spi-fsl-dspi.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185
  1. // SPDX-License-Identifier: GPL-2.0+
  2. //
  3. // Copyright 2013 Freescale Semiconductor, Inc.
  4. // Copyright 2020 NXP
  5. //
  6. // Freescale DSPI driver
  7. // This file contains a driver for the Freescale DSPI
  8. #include <linux/clk.h>
  9. #include <linux/delay.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/err.h>
  13. #include <linux/errno.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/io.h>
  16. #include <linux/kernel.h>
  17. #include <linux/math64.h>
  18. #include <linux/module.h>
  19. #include <linux/of.h>
  20. #include <linux/of_device.h>
  21. #include <linux/pinctrl/consumer.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/pm_runtime.h>
  24. #include <linux/regmap.h>
  25. #include <linux/sched.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/spi/spi-fsl-dspi.h>
  28. #include <linux/spi/spi_bitbang.h>
  29. #include <linux/time.h>
  30. #define DRIVER_NAME "fsl-dspi"
  31. #ifdef CONFIG_M5441x
  32. #define DSPI_FIFO_SIZE 16
  33. #else
  34. #define DSPI_FIFO_SIZE 4
  35. #endif
  36. #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
  37. #define SPI_MCR 0x00
  38. #define SPI_MCR_MASTER (1 << 31)
  39. #define SPI_MCR_PCSIS (0x3F << 16)
  40. #define SPI_MCR_CLR_TXF (1 << 11)
  41. #define SPI_MCR_CLR_RXF (1 << 10)
  42. #define SPI_MCR_XSPI (1 << 3)
  43. #define SPI_MCR_DIS_TXF (1 << 13)
  44. #define SPI_MCR_DIS_RXF (1 << 12)
  45. #define SPI_MCR_HALT (1 << 0)
  46. #define SPI_TCR 0x08
  47. #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16)
  48. #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4))
  49. #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
  50. #define SPI_CTAR_CPOL(x) ((x) << 26)
  51. #define SPI_CTAR_CPHA(x) ((x) << 25)
  52. #define SPI_CTAR_LSBFE(x) ((x) << 24)
  53. #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22)
  54. #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
  55. #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
  56. #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
  57. #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
  58. #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
  59. #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
  60. #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
  61. #define SPI_CTAR_SCALE_BITS 0xf
  62. #define SPI_CTAR0_SLAVE 0x0c
  63. #define SPI_SR 0x2c
  64. #define SPI_SR_EOQF 0x10000000
  65. #define SPI_SR_TCFQF 0x80000000
  66. #define SPI_SR_CLEAR 0x9aaf0000
  67. #define SPI_RSER_TFFFE BIT(25)
  68. #define SPI_RSER_TFFFD BIT(24)
  69. #define SPI_RSER_RFDFE BIT(17)
  70. #define SPI_RSER_RFDFD BIT(16)
  71. #define SPI_RSER 0x30
  72. #define SPI_RSER_EOQFE 0x10000000
  73. #define SPI_RSER_TCFQE 0x80000000
  74. #define SPI_PUSHR 0x34
  75. #define SPI_PUSHR_CMD_CONT (1 << 15)
  76. #define SPI_PUSHR_CONT (SPI_PUSHR_CMD_CONT << 16)
  77. #define SPI_PUSHR_CMD_CTAS(x) (((x) & 0x0003) << 12)
  78. #define SPI_PUSHR_CTAS(x) (SPI_PUSHR_CMD_CTAS(x) << 16)
  79. #define SPI_PUSHR_CMD_EOQ (1 << 11)
  80. #define SPI_PUSHR_EOQ (SPI_PUSHR_CMD_EOQ << 16)
  81. #define SPI_PUSHR_CMD_CTCNT (1 << 10)
  82. #define SPI_PUSHR_CTCNT (SPI_PUSHR_CMD_CTCNT << 16)
  83. #define SPI_PUSHR_CMD_PCS(x) ((1 << x) & 0x003f)
  84. #define SPI_PUSHR_PCS(x) (SPI_PUSHR_CMD_PCS(x) << 16)
  85. #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
  86. #define SPI_PUSHR_SLAVE 0x34
  87. #define SPI_POPR 0x38
  88. #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
  89. #define SPI_TXFR0 0x3c
  90. #define SPI_TXFR1 0x40
  91. #define SPI_TXFR2 0x44
  92. #define SPI_TXFR3 0x48
  93. #define SPI_RXFR0 0x7c
  94. #define SPI_RXFR1 0x80
  95. #define SPI_RXFR2 0x84
  96. #define SPI_RXFR3 0x88
  97. #define SPI_CTARE(x) (0x11c + (((x) & 0x3) * 4))
  98. #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
  99. #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
  100. #define SPI_SREX 0x13c
  101. #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
  102. #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
  103. #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
  104. #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
  105. #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
  106. #define SPI_FRAME_EBITS_MASK SPI_CTARE_FMSZE(1)
  107. /* Register offsets for regmap_pushr */
  108. #define PUSHR_CMD 0x0
  109. #define PUSHR_TX 0x2
  110. #define SPI_CS_INIT 0x01
  111. #define SPI_CS_ASSERT 0x02
  112. #define SPI_CS_DROP 0x04
  113. #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
  114. struct chip_data {
  115. u32 ctar_val;
  116. u16 void_write_data;
  117. };
  118. enum dspi_trans_mode {
  119. DSPI_EOQ_MODE = 0,
  120. DSPI_TCFQ_MODE,
  121. DSPI_DMA_MODE,
  122. };
  123. struct fsl_dspi_devtype_data {
  124. enum dspi_trans_mode trans_mode;
  125. u8 max_clock_factor;
  126. bool xspi_mode;
  127. };
  128. static const struct fsl_dspi_devtype_data vf610_data = {
  129. .trans_mode = DSPI_DMA_MODE,
  130. .max_clock_factor = 2,
  131. };
  132. static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
  133. .trans_mode = DSPI_TCFQ_MODE,
  134. .max_clock_factor = 8,
  135. .xspi_mode = true,
  136. };
  137. static const struct fsl_dspi_devtype_data ls2085a_data = {
  138. .trans_mode = DSPI_TCFQ_MODE,
  139. .max_clock_factor = 8,
  140. };
  141. static const struct fsl_dspi_devtype_data coldfire_data = {
  142. .trans_mode = DSPI_EOQ_MODE,
  143. .max_clock_factor = 8,
  144. };
  145. struct fsl_dspi_dma {
  146. /* Length of transfer in words of DSPI_FIFO_SIZE */
  147. u32 curr_xfer_len;
  148. u32 *tx_dma_buf;
  149. struct dma_chan *chan_tx;
  150. dma_addr_t tx_dma_phys;
  151. struct completion cmd_tx_complete;
  152. struct dma_async_tx_descriptor *tx_desc;
  153. u32 *rx_dma_buf;
  154. struct dma_chan *chan_rx;
  155. dma_addr_t rx_dma_phys;
  156. struct completion cmd_rx_complete;
  157. struct dma_async_tx_descriptor *rx_desc;
  158. };
  159. struct fsl_dspi {
  160. struct spi_master *master;
  161. struct platform_device *pdev;
  162. struct regmap *regmap;
  163. struct regmap *regmap_pushr;
  164. int irq;
  165. struct clk *clk;
  166. struct spi_transfer *cur_transfer;
  167. struct spi_message *cur_msg;
  168. struct chip_data *cur_chip;
  169. size_t len;
  170. const void *tx;
  171. void *rx;
  172. void *rx_end;
  173. u16 void_write_data;
  174. u16 tx_cmd;
  175. u8 bits_per_word;
  176. u8 bytes_per_word;
  177. const struct fsl_dspi_devtype_data *devtype_data;
  178. wait_queue_head_t waitq;
  179. u32 waitflags;
  180. struct fsl_dspi_dma *dma;
  181. };
  182. static u32 dspi_pop_tx(struct fsl_dspi *dspi)
  183. {
  184. u32 txdata = 0;
  185. if (dspi->tx) {
  186. if (dspi->bytes_per_word == 1)
  187. txdata = *(u8 *)dspi->tx;
  188. else if (dspi->bytes_per_word == 2)
  189. txdata = *(u16 *)dspi->tx;
  190. else /* dspi->bytes_per_word == 4 */
  191. txdata = *(u32 *)dspi->tx;
  192. dspi->tx += dspi->bytes_per_word;
  193. }
  194. dspi->len -= dspi->bytes_per_word;
  195. return txdata;
  196. }
  197. static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
  198. {
  199. u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
  200. if (dspi->len > 0)
  201. cmd |= SPI_PUSHR_CMD_CONT;
  202. return cmd << 16 | data;
  203. }
  204. static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
  205. {
  206. if (!dspi->rx)
  207. return;
  208. /* Mask of undefined bits */
  209. rxdata &= (1 << dspi->bits_per_word) - 1;
  210. if (dspi->bytes_per_word == 1)
  211. *(u8 *)dspi->rx = rxdata;
  212. else if (dspi->bytes_per_word == 2)
  213. *(u16 *)dspi->rx = rxdata;
  214. else /* dspi->bytes_per_word == 4 */
  215. *(u32 *)dspi->rx = rxdata;
  216. dspi->rx += dspi->bytes_per_word;
  217. }
  218. static void dspi_tx_dma_callback(void *arg)
  219. {
  220. struct fsl_dspi *dspi = arg;
  221. struct fsl_dspi_dma *dma = dspi->dma;
  222. complete(&dma->cmd_tx_complete);
  223. }
  224. static void dspi_rx_dma_callback(void *arg)
  225. {
  226. struct fsl_dspi *dspi = arg;
  227. struct fsl_dspi_dma *dma = dspi->dma;
  228. int i;
  229. if (dspi->rx) {
  230. for (i = 0; i < dma->curr_xfer_len; i++)
  231. dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
  232. }
  233. complete(&dma->cmd_rx_complete);
  234. }
  235. static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
  236. {
  237. struct fsl_dspi_dma *dma = dspi->dma;
  238. struct device *dev = &dspi->pdev->dev;
  239. int time_left;
  240. int i;
  241. for (i = 0; i < dma->curr_xfer_len; i++)
  242. dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
  243. dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
  244. dma->tx_dma_phys,
  245. dma->curr_xfer_len *
  246. DMA_SLAVE_BUSWIDTH_4_BYTES,
  247. DMA_MEM_TO_DEV,
  248. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  249. if (!dma->tx_desc) {
  250. dev_err(dev, "Not able to get desc for DMA xfer\n");
  251. return -EIO;
  252. }
  253. dma->tx_desc->callback = dspi_tx_dma_callback;
  254. dma->tx_desc->callback_param = dspi;
  255. if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
  256. dev_err(dev, "DMA submit failed\n");
  257. return -EINVAL;
  258. }
  259. dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
  260. dma->rx_dma_phys,
  261. dma->curr_xfer_len *
  262. DMA_SLAVE_BUSWIDTH_4_BYTES,
  263. DMA_DEV_TO_MEM,
  264. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  265. if (!dma->rx_desc) {
  266. dev_err(dev, "Not able to get desc for DMA xfer\n");
  267. return -EIO;
  268. }
  269. dma->rx_desc->callback = dspi_rx_dma_callback;
  270. dma->rx_desc->callback_param = dspi;
  271. if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
  272. dev_err(dev, "DMA submit failed\n");
  273. return -EINVAL;
  274. }
  275. reinit_completion(&dspi->dma->cmd_rx_complete);
  276. reinit_completion(&dspi->dma->cmd_tx_complete);
  277. dma_async_issue_pending(dma->chan_rx);
  278. dma_async_issue_pending(dma->chan_tx);
  279. time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
  280. DMA_COMPLETION_TIMEOUT);
  281. if (time_left == 0) {
  282. dev_err(dev, "DMA tx timeout\n");
  283. dmaengine_terminate_all(dma->chan_tx);
  284. dmaengine_terminate_all(dma->chan_rx);
  285. return -ETIMEDOUT;
  286. }
  287. time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
  288. DMA_COMPLETION_TIMEOUT);
  289. if (time_left == 0) {
  290. dev_err(dev, "DMA rx timeout\n");
  291. dmaengine_terminate_all(dma->chan_tx);
  292. dmaengine_terminate_all(dma->chan_rx);
  293. return -ETIMEDOUT;
  294. }
  295. return 0;
  296. }
  297. static int dspi_dma_xfer(struct fsl_dspi *dspi)
  298. {
  299. struct fsl_dspi_dma *dma = dspi->dma;
  300. struct device *dev = &dspi->pdev->dev;
  301. struct spi_message *message = dspi->cur_msg;
  302. int curr_remaining_bytes;
  303. int bytes_per_buffer;
  304. int ret = 0;
  305. curr_remaining_bytes = dspi->len;
  306. bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
  307. while (curr_remaining_bytes) {
  308. /* Check if current transfer fits the DMA buffer */
  309. dma->curr_xfer_len = curr_remaining_bytes
  310. / dspi->bytes_per_word;
  311. if (dma->curr_xfer_len > bytes_per_buffer)
  312. dma->curr_xfer_len = bytes_per_buffer;
  313. ret = dspi_next_xfer_dma_submit(dspi);
  314. if (ret) {
  315. dev_err(dev, "DMA transfer failed\n");
  316. goto exit;
  317. } else {
  318. const int len =
  319. dma->curr_xfer_len * dspi->bytes_per_word;
  320. curr_remaining_bytes -= len;
  321. message->actual_length += len;
  322. if (curr_remaining_bytes < 0)
  323. curr_remaining_bytes = 0;
  324. }
  325. }
  326. exit:
  327. return ret;
  328. }
  329. static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
  330. {
  331. struct fsl_dspi_dma *dma;
  332. struct dma_slave_config cfg;
  333. struct device *dev = &dspi->pdev->dev;
  334. int ret;
  335. dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
  336. if (!dma)
  337. return -ENOMEM;
  338. dma->chan_rx = dma_request_slave_channel(dev, "rx");
  339. if (!dma->chan_rx) {
  340. dev_err(dev, "rx dma channel not available\n");
  341. ret = -ENODEV;
  342. return ret;
  343. }
  344. dma->chan_tx = dma_request_slave_channel(dev, "tx");
  345. if (!dma->chan_tx) {
  346. dev_err(dev, "tx dma channel not available\n");
  347. ret = -ENODEV;
  348. goto err_tx_channel;
  349. }
  350. dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
  351. &dma->tx_dma_phys, GFP_KERNEL);
  352. if (!dma->tx_dma_buf) {
  353. ret = -ENOMEM;
  354. goto err_tx_dma_buf;
  355. }
  356. dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
  357. &dma->rx_dma_phys, GFP_KERNEL);
  358. if (!dma->rx_dma_buf) {
  359. ret = -ENOMEM;
  360. goto err_rx_dma_buf;
  361. }
  362. cfg.src_addr = phy_addr + SPI_POPR;
  363. cfg.dst_addr = phy_addr + SPI_PUSHR;
  364. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  365. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  366. cfg.src_maxburst = 1;
  367. cfg.dst_maxburst = 1;
  368. cfg.direction = DMA_DEV_TO_MEM;
  369. ret = dmaengine_slave_config(dma->chan_rx, &cfg);
  370. if (ret) {
  371. dev_err(dev, "can't configure rx dma channel\n");
  372. ret = -EINVAL;
  373. goto err_slave_config;
  374. }
  375. cfg.direction = DMA_MEM_TO_DEV;
  376. ret = dmaengine_slave_config(dma->chan_tx, &cfg);
  377. if (ret) {
  378. dev_err(dev, "can't configure tx dma channel\n");
  379. ret = -EINVAL;
  380. goto err_slave_config;
  381. }
  382. dspi->dma = dma;
  383. init_completion(&dma->cmd_tx_complete);
  384. init_completion(&dma->cmd_rx_complete);
  385. return 0;
  386. err_slave_config:
  387. dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
  388. dma->rx_dma_buf, dma->rx_dma_phys);
  389. err_rx_dma_buf:
  390. dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
  391. dma->tx_dma_buf, dma->tx_dma_phys);
  392. err_tx_dma_buf:
  393. dma_release_channel(dma->chan_tx);
  394. err_tx_channel:
  395. dma_release_channel(dma->chan_rx);
  396. devm_kfree(dev, dma);
  397. dspi->dma = NULL;
  398. return ret;
  399. }
  400. static void dspi_release_dma(struct fsl_dspi *dspi)
  401. {
  402. struct fsl_dspi_dma *dma = dspi->dma;
  403. struct device *dev = &dspi->pdev->dev;
  404. if (dma) {
  405. if (dma->chan_tx) {
  406. dma_unmap_single(dev, dma->tx_dma_phys,
  407. DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
  408. dma_release_channel(dma->chan_tx);
  409. }
  410. if (dma->chan_rx) {
  411. dma_unmap_single(dev, dma->rx_dma_phys,
  412. DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
  413. dma_release_channel(dma->chan_rx);
  414. }
  415. }
  416. }
  417. static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
  418. unsigned long clkrate)
  419. {
  420. /* Valid baud rate pre-scaler values */
  421. int pbr_tbl[4] = {2, 3, 5, 7};
  422. int brs[16] = { 2, 4, 6, 8,
  423. 16, 32, 64, 128,
  424. 256, 512, 1024, 2048,
  425. 4096, 8192, 16384, 32768 };
  426. int scale_needed, scale, minscale = INT_MAX;
  427. int i, j;
  428. scale_needed = clkrate / speed_hz;
  429. if (clkrate % speed_hz)
  430. scale_needed++;
  431. for (i = 0; i < ARRAY_SIZE(brs); i++)
  432. for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
  433. scale = brs[i] * pbr_tbl[j];
  434. if (scale >= scale_needed) {
  435. if (scale < minscale) {
  436. minscale = scale;
  437. *br = i;
  438. *pbr = j;
  439. }
  440. break;
  441. }
  442. }
  443. if (minscale == INT_MAX) {
  444. pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
  445. speed_hz, clkrate);
  446. *pbr = ARRAY_SIZE(pbr_tbl) - 1;
  447. *br = ARRAY_SIZE(brs) - 1;
  448. }
  449. }
  450. static void ns_delay_scale(char *psc, char *sc, int delay_ns,
  451. unsigned long clkrate)
  452. {
  453. int pscale_tbl[4] = {1, 3, 5, 7};
  454. int scale_needed, scale, minscale = INT_MAX;
  455. int i, j;
  456. u32 remainder;
  457. scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
  458. &remainder);
  459. if (remainder)
  460. scale_needed++;
  461. for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
  462. for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
  463. scale = pscale_tbl[i] * (2 << j);
  464. if (scale >= scale_needed) {
  465. if (scale < minscale) {
  466. minscale = scale;
  467. *psc = i;
  468. *sc = j;
  469. }
  470. break;
  471. }
  472. }
  473. if (minscale == INT_MAX) {
  474. pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
  475. delay_ns, clkrate);
  476. *psc = ARRAY_SIZE(pscale_tbl) - 1;
  477. *sc = SPI_CTAR_SCALE_BITS;
  478. }
  479. }
  480. static void fifo_write(struct fsl_dspi *dspi)
  481. {
  482. regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
  483. }
  484. static void cmd_fifo_write(struct fsl_dspi *dspi)
  485. {
  486. u16 cmd = dspi->tx_cmd;
  487. if (dspi->len > 0)
  488. cmd |= SPI_PUSHR_CMD_CONT;
  489. regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
  490. }
  491. static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
  492. {
  493. regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
  494. }
  495. static void dspi_tcfq_write(struct fsl_dspi *dspi)
  496. {
  497. /* Clear transfer count */
  498. dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
  499. if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
  500. /* Write two TX FIFO entries first, and then the corresponding
  501. * CMD FIFO entry.
  502. */
  503. u32 data = dspi_pop_tx(dspi);
  504. if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE(1)) {
  505. /* LSB */
  506. tx_fifo_write(dspi, data & 0xFFFF);
  507. tx_fifo_write(dspi, data >> 16);
  508. } else {
  509. /* MSB */
  510. tx_fifo_write(dspi, data >> 16);
  511. tx_fifo_write(dspi, data & 0xFFFF);
  512. }
  513. cmd_fifo_write(dspi);
  514. } else {
  515. /* Write one entry to both TX FIFO and CMD FIFO
  516. * simultaneously.
  517. */
  518. fifo_write(dspi);
  519. }
  520. }
  521. static u32 fifo_read(struct fsl_dspi *dspi)
  522. {
  523. u32 rxdata = 0;
  524. regmap_read(dspi->regmap, SPI_POPR, &rxdata);
  525. return rxdata;
  526. }
  527. static void dspi_tcfq_read(struct fsl_dspi *dspi)
  528. {
  529. dspi_push_rx(dspi, fifo_read(dspi));
  530. }
  531. static void dspi_eoq_write(struct fsl_dspi *dspi)
  532. {
  533. int fifo_size = DSPI_FIFO_SIZE;
  534. u16 xfer_cmd = dspi->tx_cmd;
  535. /* Fill TX FIFO with as many transfers as possible */
  536. while (dspi->len && fifo_size--) {
  537. dspi->tx_cmd = xfer_cmd;
  538. /* Request EOQF for last transfer in FIFO */
  539. if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
  540. dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
  541. /* Clear transfer count for first transfer in FIFO */
  542. if (fifo_size == (DSPI_FIFO_SIZE - 1))
  543. dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
  544. /* Write combined TX FIFO and CMD FIFO entry */
  545. fifo_write(dspi);
  546. }
  547. }
  548. static void dspi_eoq_read(struct fsl_dspi *dspi)
  549. {
  550. int fifo_size = DSPI_FIFO_SIZE;
  551. /* Read one FIFO entry at and push to rx buffer */
  552. while ((dspi->rx < dspi->rx_end) && fifo_size--)
  553. dspi_push_rx(dspi, fifo_read(dspi));
  554. }
  555. static int dspi_transfer_one_message(struct spi_master *master,
  556. struct spi_message *message)
  557. {
  558. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  559. struct spi_device *spi = message->spi;
  560. struct spi_transfer *transfer;
  561. int status = 0;
  562. enum dspi_trans_mode trans_mode;
  563. message->actual_length = 0;
  564. list_for_each_entry(transfer, &message->transfers, transfer_list) {
  565. dspi->cur_transfer = transfer;
  566. dspi->cur_msg = message;
  567. dspi->cur_chip = spi_get_ctldata(spi);
  568. /* Prepare command word for CMD FIFO */
  569. dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
  570. SPI_PUSHR_CMD_PCS(spi->chip_select);
  571. if (list_is_last(&dspi->cur_transfer->transfer_list,
  572. &dspi->cur_msg->transfers)) {
  573. /* Leave PCS activated after last transfer when
  574. * cs_change is set.
  575. */
  576. if (transfer->cs_change)
  577. dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
  578. } else {
  579. /* Keep PCS active between transfers in same message
  580. * when cs_change is not set, and de-activate PCS
  581. * between transfers in the same message when
  582. * cs_change is set.
  583. */
  584. if (!transfer->cs_change)
  585. dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
  586. }
  587. dspi->void_write_data = dspi->cur_chip->void_write_data;
  588. dspi->tx = transfer->tx_buf;
  589. dspi->rx = transfer->rx_buf;
  590. dspi->rx_end = dspi->rx + transfer->len;
  591. dspi->len = transfer->len;
  592. /* Validated transfer specific frame size (defaults applied) */
  593. dspi->bits_per_word = transfer->bits_per_word;
  594. if (transfer->bits_per_word <= 8)
  595. dspi->bytes_per_word = 1;
  596. else if (transfer->bits_per_word <= 16)
  597. dspi->bytes_per_word = 2;
  598. else
  599. dspi->bytes_per_word = 4;
  600. regmap_update_bits(dspi->regmap, SPI_MCR,
  601. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
  602. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
  603. regmap_write(dspi->regmap, SPI_CTAR(0),
  604. dspi->cur_chip->ctar_val |
  605. SPI_FRAME_BITS(transfer->bits_per_word));
  606. if (dspi->devtype_data->xspi_mode)
  607. regmap_write(dspi->regmap, SPI_CTARE(0),
  608. SPI_FRAME_EBITS(transfer->bits_per_word)
  609. | SPI_CTARE_DTCP(1));
  610. trans_mode = dspi->devtype_data->trans_mode;
  611. switch (trans_mode) {
  612. case DSPI_EOQ_MODE:
  613. regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
  614. dspi_eoq_write(dspi);
  615. break;
  616. case DSPI_TCFQ_MODE:
  617. regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
  618. dspi_tcfq_write(dspi);
  619. break;
  620. case DSPI_DMA_MODE:
  621. regmap_write(dspi->regmap, SPI_RSER,
  622. SPI_RSER_TFFFE | SPI_RSER_TFFFD |
  623. SPI_RSER_RFDFE | SPI_RSER_RFDFD);
  624. status = dspi_dma_xfer(dspi);
  625. break;
  626. default:
  627. dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
  628. trans_mode);
  629. status = -EINVAL;
  630. goto out;
  631. }
  632. if (trans_mode != DSPI_DMA_MODE) {
  633. if (wait_event_interruptible(dspi->waitq,
  634. dspi->waitflags))
  635. dev_err(&dspi->pdev->dev,
  636. "wait transfer complete fail!\n");
  637. dspi->waitflags = 0;
  638. }
  639. if (transfer->delay_usecs)
  640. udelay(transfer->delay_usecs);
  641. }
  642. out:
  643. message->status = status;
  644. spi_finalize_current_message(master);
  645. return status;
  646. }
  647. static int dspi_setup(struct spi_device *spi)
  648. {
  649. struct chip_data *chip;
  650. struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
  651. struct fsl_dspi_platform_data *pdata;
  652. u32 cs_sck_delay = 0, sck_cs_delay = 0;
  653. unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
  654. unsigned char pasc = 0, asc = 0;
  655. unsigned long clkrate;
  656. /* Only alloc on first setup */
  657. chip = spi_get_ctldata(spi);
  658. if (chip == NULL) {
  659. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  660. if (!chip)
  661. return -ENOMEM;
  662. }
  663. pdata = dev_get_platdata(&dspi->pdev->dev);
  664. if (!pdata) {
  665. of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
  666. &cs_sck_delay);
  667. of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
  668. &sck_cs_delay);
  669. } else {
  670. cs_sck_delay = pdata->cs_sck_delay;
  671. sck_cs_delay = pdata->sck_cs_delay;
  672. }
  673. chip->void_write_data = 0;
  674. clkrate = clk_get_rate(dspi->clk);
  675. hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
  676. /* Set PCS to SCK delay scale values */
  677. ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
  678. /* Set After SCK delay scale values */
  679. ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
  680. chip->ctar_val = SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
  681. | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
  682. | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
  683. | SPI_CTAR_PCSSCK(pcssck)
  684. | SPI_CTAR_CSSCK(cssck)
  685. | SPI_CTAR_PASC(pasc)
  686. | SPI_CTAR_ASC(asc)
  687. | SPI_CTAR_PBR(pbr)
  688. | SPI_CTAR_BR(br);
  689. spi_set_ctldata(spi, chip);
  690. return 0;
  691. }
  692. static void dspi_cleanup(struct spi_device *spi)
  693. {
  694. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  695. dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
  696. spi->master->bus_num, spi->chip_select);
  697. kfree(chip);
  698. }
  699. static irqreturn_t dspi_interrupt(int irq, void *dev_id)
  700. {
  701. struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
  702. struct spi_message *msg = dspi->cur_msg;
  703. enum dspi_trans_mode trans_mode;
  704. u32 spi_sr, spi_tcr;
  705. u16 spi_tcnt;
  706. regmap_read(dspi->regmap, SPI_SR, &spi_sr);
  707. regmap_write(dspi->regmap, SPI_SR, spi_sr);
  708. if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
  709. /* Get transfer counter (in number of SPI transfers). It was
  710. * reset to 0 when transfer(s) were started.
  711. */
  712. regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
  713. spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
  714. /* Update total number of bytes that were transferred */
  715. msg->actual_length += spi_tcnt * dspi->bytes_per_word;
  716. trans_mode = dspi->devtype_data->trans_mode;
  717. switch (trans_mode) {
  718. case DSPI_EOQ_MODE:
  719. dspi_eoq_read(dspi);
  720. break;
  721. case DSPI_TCFQ_MODE:
  722. dspi_tcfq_read(dspi);
  723. break;
  724. default:
  725. dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
  726. trans_mode);
  727. return IRQ_HANDLED;
  728. }
  729. if (!dspi->len) {
  730. dspi->waitflags = 1;
  731. wake_up_interruptible(&dspi->waitq);
  732. } else {
  733. switch (trans_mode) {
  734. case DSPI_EOQ_MODE:
  735. dspi_eoq_write(dspi);
  736. break;
  737. case DSPI_TCFQ_MODE:
  738. dspi_tcfq_write(dspi);
  739. break;
  740. default:
  741. dev_err(&dspi->pdev->dev,
  742. "unsupported trans_mode %u\n",
  743. trans_mode);
  744. }
  745. }
  746. return IRQ_HANDLED;
  747. }
  748. return IRQ_NONE;
  749. }
  750. static const struct of_device_id fsl_dspi_dt_ids[] = {
  751. { .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
  752. { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
  753. { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
  754. { /* sentinel */ }
  755. };
  756. MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
  757. #ifdef CONFIG_PM_SLEEP
  758. static int dspi_suspend(struct device *dev)
  759. {
  760. struct spi_master *master = dev_get_drvdata(dev);
  761. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  762. if (dspi->irq)
  763. disable_irq(dspi->irq);
  764. spi_master_suspend(master);
  765. clk_disable_unprepare(dspi->clk);
  766. pinctrl_pm_select_sleep_state(dev);
  767. return 0;
  768. }
  769. static int dspi_resume(struct device *dev)
  770. {
  771. struct spi_master *master = dev_get_drvdata(dev);
  772. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  773. int ret;
  774. pinctrl_pm_select_default_state(dev);
  775. ret = clk_prepare_enable(dspi->clk);
  776. if (ret)
  777. return ret;
  778. spi_master_resume(master);
  779. if (dspi->irq)
  780. enable_irq(dspi->irq);
  781. return 0;
  782. }
  783. #endif /* CONFIG_PM_SLEEP */
  784. static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
  785. static const struct regmap_range dspi_volatile_ranges[] = {
  786. regmap_reg_range(SPI_MCR, SPI_TCR),
  787. regmap_reg_range(SPI_SR, SPI_SR),
  788. regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
  789. };
  790. static const struct regmap_access_table dspi_volatile_table = {
  791. .yes_ranges = dspi_volatile_ranges,
  792. .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
  793. };
  794. static const struct regmap_config dspi_regmap_config = {
  795. .reg_bits = 32,
  796. .val_bits = 32,
  797. .reg_stride = 4,
  798. .max_register = 0x88,
  799. .volatile_table = &dspi_volatile_table,
  800. };
  801. static const struct regmap_range dspi_xspi_volatile_ranges[] = {
  802. regmap_reg_range(SPI_MCR, SPI_TCR),
  803. regmap_reg_range(SPI_SR, SPI_SR),
  804. regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
  805. regmap_reg_range(SPI_SREX, SPI_SREX),
  806. };
  807. static const struct regmap_access_table dspi_xspi_volatile_table = {
  808. .yes_ranges = dspi_xspi_volatile_ranges,
  809. .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
  810. };
  811. static const struct regmap_config dspi_xspi_regmap_config[] = {
  812. {
  813. .reg_bits = 32,
  814. .val_bits = 32,
  815. .reg_stride = 4,
  816. .max_register = 0x13c,
  817. .volatile_table = &dspi_xspi_volatile_table,
  818. },
  819. {
  820. .name = "pushr",
  821. .reg_bits = 16,
  822. .val_bits = 16,
  823. .reg_stride = 2,
  824. .max_register = 0x2,
  825. },
  826. };
  827. static void dspi_init(struct fsl_dspi *dspi)
  828. {
  829. regmap_write(dspi->regmap, SPI_MCR, SPI_MCR_MASTER | SPI_MCR_PCSIS |
  830. (dspi->devtype_data->xspi_mode ? SPI_MCR_XSPI : 0));
  831. regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
  832. if (dspi->devtype_data->xspi_mode)
  833. regmap_write(dspi->regmap, SPI_CTARE(0),
  834. SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
  835. }
  836. static int dspi_probe(struct platform_device *pdev)
  837. {
  838. struct device_node *np = pdev->dev.of_node;
  839. struct spi_master *master;
  840. struct fsl_dspi *dspi;
  841. struct resource *res;
  842. const struct regmap_config *regmap_config;
  843. void __iomem *base;
  844. struct fsl_dspi_platform_data *pdata;
  845. int ret = 0, cs_num, bus_num;
  846. master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
  847. if (!master)
  848. return -ENOMEM;
  849. dspi = spi_master_get_devdata(master);
  850. dspi->pdev = pdev;
  851. dspi->master = master;
  852. master->transfer = NULL;
  853. master->setup = dspi_setup;
  854. master->transfer_one_message = dspi_transfer_one_message;
  855. master->dev.of_node = pdev->dev.of_node;
  856. master->cleanup = dspi_cleanup;
  857. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  858. pdata = dev_get_platdata(&pdev->dev);
  859. if (pdata) {
  860. master->num_chipselect = pdata->cs_num;
  861. master->bus_num = pdata->bus_num;
  862. dspi->devtype_data = &coldfire_data;
  863. } else {
  864. ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
  865. if (ret < 0) {
  866. dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
  867. goto out_master_put;
  868. }
  869. master->num_chipselect = cs_num;
  870. ret = of_property_read_u32(np, "bus-num", &bus_num);
  871. if (ret < 0) {
  872. dev_err(&pdev->dev, "can't get bus-num\n");
  873. goto out_master_put;
  874. }
  875. master->bus_num = bus_num;
  876. dspi->devtype_data = of_device_get_match_data(&pdev->dev);
  877. if (!dspi->devtype_data) {
  878. dev_err(&pdev->dev, "can't get devtype_data\n");
  879. ret = -EFAULT;
  880. goto out_master_put;
  881. }
  882. }
  883. if (dspi->devtype_data->xspi_mode)
  884. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  885. else
  886. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  887. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  888. base = devm_ioremap_resource(&pdev->dev, res);
  889. if (IS_ERR(base)) {
  890. ret = PTR_ERR(base);
  891. goto out_master_put;
  892. }
  893. if (dspi->devtype_data->xspi_mode)
  894. regmap_config = &dspi_xspi_regmap_config[0];
  895. else
  896. regmap_config = &dspi_regmap_config;
  897. dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
  898. if (IS_ERR(dspi->regmap)) {
  899. dev_err(&pdev->dev, "failed to init regmap: %ld\n",
  900. PTR_ERR(dspi->regmap));
  901. ret = PTR_ERR(dspi->regmap);
  902. goto out_master_put;
  903. }
  904. if (dspi->devtype_data->xspi_mode) {
  905. dspi->regmap_pushr = devm_regmap_init_mmio(
  906. &pdev->dev, base + SPI_PUSHR,
  907. &dspi_xspi_regmap_config[1]);
  908. if (IS_ERR(dspi->regmap_pushr)) {
  909. dev_err(&pdev->dev,
  910. "failed to init pushr regmap: %ld\n",
  911. PTR_ERR(dspi->regmap_pushr));
  912. ret = PTR_ERR(dspi->regmap_pushr);
  913. goto out_master_put;
  914. }
  915. }
  916. dspi->clk = devm_clk_get(&pdev->dev, "dspi");
  917. if (IS_ERR(dspi->clk)) {
  918. ret = PTR_ERR(dspi->clk);
  919. dev_err(&pdev->dev, "unable to get clock\n");
  920. goto out_master_put;
  921. }
  922. ret = clk_prepare_enable(dspi->clk);
  923. if (ret)
  924. goto out_master_put;
  925. dspi_init(dspi);
  926. dspi->irq = platform_get_irq(pdev, 0);
  927. if (dspi->irq < 0) {
  928. dev_err(&pdev->dev, "can't get platform irq\n");
  929. ret = dspi->irq;
  930. goto out_clk_put;
  931. }
  932. ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
  933. IRQF_SHARED, pdev->name, dspi);
  934. if (ret < 0) {
  935. dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
  936. goto out_clk_put;
  937. }
  938. if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
  939. ret = dspi_request_dma(dspi, res->start);
  940. if (ret < 0) {
  941. dev_err(&pdev->dev, "can't get dma channels\n");
  942. goto out_free_irq;
  943. }
  944. }
  945. master->max_speed_hz =
  946. clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
  947. init_waitqueue_head(&dspi->waitq);
  948. platform_set_drvdata(pdev, master);
  949. ret = spi_register_master(master);
  950. if (ret != 0) {
  951. dev_err(&pdev->dev, "Problem registering DSPI master\n");
  952. goto out_free_irq;
  953. }
  954. return ret;
  955. out_free_irq:
  956. if (dspi->irq)
  957. free_irq(dspi->irq, dspi);
  958. out_clk_put:
  959. clk_disable_unprepare(dspi->clk);
  960. out_master_put:
  961. spi_master_put(master);
  962. return ret;
  963. }
  964. static int dspi_remove(struct platform_device *pdev)
  965. {
  966. struct spi_master *master = platform_get_drvdata(pdev);
  967. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  968. /* Disconnect from the SPI framework */
  969. spi_unregister_controller(dspi->master);
  970. /* Disable RX and TX */
  971. regmap_update_bits(dspi->regmap, SPI_MCR,
  972. SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
  973. SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
  974. /* Stop Running */
  975. regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
  976. dspi_release_dma(dspi);
  977. if (dspi->irq)
  978. free_irq(dspi->irq, dspi);
  979. clk_disable_unprepare(dspi->clk);
  980. return 0;
  981. }
  982. static void dspi_shutdown(struct platform_device *pdev)
  983. {
  984. dspi_remove(pdev);
  985. }
  986. static struct platform_driver fsl_dspi_driver = {
  987. .driver.name = DRIVER_NAME,
  988. .driver.of_match_table = fsl_dspi_dt_ids,
  989. .driver.owner = THIS_MODULE,
  990. .driver.pm = &dspi_pm,
  991. .probe = dspi_probe,
  992. .remove = dspi_remove,
  993. .shutdown = dspi_shutdown,
  994. };
  995. module_platform_driver(fsl_dspi_driver);
  996. MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
  997. MODULE_LICENSE("GPL");
  998. MODULE_ALIAS("platform:" DRIVER_NAME);