR1_MSB_FIRST |
  994. RCAR_DRIF_SIRMDR1_DTDL_1 | RCAR_DRIF_SIRMDR1_SYNCDL_0;
  995. /* Parse sync polarity from endpoint */
  996. if (!fwnode_property_read_u32(fwnode, "sync-active", &val))
  997. sdr->mdr1 |= val ? RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH :
  998. RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW;
  999. else
  1000. sdr->mdr1 |= RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH; /* default */
  1001. dev_dbg(sdr->dev, "mdr1 0x%08x\n", sdr->mdr1);
  1002. }
  1003. /* Parse sub-devs (tuner) to find a matching device */
  1004. static int rcar_drif_parse_subdevs(struct rcar_drif_sdr *sdr)
  1005. {
  1006. struct v4l2_async_notifier *notifier = &sdr->notifier;
  1007. struct fwnode_handle *fwnode, *ep;
  1008. notifier->subdevs = devm_kzalloc(sdr->dev, sizeof(*notifier->subdevs),
  1009. GFP_KERNEL);
  1010. if (!notifier->subdevs)
  1011. return -ENOMEM;
  1012. ep = fwnode_graph_get_next_endpoint(of_fwnode_handle(sdr->dev->of_node),
  1013. NULL);
  1014. if (!ep)
  1015. return 0;
  1016. notifier->subdevs[notifier->num_subdevs] = &sdr->ep.asd;
  1017. fwnode = fwnode_graph_get_remote_port_parent(ep);
  1018. if (!fwnode) {
  1019. dev_warn(sdr->dev, "bad remote port parent\n");
  1020. fwnode_handle_put(ep);
  1021. return -EINVAL;
  1022. }
  1023. sdr->ep.asd.match.fwnode = fwnode;
  1024. sdr->ep.asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
  1025. notifier->num_subdevs++;
  1026. /* Get the endpoint properties */
  1027. rcar_drif_get_ep_properties(sdr, ep);
  1028. fwnode_handle_put(fwnode);
  1029. fwnode_handle_put(ep);
  1030. return 0;
  1031. }
  1032. /* Check if the given device is the primary bond */
  1033. static bool rcar_drif_primary_bond(struct platform_device *pdev)
  1034. {
  1035. return of_property_read_bool(pdev->dev.of_node, "renesas,primary-bond");
  1036. }
  1037. /* Check if both devices of the bond are enabled */
  1038. static struct device_node *rcar_drif_bond_enabled(struct platform_device *p)
  1039. {
  1040. struct device_node *np;
  1041. np = of_parse_phandle(p->dev.of_node, "renesas,bonding", 0);
  1042. if (np && of_device_is_available(np))
  1043. return np;
  1044. return NULL;
  1045. }
  1046. /* Check if the bonded device is probed */
  1047. static int rcar_drif_bond_available(struct rcar_drif_sdr *sdr,
  1048. struct device_node *np)
  1049. {
  1050. struct platform_device *pdev;
  1051. struct rcar_drif *ch;
  1052. int ret = 0;
  1053. pdev = of_find_device_by_node(np);
  1054. if (!pdev) {
  1055. dev_err(sdr->dev, "failed to get bonded device from node\n");
  1056. return -ENODEV;
  1057. }
  1058. device_lock(&pdev->dev);
  1059. ch = platform_get_drvdata(pdev);
  1060. if (ch) {
  1061. /* Update sdr data in the bonded device */
  1062. ch->sdr = sdr;
  1063. /* Update sdr with bonded device data */
  1064. sdr->ch[ch->num] = ch;
  1065. sdr->hw_ch_mask |= BIT(ch->num);
  1066. } else {
  1067. /* Defer */
  1068. dev_info(sdr->dev, "defer probe\n");
  1069. ret = -EPROBE_DEFER;
  1070. }
  1071. device_unlock(&pdev->dev);
  1072. put_device(&pdev->dev);
  1073. return ret;
  1074. }
  1075. /* V4L2 SDR device probe */
  1076. static int rcar_drif_sdr_probe(struct rcar_drif_sdr *sdr)
  1077. {
  1078. int ret;
  1079. /* Validate any supported format for enabled channels */
  1080. ret = rcar_drif_set_default_format(sdr);
  1081. if (ret) {
  1082. dev_err(sdr->dev, "failed to set default format\n");
  1083. return ret;
  1084. }
  1085. /* Set defaults */
  1086. sdr->hwbuf_size = RCAR_DRIF_DEFAULT_HWBUF_SIZE;
  1087. mutex_init(&sdr->v4l2_mutex);
  1088. mutex_init(&sdr->vb_queue_mutex);
  1089. spin_lock_init(&sdr->queued_bufs_lock);
  1090. spin_lock_init(&sdr->dma_lock);
  1091. INIT_LIST_HEAD(&sdr->queued_bufs);
  1092. /* Init videobuf2 queue structure */
  1093. sdr->vb_queue.type = V4L2_BUF_TYPE_SDR_CAPTURE;
  1094. sdr->vb_queue.io_modes = VB2_READ | VB2_MMAP | VB2_DMABUF;
  1095. sdr->vb_queue.drv_priv = sdr;
  1096. sdr->vb_queue.buf_struct_size = sizeof(struct rcar_drif_frame_buf);
  1097. sdr->vb_queue.ops = &rcar_drif_vb2_ops;
  1098. sdr->vb_queue.mem_ops = &vb2_vmalloc_memops;
  1099. sdr->vb_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
  1100. /* Init videobuf2 queue */
  1101. ret = vb2_queue_init(&sdr->vb_queue);
  1102. if (ret) {
  1103. dev_err(sdr->dev, "failed: vb2_queue_init ret %d\n", ret);
  1104. return ret;
  1105. }
  1106. /* Register the v4l2_device */
  1107. ret = v4l2_device_register(sdr->dev, &sdr->v4l2_dev);
  1108. if (ret) {
  1109. dev_err(sdr->dev, "failed: v4l2_device_register ret %d\n", ret);
  1110. return ret;
  1111. }
  1112. /*
  1113. * Parse subdevs after v4l2_device_register because if the subdev
  1114. * is already probed, bound and complete will be called immediately
  1115. */
  1116. ret = rcar_drif_parse_subdevs(sdr);
  1117. if (ret)
  1118. goto error;
  1119. sdr->notifier.ops = &rcar_drif_notify_ops;
  1120. /* Register notifier */
  1121. ret = v4l2_async_notifier_register(&sdr->v4l2_dev, &sdr->notifier);
  1122. if (ret < 0) {
  1123. dev_err(sdr->dev, "failed: notifier register ret %d\n", ret);
  1124. goto error;
  1125. }
  1126. return ret;
  1127. error:
  1128. v4l2_device_unregister(&sdr->v4l2_dev);
  1129. return ret;
  1130. }
  1131. /* V4L2 SDR device remove */
  1132. static void rcar_drif_sdr_remove(struct rcar_drif_sdr *sdr)
  1133. {
  1134. v4l2_async_notifier_unregister(&sdr->notifier);
  1135. v4l2_device_unregister(&sdr->v4l2_dev);
  1136. }
  1137. /* DRIF channel probe */
  1138. static int rcar_drif_probe(struct platform_device *pdev)
  1139. {
  1140. struct rcar_drif_sdr *sdr;
  1141. struct device_node *np;
  1142. struct rcar_drif *ch;
  1143. struct resource *res;
  1144. int ret;
  1145. /* Reserve memory for enabled channel */
  1146. ch = devm_kzalloc(&pdev->dev, sizeof(*ch), GFP_KERNEL);
  1147. if (!ch)
  1148. return -ENOMEM;
  1149. ch->pdev = pdev;
  1150. /* Module clock */
  1151. ch->clk = devm_clk_get(&pdev->dev, "fck");
  1152. if (IS_ERR(ch->clk)) {
  1153. ret = PTR_ERR(ch->clk);
  1154. dev_err(&pdev->dev, "clk get failed (%d)\n", ret);
  1155. return ret;
  1156. }
  1157. /* Register map */
  1158. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1159. ch->base = devm_ioremap_resource(&pdev->dev, res);
  1160. if (IS_ERR(ch->base)) {
  1161. ret = PTR_ERR(ch->base);
  1162. dev_err(&pdev->dev, "ioremap failed (%d)\n", ret);
  1163. return ret;
  1164. }
  1165. ch->start = res->start;
  1166. platform_set_drvdata(pdev, ch);
  1167. /* Check if both channels of the bond are enabled */
  1168. np = rcar_drif_bond_enabled(pdev);
  1169. if (np) {
  1170. /* Check if current channel acting as primary-bond */
  1171. if (!rcar_drif_primary_bond(pdev)) {
  1172. ch->num = 1; /* Primary bond is channel 0 always */
  1173. of_node_put(np);
  1174. return 0;
  1175. }
  1176. }
  1177. /* Reserve memory for SDR structure */
  1178. sdr = devm_kzalloc(&pdev->dev, sizeof(*sdr), GFP_KERNEL);
  1179. if (!sdr) {
  1180. of_node_put(np);
  1181. return -ENOMEM;
  1182. }
  1183. ch->sdr = sdr;
  1184. sdr->dev = &pdev->dev;
  1185. /* Establish links between SDR and channel(s) */
  1186. sdr->ch[ch->num] = ch;
  1187. sdr->hw_ch_mask = BIT(ch->num);
  1188. if (np) {
  1189. /* Check if bonded device is ready */
  1190. ret = rcar_drif_bond_available(sdr, np);
  1191. of_node_put(np);
  1192. if (ret)
  1193. return ret;
  1194. }
  1195. sdr->num_hw_ch = hweight_long(sdr->hw_ch_mask);
  1196. return rcar_drif_sdr_probe(sdr);
  1197. }
  1198. /* DRIF channel remove */
  1199. static int rcar_drif_remove(struct platform_device *pdev)
  1200. {
  1201. struct rcar_drif *ch = platform_get_drvdata(pdev);
  1202. struct rcar_drif_sdr *sdr = ch->sdr;
  1203. /* Channel 0 will be the SDR instance */
  1204. if (ch->num)
  1205. return 0;
  1206. /* SDR instance */
  1207. rcar_drif_sdr_remove(sdr);
  1208. return 0;
  1209. }
  1210. /* FIXME: Implement suspend/resume support */
  1211. static int __maybe_unused rcar_drif_suspend(struct device *dev)
  1212. {
  1213. return 0;
  1214. }
  1215. static int __maybe_unused rcar_drif_resume(struct device *dev)
  1216. {
  1217. return 0;
  1218. }
  1219. static SIMPLE_DEV_PM_OPS(rcar_drif_pm_ops, rcar_drif_suspend,
  1220. rcar_drif_resume);
  1221. static const struct of_device_id rcar_drif_of_table[] = {
  1222. { .compatible = "renesas,rcar-gen3-drif" },
  1223. { }
  1224. };
  1225. MODULE_DEVICE_TABLE(of, rcar_drif_of_table);
  1226. #define RCAR_DRIF_DRV_NAME "rcar_drif"
  1227. static struct platform_driver rcar_drif_driver = {
  1228. .driver = {
  1229. .name = RCAR_DRIF_DRV_NAME,
  1230. .of_match_table = of_match_ptr(rcar_drif_of_table),
  1231. .pm = &rcar_drif_pm_ops,
  1232. },
  1233. .probe = rcar_drif_probe,
  1234. .remove = rcar_drif_remove,
  1235. };
  1236. module_platform_driver(rcar_drif_driver);
  1237. MODULE_DESCRIPTION("Renesas R-Car Gen3 DRIF driver");
  1238. MODULE_ALIAS("platform:" RCAR_DRIF_DRV_NAME);
  1239. MODULE_LICENSE("GPL");
  1240. MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");