123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793 |
- /*
- * mm/percpu.c - percpu memory allocator
- *
- * Copyright (C) 2009 SUSE Linux Products GmbH
- * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
- *
- * Copyright (C) 2017 Facebook Inc.
- * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
- *
- * This file is released under the GPLv2 license.
- *
- * The percpu allocator handles both static and dynamic areas. Percpu
- * areas are allocated in chunks which are divided into units. There is
- * a 1-to-1 mapping for units to possible cpus. These units are grouped
- * based on NUMA properties of the machine.
- *
- * c0 c1 c2
- * ------------------- ------------------- ------------
- * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
- * ------------------- ...... ------------------- .... ------------
- *
- * Allocation is done by offsets into a unit's address space. Ie., an
- * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
- * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
- * and even sparse. Access is handled by configuring percpu base
- * registers according to the cpu to unit mappings and offsetting the
- * base address using pcpu_unit_size.
- *
- * There is special consideration for the first chunk which must handle
- * the static percpu variables in the kernel image as allocation services
- * are not online yet. In short, the first chunk is structured like so:
- *
- * <Static | [Reserved] | Dynamic>
- *
- * The static data is copied from the original section managed by the
- * linker. The reserved section, if non-zero, primarily manages static
- * percpu variables from kernel modules. Finally, the dynamic section
- * takes care of normal allocations.
- *
- * The allocator organizes chunks into lists according to free size and
- * tries to allocate from the fullest chunk first. Each chunk is managed
- * by a bitmap with metadata blocks. The allocation map is updated on
- * every allocation and free to reflect the current state while the boundary
- * map is only updated on allocation. Each metadata block contains
- * information to help mitigate the need to iterate over large portions
- * of the bitmap. The reverse mapping from page to chunk is stored in
- * the page's index. Lastly, units are lazily backed and grow in unison.
- *
- * There is a unique conversion that goes on here between bytes and bits.
- * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
- * tracks the number of pages it is responsible for in nr_pages. Helper
- * functions are used to convert from between the bytes, bits, and blocks.
- * All hints are managed in bits unless explicitly stated.
- *
- * To use this allocator, arch code should do the following:
- *
- * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
- * regular address to percpu pointer and back if they need to be
- * different from the default
- *
- * - use pcpu_setup_first_chunk() during percpu area initialization to
- * setup the first chunk containing the kernel static percpu area
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/bitmap.h>
- #include <linux/bootmem.h>
- #include <linux/err.h>
- #include <linux/lcm.h>
- #include <linux/list.h>
- #include <linux/log2.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/mutex.h>
- #include <linux/percpu.h>
- #include <linux/pfn.h>
- #include <linux/slab.h>
- #include <linux/spinlock.h>
- #include <linux/vmalloc.h>
- #include <linux/workqueue.h>
- #include <linux/kmemleak.h>
- #include <linux/sched.h>
- #include <asm/cacheflush.h>
- #include <asm/sections.h>
- #include <asm/tlbflush.h>
- #include <asm/io.h>
- #define CREATE_TRACE_POINTS
- #include <trace/events/percpu.h>
- #include "percpu-internal.h"
- /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
- #define PCPU_SLOT_BASE_SHIFT 5
- #define PCPU_EMPTY_POP_PAGES_LOW 2
- #define PCPU_EMPTY_POP_PAGES_HIGH 4
- #ifdef CONFIG_SMP
- /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
- #ifndef __addr_to_pcpu_ptr
- #define __addr_to_pcpu_ptr(addr) \
- (void __percpu *)((unsigned long)(addr) - \
- (unsigned long)pcpu_base_addr + \
- (unsigned long)__per_cpu_start)
- #endif
- #ifndef __pcpu_ptr_to_addr
- #define __pcpu_ptr_to_addr(ptr) \
- (void __force *)((unsigned long)(ptr) + \
- (unsigned long)pcpu_base_addr - \
- (unsigned long)__per_cpu_start)
- #endif
- #else /* CONFIG_SMP */
- /* on UP, it's always identity mapped */
- #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
- #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
- #endif /* CONFIG_SMP */
- static int pcpu_unit_pages __ro_after_init;
- static int pcpu_unit_size __ro_after_init;
- static int pcpu_nr_units __ro_after_init;
- static int pcpu_atom_size __ro_after_init;
- int pcpu_nr_slots __ro_after_init;
- static size_t pcpu_chunk_struct_size __ro_after_init;
- /* cpus with the lowest and highest unit addresses */
- static unsigned int pcpu_low_unit_cpu __ro_after_init;
- static unsigned int pcpu_high_unit_cpu __ro_after_init;
- /* the address of the first chunk which starts with the kernel static area */
- void *pcpu_base_addr __ro_after_init;
- EXPORT_SYMBOL_GPL(pcpu_base_addr);
- static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
- const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
- /* group information, used for vm allocation */
- static int pcpu_nr_groups __ro_after_init;
- static const unsigned long *pcpu_group_offsets __ro_after_init;
- static const size_t *pcpu_group_sizes __ro_after_init;
- /*
- * The first chunk which always exists. Note that unlike other
- * chunks, this one can be allocated and mapped in several different
- * ways and thus often doesn't live in the vmalloc area.
- */
- struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
- /*
- * Optional reserved chunk. This chunk reserves part of the first
- * chunk and serves it for reserved allocations. When the reserved
- * region doesn't exist, the following variable is NULL.
- */
- struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
- DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
- static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
- struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
- /* chunks which need their map areas extended, protected by pcpu_lock */
- static LIST_HEAD(pcpu_map_extend_chunks);
- /*
- * The number of empty populated pages, protected by pcpu_lock. The
- * reserved chunk doesn't contribute to the count.
- */
- int pcpu_nr_empty_pop_pages;
- /*
- * The number of populated pages in use by the allocator, protected by
- * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
- * allocated/deallocated, it is allocated/deallocated in all units of a chunk
- * and increments/decrements this count by 1).
- */
- static unsigned long pcpu_nr_populated;
- /*
- * Balance work is used to populate or destroy chunks asynchronously. We
- * try to keep the number of populated free pages between
- * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
- * empty chunk.
- */
- static void pcpu_balance_workfn(struct work_struct *work);
- static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
- static bool pcpu_async_enabled __read_mostly;
- static bool pcpu_atomic_alloc_failed;
- static void pcpu_schedule_balance_work(void)
- {
- if (pcpu_async_enabled)
- schedule_work(&pcpu_balance_work);
- }
- /**
- * pcpu_addr_in_chunk - check if the address is served from this chunk
- * @chunk: chunk of interest
- * @addr: percpu address
- *
- * RETURNS:
- * True if the address is served from this chunk.
- */
- static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
- {
- void *start_addr, *end_addr;
- if (!chunk)
- return false;
- start_addr = chunk->base_addr + chunk->start_offset;
- end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
- chunk->end_offset;
- return addr >= start_addr && addr < end_addr;
- }
- static int __pcpu_size_to_slot(int size)
- {
- int highbit = fls(size); /* size is in bytes */
- return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
- }
- static int pcpu_size_to_slot(int size)
- {
- if (size == pcpu_unit_size)
- return pcpu_nr_slots - 1;
- return __pcpu_size_to_slot(size);
- }
- static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
- {
- if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
- return 0;
- return pcpu_size_to_slot(chunk->free_bytes);
- }
- /* set the pointer to a chunk in a page struct */
- static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
- {
- page->index = (unsigned long)pcpu;
- }
- /* obtain pointer to a chunk from a page struct */
- static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
- {
- return (struct pcpu_chunk *)page->index;
- }
- static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
- {
- return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
- }
- static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
- {
- return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
- }
- static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
- {
- return (unsigned long)chunk->base_addr +
- pcpu_unit_page_offset(cpu, page_idx);
- }
- static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
- {
- *rs = find_next_zero_bit(bitmap, end, *rs);
- *re = find_next_bit(bitmap, end, *rs + 1);
- }
- static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
- {
- *rs = find_next_bit(bitmap, end, *rs);
- *re = find_next_zero_bit(bitmap, end, *rs + 1);
- }
- /*
- * Bitmap region iterators. Iterates over the bitmap between
- * [@start, @end) in @chunk. @rs and @re should be integer variables
- * and will be set to start and end index of the current free region.
- */
- #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
- for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
- (rs) < (re); \
- (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
- #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
- for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
- (rs) < (re); \
- (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
- /*
- * The following are helper functions to help access bitmaps and convert
- * between bitmap offsets to address offsets.
- */
- static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
- {
- return chunk->alloc_map +
- (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
- }
- static unsigned long pcpu_off_to_block_index(int off)
- {
- return off / PCPU_BITMAP_BLOCK_BITS;
- }
- static unsigned long pcpu_off_to_block_off(int off)
- {
- return off & (PCPU_BITMAP_BLOCK_BITS - 1);
- }
- static unsigned long pcpu_block_off_to_off(int index, int off)
- {
- return index * PCPU_BITMAP_BLOCK_BITS + off;
- }
- /**
- * pcpu_next_md_free_region - finds the next hint free area
- * @chunk: chunk of interest
- * @bit_off: chunk offset
- * @bits: size of free area
- *
- * Helper function for pcpu_for_each_md_free_region. It checks
- * block->contig_hint and performs aggregation across blocks to find the
- * next hint. It modifies bit_off and bits in-place to be consumed in the
- * loop.
- */
- static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
- int *bits)
- {
- int i = pcpu_off_to_block_index(*bit_off);
- int block_off = pcpu_off_to_block_off(*bit_off);
- struct pcpu_block_md *block;
- *bits = 0;
- for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
- block++, i++) {
- /* handles contig area across blocks */
- if (*bits) {
- *bits += block->left_free;
- if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
- continue;
- return;
- }
- /*
- * This checks three things. First is there a contig_hint to
- * check. Second, have we checked this hint before by
- * comparing the block_off. Third, is this the same as the
- * right contig hint. In the last case, it spills over into
- * the next block and should be handled by the contig area
- * across blocks code.
- */
- *bits = block->contig_hint;
- if (*bits && block->contig_hint_start >= block_off &&
- *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
- *bit_off = pcpu_block_off_to_off(i,
- block->contig_hint_start);
- return;
- }
- /* reset to satisfy the second predicate above */
- block_off = 0;
- *bits = block->right_free;
- *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
- }
- }
- /**
- * pcpu_next_fit_region - finds fit areas for a given allocation request
- * @chunk: chunk of interest
- * @alloc_bits: size of allocation
- * @align: alignment of area (max PAGE_SIZE)
- * @bit_off: chunk offset
- * @bits: size of free area
- *
- * Finds the next free region that is viable for use with a given size and
- * alignment. This only returns if there is a valid area to be used for this
- * allocation. block->first_free is returned if the allocation request fits
- * within the block to see if the request can be fulfilled prior to the contig
- * hint.
- */
- static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
- int align, int *bit_off, int *bits)
- {
- int i = pcpu_off_to_block_index(*bit_off);
- int block_off = pcpu_off_to_block_off(*bit_off);
- struct pcpu_block_md *block;
- *bits = 0;
- for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
- block++, i++) {
- /* handles contig area across blocks */
- if (*bits) {
- *bits += block->left_free;
- if (*bits >= alloc_bits)
- return;
- if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
- continue;
- }
- /* check block->contig_hint */
- *bits = ALIGN(block->contig_hint_start, align) -
- block->contig_hint_start;
- /*
- * This uses the block offset to determine if this has been
- * checked in the prior iteration.
- */
- if (block->contig_hint &&
- block->contig_hint_start >= block_off &&
- block->contig_hint >= *bits + alloc_bits) {
- *bits += alloc_bits + block->contig_hint_start -
- block->first_free;
- *bit_off = pcpu_block_off_to_off(i, block->first_free);
- return;
- }
- /* reset to satisfy the second predicate above */
- block_off = 0;
- *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
- align);
- *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
- *bit_off = pcpu_block_off_to_off(i, *bit_off);
- if (*bits >= alloc_bits)
- return;
- }
- /* no valid offsets were found - fail condition */
- *bit_off = pcpu_chunk_map_bits(chunk);
- }
- /*
- * Metadata free area iterators. These perform aggregation of free areas
- * based on the metadata blocks and return the offset @bit_off and size in
- * bits of the free area @bits. pcpu_for_each_fit_region only returns when
- * a fit is found for the allocation request.
- */
- #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
- for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
- (bit_off) < pcpu_chunk_map_bits((chunk)); \
- (bit_off) += (bits) + 1, \
- pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
- #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
- for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
- &(bits)); \
- (bit_off) < pcpu_chunk_map_bits((chunk)); \
- (bit_off) += (bits), \
- pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
- &(bits)))
- /**
- * pcpu_mem_zalloc - allocate memory
- * @size: bytes to allocate
- * @gfp: allocation flags
- *
- * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
- * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
- * This is to facilitate passing through whitelisted flags. The
- * returned memory is always zeroed.
- *
- * RETURNS:
- * Pointer to the allocated area on success, NULL on failure.
- */
- static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
- {
- if (WARN_ON_ONCE(!slab_is_available()))
- return NULL;
- if (size <= PAGE_SIZE)
- return kzalloc(size, gfp);
- else
- return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
- }
- /**
- * pcpu_mem_free - free memory
- * @ptr: memory to free
- *
- * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
- */
- static void pcpu_mem_free(void *ptr)
- {
- kvfree(ptr);
- }
- /**
- * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
- * @chunk: chunk of interest
- * @oslot: the previous slot it was on
- *
- * This function is called after an allocation or free changed @chunk.
- * New slot according to the changed state is determined and @chunk is
- * moved to the slot. Note that the reserved chunk is never put on
- * chunk slots.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
- {
- int nslot = pcpu_chunk_slot(chunk);
- if (chunk != pcpu_reserved_chunk && oslot != nslot) {
- if (oslot < nslot)
- list_move(&chunk->list, &pcpu_slot[nslot]);
- else
- list_move_tail(&chunk->list, &pcpu_slot[nslot]);
- }
- }
- /**
- * pcpu_cnt_pop_pages- counts populated backing pages in range
- * @chunk: chunk of interest
- * @bit_off: start offset
- * @bits: size of area to check
- *
- * Calculates the number of populated pages in the region
- * [page_start, page_end). This keeps track of how many empty populated
- * pages are available and decide if async work should be scheduled.
- *
- * RETURNS:
- * The nr of populated pages.
- */
- static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
- int bits)
- {
- int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
- int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
- if (page_start >= page_end)
- return 0;
- /*
- * bitmap_weight counts the number of bits set in a bitmap up to
- * the specified number of bits. This is counting the populated
- * pages up to page_end and then subtracting the populated pages
- * up to page_start to count the populated pages in
- * [page_start, page_end).
- */
- return bitmap_weight(chunk->populated, page_end) -
- bitmap_weight(chunk->populated, page_start);
- }
- /**
- * pcpu_chunk_update - updates the chunk metadata given a free area
- * @chunk: chunk of interest
- * @bit_off: chunk offset
- * @bits: size of free area
- *
- * This updates the chunk's contig hint and starting offset given a free area.
- * Choose the best starting offset if the contig hint is equal.
- */
- static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
- {
- if (bits > chunk->contig_bits) {
- chunk->contig_bits_start = bit_off;
- chunk->contig_bits = bits;
- } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
- (!bit_off ||
- __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
- /* use the start with the best alignment */
- chunk->contig_bits_start = bit_off;
- }
- }
- /**
- * pcpu_chunk_refresh_hint - updates metadata about a chunk
- * @chunk: chunk of interest
- *
- * Iterates over the metadata blocks to find the largest contig area.
- * It also counts the populated pages and uses the delta to update the
- * global count.
- *
- * Updates:
- * chunk->contig_bits
- * chunk->contig_bits_start
- * nr_empty_pop_pages (chunk and global)
- */
- static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
- {
- int bit_off, bits, nr_empty_pop_pages;
- /* clear metadata */
- chunk->contig_bits = 0;
- bit_off = chunk->first_bit;
- bits = nr_empty_pop_pages = 0;
- pcpu_for_each_md_free_region(chunk, bit_off, bits) {
- pcpu_chunk_update(chunk, bit_off, bits);
- nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
- }
- /*
- * Keep track of nr_empty_pop_pages.
- *
- * The chunk maintains the previous number of free pages it held,
- * so the delta is used to update the global counter. The reserved
- * chunk is not part of the free page count as they are populated
- * at init and are special to serving reserved allocations.
- */
- if (chunk != pcpu_reserved_chunk)
- pcpu_nr_empty_pop_pages +=
- (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
- chunk->nr_empty_pop_pages = nr_empty_pop_pages;
- }
- /**
- * pcpu_block_update - updates a block given a free area
- * @block: block of interest
- * @start: start offset in block
- * @end: end offset in block
- *
- * Updates a block given a known free area. The region [start, end) is
- * expected to be the entirety of the free area within a block. Chooses
- * the best starting offset if the contig hints are equal.
- */
- static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
- {
- int contig = end - start;
- block->first_free = min(block->first_free, start);
- if (start == 0)
- block->left_free = contig;
- if (end == PCPU_BITMAP_BLOCK_BITS)
- block->right_free = contig;
- if (contig > block->contig_hint) {
- block->contig_hint_start = start;
- block->contig_hint = contig;
- } else if (block->contig_hint_start && contig == block->contig_hint &&
- (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
- /* use the start with the best alignment */
- block->contig_hint_start = start;
- }
- }
- /**
- * pcpu_block_refresh_hint
- * @chunk: chunk of interest
- * @index: index of the metadata block
- *
- * Scans over the block beginning at first_free and updates the block
- * metadata accordingly.
- */
- static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
- {
- struct pcpu_block_md *block = chunk->md_blocks + index;
- unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
- int rs, re; /* region start, region end */
- /* clear hints */
- block->contig_hint = 0;
- block->left_free = block->right_free = 0;
- /* iterate over free areas and update the contig hints */
- pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
- PCPU_BITMAP_BLOCK_BITS) {
- pcpu_block_update(block, rs, re);
- }
- }
- /**
- * pcpu_block_update_hint_alloc - update hint on allocation path
- * @chunk: chunk of interest
- * @bit_off: chunk offset
- * @bits: size of request
- *
- * Updates metadata for the allocation path. The metadata only has to be
- * refreshed by a full scan iff the chunk's contig hint is broken. Block level
- * scans are required if the block's contig hint is broken.
- */
- static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
- int bits)
- {
- struct pcpu_block_md *s_block, *e_block, *block;
- int s_index, e_index; /* block indexes of the freed allocation */
- int s_off, e_off; /* block offsets of the freed allocation */
- /*
- * Calculate per block offsets.
- * The calculation uses an inclusive range, but the resulting offsets
- * are [start, end). e_index always points to the last block in the
- * range.
- */
- s_index = pcpu_off_to_block_index(bit_off);
- e_index = pcpu_off_to_block_index(bit_off + bits - 1);
- s_off = pcpu_off_to_block_off(bit_off);
- e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
- s_block = chunk->md_blocks + s_index;
- e_block = chunk->md_blocks + e_index;
- /*
- * Update s_block.
- * block->first_free must be updated if the allocation takes its place.
- * If the allocation breaks the contig_hint, a scan is required to
- * restore this hint.
- */
- if (s_off == s_block->first_free)
- s_block->first_free = find_next_zero_bit(
- pcpu_index_alloc_map(chunk, s_index),
- PCPU_BITMAP_BLOCK_BITS,
- s_off + bits);
- if (s_off >= s_block->contig_hint_start &&
- s_off < s_block->contig_hint_start + s_block->contig_hint) {
- /* block contig hint is broken - scan to fix it */
- pcpu_block_refresh_hint(chunk, s_index);
- } else {
- /* update left and right contig manually */
- s_block->left_free = min(s_block->left_free, s_off);
- if (s_index == e_index)
- s_block->right_free = min_t(int, s_block->right_free,
- PCPU_BITMAP_BLOCK_BITS - e_off);
- else
- s_block->right_free = 0;
- }
- /*
- * Update e_block.
- */
- if (s_index != e_index) {
- /*
- * When the allocation is across blocks, the end is along
- * the left part of the e_block.
- */
- e_block->first_free = find_next_zero_bit(
- pcpu_index_alloc_map(chunk, e_index),
- PCPU_BITMAP_BLOCK_BITS, e_off);
- if (e_off == PCPU_BITMAP_BLOCK_BITS) {
- /* reset the block */
- e_block++;
- } else {
- if (e_off > e_block->contig_hint_start) {
- /* contig hint is broken - scan to fix it */
- pcpu_block_refresh_hint(chunk, e_index);
- } else {
- e_block->left_free = 0;
- e_block->right_free =
- min_t(int, e_block->right_free,
- PCPU_BITMAP_BLOCK_BITS - e_off);
- }
- }
- /* update in-between md_blocks */
- for (block = s_block + 1; block < e_block; block++) {
- block->contig_hint = 0;
- block->left_free = 0;
- block->right_free = 0;
- }
- }
- /*
- * The only time a full chunk scan is required is if the chunk
- * contig hint is broken. Otherwise, it means a smaller space
- * was used and therefore the chunk contig hint is still correct.
- */
- if (bit_off >= chunk->contig_bits_start &&
- bit_off < chunk->contig_bits_start + chunk->contig_bits)
- pcpu_chunk_refresh_hint(chunk);
- }
- /**
- * pcpu_block_update_hint_free - updates the block hints on the free path
- * @chunk: chunk of interest
- * @bit_off: chunk offset
- * @bits: size of request
- *
- * Updates metadata for the allocation path. This avoids a blind block
- * refresh by making use of the block contig hints. If this fails, it scans
- * forward and backward to determine the extent of the free area. This is
- * capped at the boundary of blocks.
- *
- * A chunk update is triggered if a page becomes free, a block becomes free,
- * or the free spans across blocks. This tradeoff is to minimize iterating
- * over the block metadata to update chunk->contig_bits. chunk->contig_bits
- * may be off by up to a page, but it will never be more than the available
- * space. If the contig hint is contained in one block, it will be accurate.
- */
- static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
- int bits)
- {
- struct pcpu_block_md *s_block, *e_block, *block;
- int s_index, e_index; /* block indexes of the freed allocation */
- int s_off, e_off; /* block offsets of the freed allocation */
- int start, end; /* start and end of the whole free area */
- /*
- * Calculate per block offsets.
- * The calculation uses an inclusive range, but the resulting offsets
- * are [start, end). e_index always points to the last block in the
- * range.
- */
- s_index = pcpu_off_to_block_index(bit_off);
- e_index = pcpu_off_to_block_index(bit_off + bits - 1);
- s_off = pcpu_off_to_block_off(bit_off);
- e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
- s_block = chunk->md_blocks + s_index;
- e_block = chunk->md_blocks + e_index;
- /*
- * Check if the freed area aligns with the block->contig_hint.
- * If it does, then the scan to find the beginning/end of the
- * larger free area can be avoided.
- *
- * start and end refer to beginning and end of the free area
- * within each their respective blocks. This is not necessarily
- * the entire free area as it may span blocks past the beginning
- * or end of the block.
- */
- start = s_off;
- if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
- start = s_block->contig_hint_start;
- } else {
- /*
- * Scan backwards to find the extent of the free area.
- * find_last_bit returns the starting bit, so if the start bit
- * is returned, that means there was no last bit and the
- * remainder of the chunk is free.
- */
- int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
- start);
- start = (start == l_bit) ? 0 : l_bit + 1;
- }
- end = e_off;
- if (e_off == e_block->contig_hint_start)
- end = e_block->contig_hint_start + e_block->contig_hint;
- else
- end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
- PCPU_BITMAP_BLOCK_BITS, end);
- /* update s_block */
- e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
- pcpu_block_update(s_block, start, e_off);
- /* freeing in the same block */
- if (s_index != e_index) {
- /* update e_block */
- pcpu_block_update(e_block, 0, end);
- /* reset md_blocks in the middle */
- for (block = s_block + 1; block < e_block; block++) {
- block->first_free = 0;
- block->contig_hint_start = 0;
- block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
- block->left_free = PCPU_BITMAP_BLOCK_BITS;
- block->right_free = PCPU_BITMAP_BLOCK_BITS;
- }
- }
- /*
- * Refresh chunk metadata when the free makes a page free, a block
- * free, or spans across blocks. The contig hint may be off by up to
- * a page, but if the hint is contained in a block, it will be accurate
- * with the else condition below.
- */
- if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
- ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
- s_index != e_index)
- pcpu_chunk_refresh_hint(chunk);
- else
- pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
- s_block->contig_hint);
- }
- /**
- * pcpu_is_populated - determines if the region is populated
- * @chunk: chunk of interest
- * @bit_off: chunk offset
- * @bits: size of area
- * @next_off: return value for the next offset to start searching
- *
- * For atomic allocations, check if the backing pages are populated.
- *
- * RETURNS:
- * Bool if the backing pages are populated.
- * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
- */
- static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
- int *next_off)
- {
- int page_start, page_end, rs, re;
- page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
- page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
- rs = page_start;
- pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
- if (rs >= page_end)
- return true;
- *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
- return false;
- }
- /**
- * pcpu_find_block_fit - finds the block index to start searching
- * @chunk: chunk of interest
- * @alloc_bits: size of request in allocation units
- * @align: alignment of area (max PAGE_SIZE bytes)
- * @pop_only: use populated regions only
- *
- * Given a chunk and an allocation spec, find the offset to begin searching
- * for a free region. This iterates over the bitmap metadata blocks to
- * find an offset that will be guaranteed to fit the requirements. It is
- * not quite first fit as if the allocation does not fit in the contig hint
- * of a block or chunk, it is skipped. This errs on the side of caution
- * to prevent excess iteration. Poor alignment can cause the allocator to
- * skip over blocks and chunks that have valid free areas.
- *
- * RETURNS:
- * The offset in the bitmap to begin searching.
- * -1 if no offset is found.
- */
- static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
- size_t align, bool pop_only)
- {
- int bit_off, bits, next_off;
- /*
- * Check to see if the allocation can fit in the chunk's contig hint.
- * This is an optimization to prevent scanning by assuming if it
- * cannot fit in the global hint, there is memory pressure and creating
- * a new chunk would happen soon.
- */
- bit_off = ALIGN(chunk->contig_bits_start, align) -
- chunk->contig_bits_start;
- if (bit_off + alloc_bits > chunk->contig_bits)
- return -1;
- bit_off = chunk->first_bit;
- bits = 0;
- pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
- if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
- &next_off))
- break;
- bit_off = next_off;
- bits = 0;
- }
- if (bit_off == pcpu_chunk_map_bits(chunk))
- return -1;
- return bit_off;
- }
- /**
- * pcpu_alloc_area - allocates an area from a pcpu_chunk
- * @chunk: chunk of interest
- * @alloc_bits: size of request in allocation units
- * @align: alignment of area (max PAGE_SIZE)
- * @start: bit_off to start searching
- *
- * This function takes in a @start offset to begin searching to fit an
- * allocation of @alloc_bits with alignment @align. It needs to scan
- * the allocation map because if it fits within the block's contig hint,
- * @start will be block->first_free. This is an attempt to fill the
- * allocation prior to breaking the contig hint. The allocation and
- * boundary maps are updated accordingly if it confirms a valid
- * free area.
- *
- * RETURNS:
- * Allocated addr offset in @chunk on success.
- * -1 if no matching area is found.
- */
- static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
- size_t align, int start)
- {
- size_t align_mask = (align) ? (align - 1) : 0;
- int bit_off, end, oslot;
- lockdep_assert_held(&pcpu_lock);
- oslot = pcpu_chunk_slot(chunk);
- /*
- * Search to find a fit.
- */
- end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
- pcpu_chunk_map_bits(chunk));
- bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
- alloc_bits, align_mask);
- if (bit_off >= end)
- return -1;
- /* update alloc map */
- bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
- /* update boundary map */
- set_bit(bit_off, chunk->bound_map);
- bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
- set_bit(bit_off + alloc_bits, chunk->bound_map);
- chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
- /* update first free bit */
- if (bit_off == chunk->first_bit)
- chunk->first_bit = find_next_zero_bit(
- chunk->alloc_map,
- pcpu_chunk_map_bits(chunk),
- bit_off + alloc_bits);
- pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
- pcpu_chunk_relocate(chunk, oslot);
- return bit_off * PCPU_MIN_ALLOC_SIZE;
- }
- /**
- * pcpu_free_area - frees the corresponding offset
- * @chunk: chunk of interest
- * @off: addr offset into chunk
- *
- * This function determines the size of an allocation to free using
- * the boundary bitmap and clears the allocation map.
- */
- static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
- {
- int bit_off, bits, end, oslot;
- lockdep_assert_held(&pcpu_lock);
- pcpu_stats_area_dealloc(chunk);
- oslot = pcpu_chunk_slot(chunk);
- bit_off = off / PCPU_MIN_ALLOC_SIZE;
- /* find end index */
- end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
- bit_off + 1);
- bits = end - bit_off;
- bitmap_clear(chunk->alloc_map, bit_off, bits);
- /* update metadata */
- chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
- /* update first free bit */
- chunk->first_bit = min(chunk->first_bit, bit_off);
- pcpu_block_update_hint_free(chunk, bit_off, bits);
- pcpu_chunk_relocate(chunk, oslot);
- }
- static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
- {
- struct pcpu_block_md *md_block;
- for (md_block = chunk->md_blocks;
- md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
- md_block++) {
- md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
- md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
- md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
- }
- }
- /**
- * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
- * @tmp_addr: the start of the region served
- * @map_size: size of the region served
- *
- * This is responsible for creating the chunks that serve the first chunk. The
- * base_addr is page aligned down of @tmp_addr while the region end is page
- * aligned up. Offsets are kept track of to determine the region served. All
- * this is done to appease the bitmap allocator in avoiding partial blocks.
- *
- * RETURNS:
- * Chunk serving the region at @tmp_addr of @map_size.
- */
- static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
- int map_size)
- {
- struct pcpu_chunk *chunk;
- unsigned long aligned_addr, lcm_align;
- int start_offset, offset_bits, region_size, region_bits;
- /* region calculations */
- aligned_addr = tmp_addr & PAGE_MASK;
- start_offset = tmp_addr - aligned_addr;
- /*
- * Align the end of the region with the LCM of PAGE_SIZE and
- * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
- * the other.
- */
- lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
- region_size = ALIGN(start_offset + map_size, lcm_align);
- /* allocate chunk */
- chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
- BITS_TO_LONGS(region_size >> PAGE_SHIFT) * sizeof(unsigned long),
- 0);
- INIT_LIST_HEAD(&chunk->list);
- chunk->base_addr = (void *)aligned_addr;
- chunk->start_offset = start_offset;
- chunk->end_offset = region_size - chunk->start_offset - map_size;
- chunk->nr_pages = region_size >> PAGE_SHIFT;
- region_bits = pcpu_chunk_map_bits(chunk);
- chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
- sizeof(chunk->alloc_map[0]), 0);
- chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
- sizeof(chunk->bound_map[0]), 0);
- chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
- sizeof(chunk->md_blocks[0]), 0);
- pcpu_init_md_blocks(chunk);
- /* manage populated page bitmap */
- chunk->immutable = true;
- bitmap_fill(chunk->populated, chunk->nr_pages);
- chunk->nr_populated = chunk->nr_pages;
- chunk->nr_empty_pop_pages =
- pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
- map_size / PCPU_MIN_ALLOC_SIZE);
- chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
- chunk->free_bytes = map_size;
- if (chunk->start_offset) {
- /* hide the beginning of the bitmap */
- offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
- bitmap_set(chunk->alloc_map, 0, offset_bits);
- set_bit(0, chunk->bound_map);
- set_bit(offset_bits, chunk->bound_map);
- chunk->first_bit = offset_bits;
- pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
- }
- if (chunk->end_offset) {
- /* hide the end of the bitmap */
- offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
- bitmap_set(chunk->alloc_map,
- pcpu_chunk_map_bits(chunk) - offset_bits,
- offset_bits);
- set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
- chunk->bound_map);
- set_bit(region_bits, chunk->bound_map);
- pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
- - offset_bits, offset_bits);
- }
- return chunk;
- }
- static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
- {
- struct pcpu_chunk *chunk;
- int region_bits;
- chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
- if (!chunk)
- return NULL;
- INIT_LIST_HEAD(&chunk->list);
- chunk->nr_pages = pcpu_unit_pages;
- region_bits = pcpu_chunk_map_bits(chunk);
- chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
- sizeof(chunk->alloc_map[0]), gfp);
- if (!chunk->alloc_map)
- goto alloc_map_fail;
- chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
- sizeof(chunk->bound_map[0]), gfp);
- if (!chunk->bound_map)
- goto bound_map_fail;
- chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
- sizeof(chunk->md_blocks[0]), gfp);
- if (!chunk->md_blocks)
- goto md_blocks_fail;
- pcpu_init_md_blocks(chunk);
- /* init metadata */
- chunk->contig_bits = region_bits;
- chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
- return chunk;
- md_blocks_fail:
- pcpu_mem_free(chunk->bound_map);
- bound_map_fail:
- pcpu_mem_free(chunk->alloc_map);
- alloc_map_fail:
- pcpu_mem_free(chunk);
- return NULL;
- }
- static void pcpu_free_chunk(struct pcpu_chunk *chunk)
- {
- if (!chunk)
- return;
- pcpu_mem_free(chunk->md_blocks);
- pcpu_mem_free(chunk->bound_map);
- pcpu_mem_free(chunk->alloc_map);
- pcpu_mem_free(chunk);
- }
- /**
- * pcpu_chunk_populated - post-population bookkeeping
- * @chunk: pcpu_chunk which got populated
- * @page_start: the start page
- * @page_end: the end page
- * @for_alloc: if this is to populate for allocation
- *
- * Pages in [@page_start,@page_end) have been populated to @chunk. Update
- * the bookkeeping information accordingly. Must be called after each
- * successful population.
- *
- * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
- * is to serve an allocation in that area.
- */
- static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
- int page_end, bool for_alloc)
- {
- int nr = page_end - page_start;
- lockdep_assert_held(&pcpu_lock);
- bitmap_set(chunk->populated, page_start, nr);
- chunk->nr_populated += nr;
- pcpu_nr_populated += nr;
- if (!for_alloc) {
- chunk->nr_empty_pop_pages += nr;
- pcpu_nr_empty_pop_pages += nr;
- }
- }
- /**
- * pcpu_chunk_depopulated - post-depopulation bookkeeping
- * @chunk: pcpu_chunk which got depopulated
- * @page_start: the start page
- * @page_end: the end page
- *
- * Pages in [@page_start,@page_end) have been depopulated from @chunk.
- * Update the bookkeeping information accordingly. Must be called after
- * each successful depopulation.
- */
- static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
- int page_start, int page_end)
- {
- int nr = page_end - page_start;
- lockdep_assert_held(&pcpu_lock);
- bitmap_clear(chunk->populated, page_start, nr);
- chunk->nr_populated -= nr;
- chunk->nr_empty_pop_pages -= nr;
- pcpu_nr_empty_pop_pages -= nr;
- pcpu_nr_populated -= nr;
- }
- /*
- * Chunk management implementation.
- *
- * To allow different implementations, chunk alloc/free and
- * [de]population are implemented in a separate file which is pulled
- * into this file and compiled together. The following functions
- * should be implemented.
- *
- * pcpu_populate_chunk - populate the specified range of a chunk
- * pcpu_depopulate_chunk - depopulate the specified range of a chunk
- * pcpu_create_chunk - create a new chunk
- * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
- * pcpu_addr_to_page - translate address to physical address
- * pcpu_verify_alloc_info - check alloc_info is acceptable during init
- */
- static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
- int page_start, int page_end, gfp_t gfp);
- static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
- int page_start, int page_end);
- static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
- static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
- static struct page *pcpu_addr_to_page(void *addr);
- static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
- #ifdef CONFIG_NEED_PER_CPU_KM
- #include "percpu-km.c"
- #else
- #include "percpu-vm.c"
- #endif
- /**
- * pcpu_chunk_addr_search - determine chunk containing specified address
- * @addr: address for which the chunk needs to be determined.
- *
- * This is an internal function that handles all but static allocations.
- * Static percpu address values should never be passed into the allocator.
- *
- * RETURNS:
- * The address of the found chunk.
- */
- static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
- {
- /* is it in the dynamic region (first chunk)? */
- if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
- return pcpu_first_chunk;
- /* is it in the reserved region? */
- if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
- return pcpu_reserved_chunk;
- /*
- * The address is relative to unit0 which might be unused and
- * thus unmapped. Offset the address to the unit space of the
- * current processor before looking it up in the vmalloc
- * space. Note that any possible cpu id can be used here, so
- * there's no need to worry about preemption or cpu hotplug.
- */
- addr += pcpu_unit_offsets[raw_smp_processor_id()];
- return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
- }
- /**
- * pcpu_alloc - the percpu allocator
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- * @reserved: allocate from the reserved chunk if available
- * @gfp: allocation flags
- *
- * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
- * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
- * then no warning will be triggered on invalid or failed allocation
- * requests.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
- gfp_t gfp)
- {
- /* whitelisted flags that can be passed to the backing allocators */
- gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
- bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
- bool do_warn = !(gfp & __GFP_NOWARN);
- static int warn_limit = 10;
- struct pcpu_chunk *chunk;
- const char *err;
- int slot, off, cpu, ret;
- unsigned long flags;
- void __percpu *ptr;
- size_t bits, bit_align;
- /*
- * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
- * therefore alignment must be a minimum of that many bytes.
- * An allocation may have internal fragmentation from rounding up
- * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
- */
- if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
- align = PCPU_MIN_ALLOC_SIZE;
- size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
- bits = size >> PCPU_MIN_ALLOC_SHIFT;
- bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
- if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
- !is_power_of_2(align))) {
- WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
- size, align);
- return NULL;
- }
- if (!is_atomic) {
- /*
- * pcpu_balance_workfn() allocates memory under this mutex,
- * and it may wait for memory reclaim. Allow current task
- * to become OOM victim, in case of memory pressure.
- */
- if (gfp & __GFP_NOFAIL)
- mutex_lock(&pcpu_alloc_mutex);
- else if (mutex_lock_killable(&pcpu_alloc_mutex))
- return NULL;
- }
- spin_lock_irqsave(&pcpu_lock, flags);
- /* serve reserved allocations from the reserved chunk if available */
- if (reserved && pcpu_reserved_chunk) {
- chunk = pcpu_reserved_chunk;
- off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
- if (off < 0) {
- err = "alloc from reserved chunk failed";
- goto fail_unlock;
- }
- off = pcpu_alloc_area(chunk, bits, bit_align, off);
- if (off >= 0)
- goto area_found;
- err = "alloc from reserved chunk failed";
- goto fail_unlock;
- }
- restart:
- /* search through normal chunks */
- for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
- list_for_each_entry(chunk, &pcpu_slot[slot], list) {
- off = pcpu_find_block_fit(chunk, bits, bit_align,
- is_atomic);
- if (off < 0)
- continue;
- off = pcpu_alloc_area(chunk, bits, bit_align, off);
- if (off >= 0)
- goto area_found;
- }
- }
- spin_unlock_irqrestore(&pcpu_lock, flags);
- /*
- * No space left. Create a new chunk. We don't want multiple
- * tasks to create chunks simultaneously. Serialize and create iff
- * there's still no empty chunk after grabbing the mutex.
- */
- if (is_atomic) {
- err = "atomic alloc failed, no space left";
- goto fail;
- }
- if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
- chunk = pcpu_create_chunk(pcpu_gfp);
- if (!chunk) {
- err = "failed to allocate new chunk";
- goto fail;
- }
- spin_lock_irqsave(&pcpu_lock, flags);
- pcpu_chunk_relocate(chunk, -1);
- } else {
- spin_lock_irqsave(&pcpu_lock, flags);
- }
- goto restart;
- area_found:
- pcpu_stats_area_alloc(chunk, size);
- spin_unlock_irqrestore(&pcpu_lock, flags);
- /* populate if not all pages are already there */
- if (!is_atomic) {
- int page_start, page_end, rs, re;
- page_start = PFN_DOWN(off);
- page_end = PFN_UP(off + size);
- pcpu_for_each_unpop_region(chunk->populated, rs, re,
- page_start, page_end) {
- WARN_ON(chunk->immutable);
- ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
- spin_lock_irqsave(&pcpu_lock, flags);
- if (ret) {
- pcpu_free_area(chunk, off);
- err = "failed to populate";
- goto fail_unlock;
- }
- pcpu_chunk_populated(chunk, rs, re, true);
- spin_unlock_irqrestore(&pcpu_lock, flags);
- }
- mutex_unlock(&pcpu_alloc_mutex);
- }
- if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
- pcpu_schedule_balance_work();
- /* clear the areas and return address relative to base address */
- for_each_possible_cpu(cpu)
- memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
- ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
- kmemleak_alloc_percpu(ptr, size, gfp);
- trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
- chunk->base_addr, off, ptr);
- return ptr;
- fail_unlock:
- spin_unlock_irqrestore(&pcpu_lock, flags);
- fail:
- trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
- if (!is_atomic && do_warn && warn_limit) {
- pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
- size, align, is_atomic, err);
- dump_stack();
- if (!--warn_limit)
- pr_info("limit reached, disable warning\n");
- }
- if (is_atomic) {
- /* see the flag handling in pcpu_blance_workfn() */
- pcpu_atomic_alloc_failed = true;
- pcpu_schedule_balance_work();
- } else {
- mutex_unlock(&pcpu_alloc_mutex);
- }
- return NULL;
- }
- /**
- * __alloc_percpu_gfp - allocate dynamic percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- * @gfp: allocation flags
- *
- * Allocate zero-filled percpu area of @size bytes aligned at @align. If
- * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
- * be called from any context but is a lot more likely to fail. If @gfp
- * has __GFP_NOWARN then no warning will be triggered on invalid or failed
- * allocation requests.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
- {
- return pcpu_alloc(size, align, false, gfp);
- }
- EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
- /**
- * __alloc_percpu - allocate dynamic percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
- */
- void __percpu *__alloc_percpu(size_t size, size_t align)
- {
- return pcpu_alloc(size, align, false, GFP_KERNEL);
- }
- EXPORT_SYMBOL_GPL(__alloc_percpu);
- /**
- * __alloc_reserved_percpu - allocate reserved percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Allocate zero-filled percpu area of @size bytes aligned at @align
- * from reserved percpu area if arch has set it up; otherwise,
- * allocation is served from the same dynamic area. Might sleep.
- * Might trigger writeouts.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
- {
- return pcpu_alloc(size, align, true, GFP_KERNEL);
- }
- /**
- * pcpu_balance_workfn - manage the amount of free chunks and populated pages
- * @work: unused
- *
- * Reclaim all fully free chunks except for the first one. This is also
- * responsible for maintaining the pool of empty populated pages. However,
- * it is possible that this is called when physical memory is scarce causing
- * OOM killer to be triggered. We should avoid doing so until an actual
- * allocation causes the failure as it is possible that requests can be
- * serviced from already backed regions.
- */
- static void pcpu_balance_workfn(struct work_struct *work)
- {
- /* gfp flags passed to underlying allocators */
- const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
- LIST_HEAD(to_free);
- struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
- struct pcpu_chunk *chunk, *next;
- int slot, nr_to_pop, ret;
- /*
- * There's no reason to keep around multiple unused chunks and VM
- * areas can be scarce. Destroy all free chunks except for one.
- */
- mutex_lock(&pcpu_alloc_mutex);
- spin_lock_irq(&pcpu_lock);
- list_for_each_entry_safe(chunk, next, free_head, list) {
- WARN_ON(chunk->immutable);
- /* spare the first one */
- if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
- continue;
- list_move(&chunk->list, &to_free);
- }
- spin_unlock_irq(&pcpu_lock);
- list_for_each_entry_safe(chunk, next, &to_free, list) {
- int rs, re;
- pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
- chunk->nr_pages) {
- pcpu_depopulate_chunk(chunk, rs, re);
- spin_lock_irq(&pcpu_lock);
- pcpu_chunk_depopulated(chunk, rs, re);
- spin_unlock_irq(&pcpu_lock);
- }
- pcpu_destroy_chunk(chunk);
- cond_resched();
- }
- /*
- * Ensure there are certain number of free populated pages for
- * atomic allocs. Fill up from the most packed so that atomic
- * allocs don't increase fragmentation. If atomic allocation
- * failed previously, always populate the maximum amount. This
- * should prevent atomic allocs larger than PAGE_SIZE from keeping
- * failing indefinitely; however, large atomic allocs are not
- * something we support properly and can be highly unreliable and
- * inefficient.
- */
- retry_pop:
- if (pcpu_atomic_alloc_failed) {
- nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
- /* best effort anyway, don't worry about synchronization */
- pcpu_atomic_alloc_failed = false;
- } else {
- nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
- pcpu_nr_empty_pop_pages,
- 0, PCPU_EMPTY_POP_PAGES_HIGH);
- }
- for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
- int nr_unpop = 0, rs, re;
- if (!nr_to_pop)
- break;
- spin_lock_irq(&pcpu_lock);
- list_for_each_entry(chunk, &pcpu_slot[slot], list) {
- nr_unpop = chunk->nr_pages - chunk->nr_populated;
- if (nr_unpop)
- break;
- }
- spin_unlock_irq(&pcpu_lock);
- if (!nr_unpop)
- continue;
- /* @chunk can't go away while pcpu_alloc_mutex is held */
- pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
- chunk->nr_pages) {
- int nr = min(re - rs, nr_to_pop);
- ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
- if (!ret) {
- nr_to_pop -= nr;
- spin_lock_irq(&pcpu_lock);
- pcpu_chunk_populated(chunk, rs, rs + nr, false);
- spin_unlock_irq(&pcpu_lock);
- } else {
- nr_to_pop = 0;
- }
- if (!nr_to_pop)
- break;
- }
- }
- if (nr_to_pop) {
- /* ran out of chunks to populate, create a new one and retry */
- chunk = pcpu_create_chunk(gfp);
- if (chunk) {
- spin_lock_irq(&pcpu_lock);
- pcpu_chunk_relocate(chunk, -1);
- spin_unlock_irq(&pcpu_lock);
- goto retry_pop;
- }
- }
- mutex_unlock(&pcpu_alloc_mutex);
- }
- /**
- * free_percpu - free percpu area
- * @ptr: pointer to area to free
- *
- * Free percpu area @ptr.
- *
- * CONTEXT:
- * Can be called from atomic context.
- */
- void free_percpu(void __percpu *ptr)
- {
- void *addr;
- struct pcpu_chunk *chunk;
- unsigned long flags;
- int off;
- bool need_balance = false;
- if (!ptr)
- return;
- kmemleak_free_percpu(ptr);
- addr = __pcpu_ptr_to_addr(ptr);
- spin_lock_irqsave(&pcpu_lock, flags);
- chunk = pcpu_chunk_addr_search(addr);
- off = addr - chunk->base_addr;
- pcpu_free_area(chunk, off);
- /* if there are more than one fully free chunks, wake up grim reaper */
- if (chunk->free_bytes == pcpu_unit_size) {
- struct pcpu_chunk *pos;
- list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
- if (pos != chunk) {
- need_balance = true;
- break;
- }
- }
- trace_percpu_free_percpu(chunk->base_addr, off, ptr);
- spin_unlock_irqrestore(&pcpu_lock, flags);
- if (need_balance)
- pcpu_schedule_balance_work();
- }
- EXPORT_SYMBOL_GPL(free_percpu);
- bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
- {
- #ifdef CONFIG_SMP
- const size_t static_size = __per_cpu_end - __per_cpu_start;
- void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
- unsigned int cpu;
- for_each_possible_cpu(cpu) {
- void *start = per_cpu_ptr(base, cpu);
- void *va = (void *)addr;
- if (va >= start && va < start + static_size) {
- if (can_addr) {
- *can_addr = (unsigned long) (va - start);
- *can_addr += (unsigned long)
- per_cpu_ptr(base, get_boot_cpu_id());
- }
- return true;
- }
- }
- #endif
- /* on UP, can't distinguish from other static vars, always false */
- return false;
- }
- /**
- * is_kernel_percpu_address - test whether address is from static percpu area
- * @addr: address to test
- *
- * Test whether @addr belongs to in-kernel static percpu area. Module
- * static percpu areas are not considered. For those, use
- * is_module_percpu_address().
- *
- * RETURNS:
- * %true if @addr is from in-kernel static percpu area, %false otherwise.
- */
- bool is_kernel_percpu_address(unsigned long addr)
- {
- return __is_kernel_percpu_address(addr, NULL);
- }
- /**
- * per_cpu_ptr_to_phys - convert translated percpu address to physical address
- * @addr: the address to be converted to physical address
- *
- * Given @addr which is dereferenceable address obtained via one of
- * percpu access macros, this function translates it into its physical
- * address. The caller is responsible for ensuring @addr stays valid
- * until this function finishes.
- *
- * percpu allocator has special setup for the first chunk, which currently
- * supports either embedding in linear address space or vmalloc mapping,
- * and, from the second one, the backing allocator (currently either vm or
- * km) provides translation.
- *
- * The addr can be translated simply without checking if it falls into the
- * first chunk. But the current code reflects better how percpu allocator
- * actually works, and the verification can discover both bugs in percpu
- * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
- * code.
- *
- * RETURNS:
- * The physical address for @addr.
- */
- phys_addr_t per_cpu_ptr_to_phys(void *addr)
- {
- void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
- bool in_first_chunk = false;
- unsigned long first_low, first_high;
- unsigned int cpu;
- /*
- * The following test on unit_low/high isn't strictly
- * necessary but will speed up lookups of addresses which
- * aren't in the first chunk.
- *
- * The address check is against full chunk sizes. pcpu_base_addr
- * points to the beginning of the first chunk including the
- * static region. Assumes good intent as the first chunk may
- * not be full (ie. < pcpu_unit_pages in size).
- */
- first_low = (unsigned long)pcpu_base_addr +
- pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
- first_high = (unsigned long)pcpu_base_addr +
- pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
- if ((unsigned long)addr >= first_low &&
- (unsigned long)addr < first_high) {
- for_each_possible_cpu(cpu) {
- void *start = per_cpu_ptr(base, cpu);
- if (addr >= start && addr < start + pcpu_unit_size) {
- in_first_chunk = true;
- break;
- }
- }
- }
- if (in_first_chunk) {
- if (!is_vmalloc_addr(addr))
- return __pa(addr);
- else
- return page_to_phys(vmalloc_to_page(addr)) +
- offset_in_page(addr);
- } else
- return page_to_phys(pcpu_addr_to_page(addr)) +
- offset_in_page(addr);
- }
- /**
- * pcpu_alloc_alloc_info - allocate percpu allocation info
- * @nr_groups: the number of groups
- * @nr_units: the number of units
- *
- * Allocate ai which is large enough for @nr_groups groups containing
- * @nr_units units. The returned ai's groups[0].cpu_map points to the
- * cpu_map array which is long enough for @nr_units and filled with
- * NR_CPUS. It's the caller's responsibility to initialize cpu_map
- * pointer of other groups.
- *
- * RETURNS:
- * Pointer to the allocated pcpu_alloc_info on success, NULL on
- * failure.
- */
- struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
- int nr_units)
- {
- struct pcpu_alloc_info *ai;
- size_t base_size, ai_size;
- void *ptr;
- int unit;
- base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
- __alignof__(ai->groups[0].cpu_map[0]));
- ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
- ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
- if (!ptr)
- return NULL;
- ai = ptr;
- ptr += base_size;
- ai->groups[0].cpu_map = ptr;
- for (unit = 0; unit < nr_units; unit++)
- ai->groups[0].cpu_map[unit] = NR_CPUS;
- ai->nr_groups = nr_groups;
- ai->__ai_size = PFN_ALIGN(ai_size);
- return ai;
- }
- /**
- * pcpu_free_alloc_info - free percpu allocation info
- * @ai: pcpu_alloc_info to free
- *
- * Free @ai which was allocated by pcpu_alloc_alloc_info().
- */
- void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
- {
- memblock_free_early(__pa(ai), ai->__ai_size);
- }
- /**
- * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
- * @lvl: loglevel
- * @ai: allocation info to dump
- *
- * Print out information about @ai using loglevel @lvl.
- */
- static void pcpu_dump_alloc_info(const char *lvl,
- const struct pcpu_alloc_info *ai)
- {
- int group_width = 1, cpu_width = 1, width;
- char empty_str[] = "--------";
- int alloc = 0, alloc_end = 0;
- int group, v;
- int upa, apl; /* units per alloc, allocs per line */
- v = ai->nr_groups;
- while (v /= 10)
- group_width++;
- v = num_possible_cpus();
- while (v /= 10)
- cpu_width++;
- empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
- upa = ai->alloc_size / ai->unit_size;
- width = upa * (cpu_width + 1) + group_width + 3;
- apl = rounddown_pow_of_two(max(60 / width, 1));
- printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
- lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
- ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
- for (group = 0; group < ai->nr_groups; group++) {
- const struct pcpu_group_info *gi = &ai->groups[group];
- int unit = 0, unit_end = 0;
- BUG_ON(gi->nr_units % upa);
- for (alloc_end += gi->nr_units / upa;
- alloc < alloc_end; alloc++) {
- if (!(alloc % apl)) {
- pr_cont("\n");
- printk("%spcpu-alloc: ", lvl);
- }
- pr_cont("[%0*d] ", group_width, group);
- for (unit_end += upa; unit < unit_end; unit++)
- if (gi->cpu_map[unit] != NR_CPUS)
- pr_cont("%0*d ",
- cpu_width, gi->cpu_map[unit]);
- else
- pr_cont("%s ", empty_str);
- }
- }
- pr_cont("\n");
- }
- /**
- * pcpu_setup_first_chunk - initialize the first percpu chunk
- * @ai: pcpu_alloc_info describing how to percpu area is shaped
- * @base_addr: mapped address
- *
- * Initialize the first percpu chunk which contains the kernel static
- * perpcu area. This function is to be called from arch percpu area
- * setup path.
- *
- * @ai contains all information necessary to initialize the first
- * chunk and prime the dynamic percpu allocator.
- *
- * @ai->static_size is the size of static percpu area.
- *
- * @ai->reserved_size, if non-zero, specifies the amount of bytes to
- * reserve after the static area in the first chunk. This reserves
- * the first chunk such that it's available only through reserved
- * percpu allocation. This is primarily used to serve module percpu
- * static areas on architectures where the addressing model has
- * limited offset range for symbol relocations to guarantee module
- * percpu symbols fall inside the relocatable range.
- *
- * @ai->dyn_size determines the number of bytes available for dynamic
- * allocation in the first chunk. The area between @ai->static_size +
- * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
- *
- * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
- * and equal to or larger than @ai->static_size + @ai->reserved_size +
- * @ai->dyn_size.
- *
- * @ai->atom_size is the allocation atom size and used as alignment
- * for vm areas.
- *
- * @ai->alloc_size is the allocation size and always multiple of
- * @ai->atom_size. This is larger than @ai->atom_size if
- * @ai->unit_size is larger than @ai->atom_size.
- *
- * @ai->nr_groups and @ai->groups describe virtual memory layout of
- * percpu areas. Units which should be colocated are put into the
- * same group. Dynamic VM areas will be allocated according to these
- * groupings. If @ai->nr_groups is zero, a single group containing
- * all units is assumed.
- *
- * The caller should have mapped the first chunk at @base_addr and
- * copied static data to each unit.
- *
- * The first chunk will always contain a static and a dynamic region.
- * However, the static region is not managed by any chunk. If the first
- * chunk also contains a reserved region, it is served by two chunks -
- * one for the reserved region and one for the dynamic region. They
- * share the same vm, but use offset regions in the area allocation map.
- * The chunk serving the dynamic region is circulated in the chunk slots
- * and available for dynamic allocation like any other chunk.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
- void *base_addr)
- {
- size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
- size_t static_size, dyn_size;
- struct pcpu_chunk *chunk;
- unsigned long *group_offsets;
- size_t *group_sizes;
- unsigned long *unit_off;
- unsigned int cpu;
- int *unit_map;
- int group, unit, i;
- int map_size;
- unsigned long tmp_addr;
- #define PCPU_SETUP_BUG_ON(cond) do { \
- if (unlikely(cond)) { \
- pr_emerg("failed to initialize, %s\n", #cond); \
- pr_emerg("cpu_possible_mask=%*pb\n", \
- cpumask_pr_args(cpu_possible_mask)); \
- pcpu_dump_alloc_info(KERN_EMERG, ai); \
- BUG(); \
- } \
- } while (0)
- /* sanity checks */
- PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
- #ifdef CONFIG_SMP
- PCPU_SETUP_BUG_ON(!ai->static_size);
- PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
- #endif
- PCPU_SETUP_BUG_ON(!base_addr);
- PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
- PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
- PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
- PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
- PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
- PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
- PCPU_SETUP_BUG_ON(!ai->dyn_size);
- PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
- PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
- IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
- PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
- /* process group information and build config tables accordingly */
- group_offsets = memblock_virt_alloc(ai->nr_groups *
- sizeof(group_offsets[0]), 0);
- group_sizes = memblock_virt_alloc(ai->nr_groups *
- sizeof(group_sizes[0]), 0);
- unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
- unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
- for (cpu = 0; cpu < nr_cpu_ids; cpu++)
- unit_map[cpu] = UINT_MAX;
- pcpu_low_unit_cpu = NR_CPUS;
- pcpu_high_unit_cpu = NR_CPUS;
- for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
- const struct pcpu_group_info *gi = &ai->groups[group];
- group_offsets[group] = gi->base_offset;
- group_sizes[group] = gi->nr_units * ai->unit_size;
- for (i = 0; i < gi->nr_units; i++) {
- cpu = gi->cpu_map[i];
- if (cpu == NR_CPUS)
- continue;
- PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
- PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
- PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
- unit_map[cpu] = unit + i;
- unit_off[cpu] = gi->base_offset + i * ai->unit_size;
- /* determine low/high unit_cpu */
- if (pcpu_low_unit_cpu == NR_CPUS ||
- unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
- pcpu_low_unit_cpu = cpu;
- if (pcpu_high_unit_cpu == NR_CPUS ||
- unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
- pcpu_high_unit_cpu = cpu;
- }
- }
- pcpu_nr_units = unit;
- for_each_possible_cpu(cpu)
- PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
- /* we're done parsing the input, undefine BUG macro and dump config */
- #undef PCPU_SETUP_BUG_ON
- pcpu_dump_alloc_info(KERN_DEBUG, ai);
- pcpu_nr_groups = ai->nr_groups;
- pcpu_group_offsets = group_offsets;
- pcpu_group_sizes = group_sizes;
- pcpu_unit_map = unit_map;
- pcpu_unit_offsets = unit_off;
- /* determine basic parameters */
- pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
- pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
- pcpu_atom_size = ai->atom_size;
- pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
- BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
- pcpu_stats_save_ai(ai);
- /*
- * Allocate chunk slots. The additional last slot is for
- * empty chunks.
- */
- pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
- pcpu_slot = memblock_virt_alloc(
- pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
- for (i = 0; i < pcpu_nr_slots; i++)
- INIT_LIST_HEAD(&pcpu_slot[i]);
- /*
- * The end of the static region needs to be aligned with the
- * minimum allocation size as this offsets the reserved and
- * dynamic region. The first chunk ends page aligned by
- * expanding the dynamic region, therefore the dynamic region
- * can be shrunk to compensate while still staying above the
- * configured sizes.
- */
- static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
- dyn_size = ai->dyn_size - (static_size - ai->static_size);
- /*
- * Initialize first chunk.
- * If the reserved_size is non-zero, this initializes the reserved
- * chunk. If the reserved_size is zero, the reserved chunk is NULL
- * and the dynamic region is initialized here. The first chunk,
- * pcpu_first_chunk, will always point to the chunk that serves
- * the dynamic region.
- */
- tmp_addr = (unsigned long)base_addr + static_size;
- map_size = ai->reserved_size ?: dyn_size;
- chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
- /* init dynamic chunk if necessary */
- if (ai->reserved_size) {
- pcpu_reserved_chunk = chunk;
- tmp_addr = (unsigned long)base_addr + static_size +
- ai->reserved_size;
- map_size = dyn_size;
- chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
- }
- /* link the first chunk in */
- pcpu_first_chunk = chunk;
- pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
- pcpu_chunk_relocate(pcpu_first_chunk, -1);
- /* include all regions of the first chunk */
- pcpu_nr_populated += PFN_DOWN(size_sum);
- pcpu_stats_chunk_alloc();
- trace_percpu_create_chunk(base_addr);
- /* we're done */
- pcpu_base_addr = base_addr;
- return 0;
- }
- #ifdef CONFIG_SMP
- const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
- [PCPU_FC_AUTO] = "auto",
- [PCPU_FC_EMBED] = "embed",
- [PCPU_FC_PAGE] = "page",
- };
- enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
- static int __init percpu_alloc_setup(char *str)
- {
- if (!str)
- return -EINVAL;
- if (0)
- /* nada */;
- #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
- else if (!strcmp(str, "embed"))
- pcpu_chosen_fc = PCPU_FC_EMBED;
- #endif
- #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
- else if (!strcmp(str, "page"))
- pcpu_chosen_fc = PCPU_FC_PAGE;
- #endif
- else
- pr_warn("unknown allocator %s specified\n", str);
- return 0;
- }
- early_param("percpu_alloc", percpu_alloc_setup);
- /*
- * pcpu_embed_first_chunk() is used by the generic percpu setup.
- * Build it if needed by the arch config or the generic setup is going
- * to be used.
- */
- #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
- !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
- #define BUILD_EMBED_FIRST_CHUNK
- #endif
- /* build pcpu_page_first_chunk() iff needed by the arch config */
- #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
- #define BUILD_PAGE_FIRST_CHUNK
- #endif
- /* pcpu_build_alloc_info() is used by both embed and page first chunk */
- #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
- /**
- * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
- * @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: minimum free size for dynamic allocation in bytes
- * @atom_size: allocation atom size
- * @cpu_distance_fn: callback to determine distance between cpus, optional
- *
- * This function determines grouping of units, their mappings to cpus
- * and other parameters considering needed percpu size, allocation
- * atom size and distances between CPUs.
- *
- * Groups are always multiples of atom size and CPUs which are of
- * LOCAL_DISTANCE both ways are grouped together and share space for
- * units in the same group. The returned configuration is guaranteed
- * to have CPUs on different nodes on different groups and >=75% usage
- * of allocated virtual address space.
- *
- * RETURNS:
- * On success, pointer to the new allocation_info is returned. On
- * failure, ERR_PTR value is returned.
- */
- static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
- size_t reserved_size, size_t dyn_size,
- size_t atom_size,
- pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
- {
- static int group_map[NR_CPUS] __initdata;
- static int group_cnt[NR_CPUS] __initdata;
- const size_t static_size = __per_cpu_end - __per_cpu_start;
- int nr_groups = 1, nr_units = 0;
- size_t size_sum, min_unit_size, alloc_size;
- int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
- int last_allocs, group, unit;
- unsigned int cpu, tcpu;
- struct pcpu_alloc_info *ai;
- unsigned int *cpu_map;
- /* this function may be called multiple times */
- memset(group_map, 0, sizeof(group_map));
- memset(group_cnt, 0, sizeof(group_cnt));
- /* calculate size_sum and ensure dyn_size is enough for early alloc */
- size_sum = PFN_ALIGN(static_size + reserved_size +
- max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
- dyn_size = size_sum - static_size - reserved_size;
- /*
- * Determine min_unit_size, alloc_size and max_upa such that
- * alloc_size is multiple of atom_size and is the smallest
- * which can accommodate 4k aligned segments which are equal to
- * or larger than min_unit_size.
- */
- min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
- /* determine the maximum # of units that can fit in an allocation */
- alloc_size = roundup(min_unit_size, atom_size);
- upa = alloc_size / min_unit_size;
- while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
- upa--;
- max_upa = upa;
- /* group cpus according to their proximity */
- for_each_possible_cpu(cpu) {
- group = 0;
- next_group:
- for_each_possible_cpu(tcpu) {
- if (cpu == tcpu)
- break;
- if (group_map[tcpu] == group && cpu_distance_fn &&
- (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
- cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
- group++;
- nr_groups = max(nr_groups, group + 1);
- goto next_group;
- }
- }
- group_map[cpu] = group;
- group_cnt[group]++;
- }
- /*
- * Wasted space is caused by a ratio imbalance of upa to group_cnt.
- * Expand the unit_size until we use >= 75% of the units allocated.
- * Related to atom_size, which could be much larger than the unit_size.
- */
- last_allocs = INT_MAX;
- for (upa = max_upa; upa; upa--) {
- int allocs = 0, wasted = 0;
- if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
- continue;
- for (group = 0; group < nr_groups; group++) {
- int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
- allocs += this_allocs;
- wasted += this_allocs * upa - group_cnt[group];
- }
- /*
- * Don't accept if wastage is over 1/3. The
- * greater-than comparison ensures upa==1 always
- * passes the following check.
- */
- if (wasted > num_possible_cpus() / 3)
- continue;
- /* and then don't consume more memory */
- if (allocs > last_allocs)
- break;
- last_allocs = allocs;
- best_upa = upa;
- }
- upa = best_upa;
- /* allocate and fill alloc_info */
- for (group = 0; group < nr_groups; group++)
- nr_units += roundup(group_cnt[group], upa);
- ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
- if (!ai)
- return ERR_PTR(-ENOMEM);
- cpu_map = ai->groups[0].cpu_map;
- for (group = 0; group < nr_groups; group++) {
- ai->groups[group].cpu_map = cpu_map;
- cpu_map += roundup(group_cnt[group], upa);
- }
- ai->static_size = static_size;
- ai->reserved_size = reserved_size;
- ai->dyn_size = dyn_size;
- ai->unit_size = alloc_size / upa;
- ai->atom_size = atom_size;
- ai->alloc_size = alloc_size;
- for (group = 0, unit = 0; group_cnt[group]; group++) {
- struct pcpu_group_info *gi = &ai->groups[group];
- /*
- * Initialize base_offset as if all groups are located
- * back-to-back. The caller should update this to
- * reflect actual allocation.
- */
- gi->base_offset = unit * ai->unit_size;
- for_each_possible_cpu(cpu)
- if (group_map[cpu] == group)
- gi->cpu_map[gi->nr_units++] = cpu;
- gi->nr_units = roundup(gi->nr_units, upa);
- unit += gi->nr_units;
- }
- BUG_ON(unit != nr_units);
- return ai;
- }
- #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
- #if defined(BUILD_EMBED_FIRST_CHUNK)
- /**
- * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
- * @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: minimum free size for dynamic allocation in bytes
- * @atom_size: allocation atom size
- * @cpu_distance_fn: callback to determine distance between cpus, optional
- * @alloc_fn: function to allocate percpu page
- * @free_fn: function to free percpu page
- *
- * This is a helper to ease setting up embedded first percpu chunk and
- * can be called where pcpu_setup_first_chunk() is expected.
- *
- * If this function is used to setup the first chunk, it is allocated
- * by calling @alloc_fn and used as-is without being mapped into
- * vmalloc area. Allocations are always whole multiples of @atom_size
- * aligned to @atom_size.
- *
- * This enables the first chunk to piggy back on the linear physical
- * mapping which often uses larger page size. Please note that this
- * can result in very sparse cpu->unit mapping on NUMA machines thus
- * requiring large vmalloc address space. Don't use this allocator if
- * vmalloc space is not orders of magnitude larger than distances
- * between node memory addresses (ie. 32bit NUMA machines).
- *
- * @dyn_size specifies the minimum dynamic area size.
- *
- * If the needed size is smaller than the minimum or specified unit
- * size, the leftover is returned using @free_fn.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
- size_t atom_size,
- pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
- pcpu_fc_alloc_fn_t alloc_fn,
- pcpu_fc_free_fn_t free_fn)
- {
- void *base = (void *)ULONG_MAX;
- void **areas = NULL;
- struct pcpu_alloc_info *ai;
- size_t size_sum, areas_size;
- unsigned long max_distance;
- int group, i, highest_group, rc;
- ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
- cpu_distance_fn);
- if (IS_ERR(ai))
- return PTR_ERR(ai);
- size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
- areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
- areas = memblock_virt_alloc_nopanic(areas_size, 0);
- if (!areas) {
- rc = -ENOMEM;
- goto out_free;
- }
- /* allocate, copy and determine base address & max_distance */
- highest_group = 0;
- for (group = 0; group < ai->nr_groups; group++) {
- struct pcpu_group_info *gi = &ai->groups[group];
- unsigned int cpu = NR_CPUS;
- void *ptr;
- for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
- cpu = gi->cpu_map[i];
- BUG_ON(cpu == NR_CPUS);
- /* allocate space for the whole group */
- ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
- if (!ptr) {
- rc = -ENOMEM;
- goto out_free_areas;
- }
- /* kmemleak tracks the percpu allocations separately */
- kmemleak_free(ptr);
- areas[group] = ptr;
- base = min(ptr, base);
- if (ptr > areas[highest_group])
- highest_group = group;
- }
- max_distance = areas[highest_group] - base;
- max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
- /* warn if maximum distance is further than 75% of vmalloc space */
- if (max_distance > VMALLOC_TOTAL * 3 / 4) {
- pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
- max_distance, VMALLOC_TOTAL);
- #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
- /* and fail if we have fallback */
- rc = -EINVAL;
- goto out_free_areas;
- #endif
- }
- /*
- * Copy data and free unused parts. This should happen after all
- * allocations are complete; otherwise, we may end up with
- * overlapping groups.
- */
- for (group = 0; group < ai->nr_groups; group++) {
- struct pcpu_group_info *gi = &ai->groups[group];
- void *ptr = areas[group];
- for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
- if (gi->cpu_map[i] == NR_CPUS) {
- /* unused unit, free whole */
- free_fn(ptr, ai->unit_size);
- continue;
- }
- /* copy and return the unused part */
- memcpy(ptr, __per_cpu_load, ai->static_size);
- free_fn(ptr + size_sum, ai->unit_size - size_sum);
- }
- }
- /* base address is now known, determine group base offsets */
- for (group = 0; group < ai->nr_groups; group++) {
- ai->groups[group].base_offset = areas[group] - base;
- }
- pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
- PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
- ai->dyn_size, ai->unit_size);
- rc = pcpu_setup_first_chunk(ai, base);
- goto out_free;
- out_free_areas:
- for (group = 0; group < ai->nr_groups; group++)
- if (areas[group])
- free_fn(areas[group],
- ai->groups[group].nr_units * ai->unit_size);
- out_free:
- pcpu_free_alloc_info(ai);
- if (areas)
- memblock_free_early(__pa(areas), areas_size);
- return rc;
- }
- #endif /* BUILD_EMBED_FIRST_CHUNK */
- #ifdef BUILD_PAGE_FIRST_CHUNK
- /**
- * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
- * @reserved_size: the size of reserved percpu area in bytes
- * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
- * @free_fn: function to free percpu page, always called with PAGE_SIZE
- * @populate_pte_fn: function to populate pte
- *
- * This is a helper to ease setting up page-remapped first percpu
- * chunk and can be called where pcpu_setup_first_chunk() is expected.
- *
- * This is the basic allocator. Static percpu area is allocated
- * page-by-page into vmalloc area.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- int __init pcpu_page_first_chunk(size_t reserved_size,
- pcpu_fc_alloc_fn_t alloc_fn,
- pcpu_fc_free_fn_t free_fn,
- pcpu_fc_populate_pte_fn_t populate_pte_fn)
- {
- static struct vm_struct vm;
- struct pcpu_alloc_info *ai;
- char psize_str[16];
- int unit_pages;
- size_t pages_size;
- struct page **pages;
- int unit, i, j, rc;
- int upa;
- int nr_g0_units;
- snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
- ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
- if (IS_ERR(ai))
- return PTR_ERR(ai);
- BUG_ON(ai->nr_groups != 1);
- upa = ai->alloc_size/ai->unit_size;
- nr_g0_units = roundup(num_possible_cpus(), upa);
- if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
- pcpu_free_alloc_info(ai);
- return -EINVAL;
- }
- unit_pages = ai->unit_size >> PAGE_SHIFT;
- /* unaligned allocations can't be freed, round up to page size */
- pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
- sizeof(pages[0]));
- pages = memblock_virt_alloc(pages_size, 0);
- /* allocate pages */
- j = 0;
- for (unit = 0; unit < num_possible_cpus(); unit++) {
- unsigned int cpu = ai->groups[0].cpu_map[unit];
- for (i = 0; i < unit_pages; i++) {
- void *ptr;
- ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
- if (!ptr) {
- pr_warn("failed to allocate %s page for cpu%u\n",
- psize_str, cpu);
- goto enomem;
- }
- /* kmemleak tracks the percpu allocations separately */
- kmemleak_free(ptr);
- pages[j++] = virt_to_page(ptr);
- }
- }
- /* allocate vm area, map the pages and copy static data */
- vm.flags = VM_ALLOC;
- vm.size = num_possible_cpus() * ai->unit_size;
- vm_area_register_early(&vm, PAGE_SIZE);
- for (unit = 0; unit < num_possible_cpus(); unit++) {
- unsigned long unit_addr =
- (unsigned long)vm.addr + unit * ai->unit_size;
- for (i = 0; i < unit_pages; i++)
- populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
- /* pte already populated, the following shouldn't fail */
- rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
- unit_pages);
- if (rc < 0)
- panic("failed to map percpu area, err=%d\n", rc);
- /*
- * FIXME: Archs with virtual cache should flush local
- * cache for the linear mapping here - something
- * equivalent to flush_cache_vmap() on the local cpu.
- * flush_cache_vmap() can't be used as most supporting
- * data structures are not set up yet.
- */
- /* copy static data */
- memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
- }
- /* we're ready, commit */
- pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
- unit_pages, psize_str, ai->static_size,
- ai->reserved_size, ai->dyn_size);
- rc = pcpu_setup_first_chunk(ai, vm.addr);
- goto out_free_ar;
- enomem:
- while (--j >= 0)
- free_fn(page_address(pages[j]), PAGE_SIZE);
- rc = -ENOMEM;
- out_free_ar:
- memblock_free_early(__pa(pages), pages_size);
- pcpu_free_alloc_info(ai);
- return rc;
- }
- #endif /* BUILD_PAGE_FIRST_CHUNK */
- #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
- /*
- * Generic SMP percpu area setup.
- *
- * The embedding helper is used because its behavior closely resembles
- * the original non-dynamic generic percpu area setup. This is
- * important because many archs have addressing restrictions and might
- * fail if the percpu area is located far away from the previous
- * location. As an added bonus, in non-NUMA cases, embedding is
- * generally a good idea TLB-wise because percpu area can piggy back
- * on the physical linear memory mapping which uses large page
- * mappings on applicable archs.
- */
- unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
- EXPORT_SYMBOL(__per_cpu_offset);
- static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
- size_t align)
- {
- return memblock_virt_alloc_from_nopanic(
- size, align, __pa(MAX_DMA_ADDRESS));
- }
- static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
- {
- memblock_free_early(__pa(ptr), size);
- }
- void __init setup_per_cpu_areas(void)
- {
- unsigned long delta;
- unsigned int cpu;
- int rc;
- /*
- * Always reserve area for module percpu variables. That's
- * what the legacy allocator did.
- */
- rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
- PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
- pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
- if (rc < 0)
- panic("Failed to initialize percpu areas.");
- delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
- for_each_possible_cpu(cpu)
- __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
- }
- #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
- #else /* CONFIG_SMP */
- /*
- * UP percpu area setup.
- *
- * UP always uses km-based percpu allocator with identity mapping.
- * Static percpu variables are indistinguishable from the usual static
- * variables and don't require any special preparation.
- */
- void __init setup_per_cpu_areas(void)
- {
- const size_t unit_size =
- roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
- PERCPU_DYNAMIC_RESERVE));
- struct pcpu_alloc_info *ai;
- void *fc;
- ai = pcpu_alloc_alloc_info(1, 1);
- fc = memblock_virt_alloc_from_nopanic(unit_size,
- PAGE_SIZE,
- __pa(MAX_DMA_ADDRESS));
- if (!ai || !fc)
- panic("Failed to allocate memory for percpu areas.");
- /* kmemleak tracks the percpu allocations separately */
- kmemleak_free(fc);
- ai->dyn_size = unit_size;
- ai->unit_size = unit_size;
- ai->atom_size = unit_size;
- ai->alloc_size = unit_size;
- ai->groups[0].nr_units = 1;
- ai->groups[0].cpu_map[0] = 0;
- if (pcpu_setup_first_chunk(ai, fc) < 0)
- panic("Failed to initialize percpu areas.");
- pcpu_free_alloc_info(ai);
- }
- #endif /* CONFIG_SMP */
- /*
- * pcpu_nr_pages - calculate total number of populated backing pages
- *
- * This reflects the number of pages populated to back chunks. Metadata is
- * excluded in the number exposed in meminfo as the number of backing pages
- * scales with the number of cpus and can quickly outweigh the memory used for
- * metadata. It also keeps this calculation nice and simple.
- *
- * RETURNS:
- * Total number of populated backing pages in use by the allocator.
- */
- unsigned long pcpu_nr_pages(void)
- {
- return pcpu_nr_populated * pcpu_nr_units;
- }
- /*
- * Percpu allocator is initialized early during boot when neither slab or
- * workqueue is available. Plug async management until everything is up
- * and running.
- */
- static int __init percpu_enable_async(void)
- {
- pcpu_async_enabled = true;
- return 0;
- }
- subsys_initcall(percpu_enable_async);
|