smp-bmips.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7. *
  8. * SMP support for BMIPS
  9. */
  10. #include <linux/init.h>
  11. #include <linux/sched.h>
  12. #include <linux/sched/hotplug.h>
  13. #include <linux/sched/task_stack.h>
  14. #include <linux/mm.h>
  15. #include <linux/delay.h>
  16. #include <linux/smp.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/cpu.h>
  20. #include <linux/cpumask.h>
  21. #include <linux/reboot.h>
  22. #include <linux/io.h>
  23. #include <linux/compiler.h>
  24. #include <linux/linkage.h>
  25. #include <linux/bug.h>
  26. #include <linux/kernel.h>
  27. #include <asm/time.h>
  28. #include <asm/pgtable.h>
  29. #include <asm/processor.h>
  30. #include <asm/bootinfo.h>
  31. #include <asm/pmon.h>
  32. #include <asm/cacheflush.h>
  33. #include <asm/tlbflush.h>
  34. #include <asm/mipsregs.h>
  35. #include <asm/bmips.h>
  36. #include <asm/traps.h>
  37. #include <asm/barrier.h>
  38. #include <asm/cpu-features.h>
  39. static int __maybe_unused max_cpus = 1;
  40. /* these may be configured by the platform code */
  41. int bmips_smp_enabled = 1;
  42. int bmips_cpu_offset;
  43. cpumask_t bmips_booted_mask;
  44. unsigned long bmips_tp1_irqs = IE_IRQ1;
  45. #define RESET_FROM_KSEG0 0x80080800
  46. #define RESET_FROM_KSEG1 0xa0080800
  47. static void bmips_set_reset_vec(int cpu, u32 val);
  48. #ifdef CONFIG_SMP
  49. /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  50. unsigned long bmips_smp_boot_sp;
  51. unsigned long bmips_smp_boot_gp;
  52. static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
  53. static void bmips5000_send_ipi_single(int cpu, unsigned int action);
  54. static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
  55. static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
  56. /* SW interrupts 0,1 are used for interprocessor signaling */
  57. #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
  58. #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
  59. #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
  60. #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  61. #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  62. #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
  63. static void __init bmips_smp_setup(void)
  64. {
  65. int i, cpu = 1, boot_cpu = 0;
  66. int cpu_hw_intr;
  67. switch (current_cpu_type()) {
  68. case CPU_BMIPS4350:
  69. case CPU_BMIPS4380:
  70. /* arbitration priority */
  71. clear_c0_brcm_cmt_ctrl(0x30);
  72. /* NBK and weak order flags */
  73. set_c0_brcm_config_0(0x30000);
  74. /* Find out if we are running on TP0 or TP1 */
  75. boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  76. /*
  77. * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
  78. * thread
  79. * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  80. * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  81. */
  82. if (boot_cpu == 0)
  83. cpu_hw_intr = 0x02;
  84. else
  85. cpu_hw_intr = 0x1d;
  86. change_c0_brcm_cmt_intr(0xf8018000,
  87. (cpu_hw_intr << 27) | (0x03 << 15));
  88. /* single core, 2 threads (2 pipelines) */
  89. max_cpus = 2;
  90. break;
  91. case CPU_BMIPS5000:
  92. /* enable raceless SW interrupts */
  93. set_c0_brcm_config(0x03 << 22);
  94. /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
  95. change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
  96. /* N cores, 2 threads per core */
  97. max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
  98. /* clear any pending SW interrupts */
  99. for (i = 0; i < max_cpus; i++) {
  100. write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
  101. write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
  102. }
  103. break;
  104. default:
  105. max_cpus = 1;
  106. }
  107. if (!bmips_smp_enabled)
  108. max_cpus = 1;
  109. /* this can be overridden by the BSP */
  110. if (!board_ebase_setup)
  111. board_ebase_setup = &bmips_ebase_setup;
  112. __cpu_number_map[boot_cpu] = 0;
  113. __cpu_logical_map[0] = boot_cpu;
  114. for (i = 0; i < max_cpus; i++) {
  115. if (i != boot_cpu) {
  116. __cpu_number_map[i] = cpu;
  117. __cpu_logical_map[cpu] = i;
  118. cpu++;
  119. }
  120. set_cpu_possible(i, 1);
  121. set_cpu_present(i, 1);
  122. }
  123. }
  124. /*
  125. * IPI IRQ setup - runs on CPU0
  126. */
  127. static void bmips_prepare_cpus(unsigned int max_cpus)
  128. {
  129. irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
  130. switch (current_cpu_type()) {
  131. case CPU_BMIPS4350:
  132. case CPU_BMIPS4380:
  133. bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
  134. break;
  135. case CPU_BMIPS5000:
  136. bmips_ipi_interrupt = bmips5000_ipi_interrupt;
  137. break;
  138. default:
  139. return;
  140. }
  141. if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
  142. IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
  143. panic("Can't request IPI0 interrupt");
  144. if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
  145. IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
  146. panic("Can't request IPI1 interrupt");
  147. }
  148. /*
  149. * Tell the hardware to boot CPUx - runs on CPU0
  150. */
  151. static int bmips_boot_secondary(int cpu, struct task_struct *idle)
  152. {
  153. bmips_smp_boot_sp = __KSTK_TOS(idle);
  154. bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
  155. mb();
  156. /*
  157. * Initial boot sequence for secondary CPU:
  158. * bmips_reset_nmi_vec @ a000_0000 ->
  159. * bmips_smp_entry ->
  160. * plat_wired_tlb_setup (cached function call; optional) ->
  161. * start_secondary (cached jump)
  162. *
  163. * Warm restart sequence:
  164. * play_dead WAIT loop ->
  165. * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
  166. * eret to play_dead ->
  167. * bmips_secondary_reentry ->
  168. * start_secondary
  169. */
  170. pr_info("SMP: Booting CPU%d...\n", cpu);
  171. if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
  172. /* kseg1 might not exist if this CPU enabled XKS01 */
  173. bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
  174. switch (current_cpu_type()) {
  175. case CPU_BMIPS4350:
  176. case CPU_BMIPS4380:
  177. bmips43xx_send_ipi_single(cpu, 0);
  178. break;
  179. case CPU_BMIPS5000:
  180. bmips5000_send_ipi_single(cpu, 0);
  181. break;
  182. }
  183. } else {
  184. bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
  185. switch (current_cpu_type()) {
  186. case CPU_BMIPS4350:
  187. case CPU_BMIPS4380:
  188. /* Reset slave TP1 if booting from TP0 */
  189. if (cpu_logical_map(cpu) == 1)
  190. set_c0_brcm_cmt_ctrl(0x01);
  191. break;
  192. case CPU_BMIPS5000:
  193. write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
  194. break;
  195. }
  196. cpumask_set_cpu(cpu, &bmips_booted_mask);
  197. }
  198. return 0;
  199. }
  200. /*
  201. * Early setup - runs on secondary CPU after cache probe
  202. */
  203. static void bmips_init_secondary(void)
  204. {
  205. bmips_cpu_setup();
  206. switch (current_cpu_type()) {
  207. case CPU_BMIPS4350:
  208. case CPU_BMIPS4380:
  209. clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
  210. break;
  211. case CPU_BMIPS5000:
  212. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
  213. cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
  214. break;
  215. }
  216. }
  217. /*
  218. * Late setup - runs on secondary CPU before entering the idle loop
  219. */
  220. static void bmips_smp_finish(void)
  221. {
  222. pr_info("SMP: CPU%d is running\n", smp_processor_id());
  223. /* make sure there won't be a timer interrupt for a little while */
  224. write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
  225. irq_enable_hazard();
  226. set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
  227. irq_enable_hazard();
  228. }
  229. /*
  230. * BMIPS5000 raceless IPIs
  231. *
  232. * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
  233. * IPI0 is used for SMP_RESCHEDULE_YOURSELF
  234. * IPI1 is used for SMP_CALL_FUNCTION
  235. */
  236. static void bmips5000_send_ipi_single(int cpu, unsigned int action)
  237. {
  238. write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
  239. }
  240. static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
  241. {
  242. int action = irq - IPI0_IRQ;
  243. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
  244. if (action == 0)
  245. scheduler_ipi();
  246. else
  247. generic_smp_call_function_interrupt();
  248. return IRQ_HANDLED;
  249. }
  250. static void bmips5000_send_ipi_mask(const struct cpumask *mask,
  251. unsigned int action)
  252. {
  253. unsigned int i;
  254. for_each_cpu(i, mask)
  255. bmips5000_send_ipi_single(i, action);
  256. }
  257. /*
  258. * BMIPS43xx racey IPIs
  259. *
  260. * We use one inbound SW IRQ for each CPU.
  261. *
  262. * A spinlock must be held in order to keep CPUx from accidentally clearing
  263. * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
  264. * same spinlock is used to protect the action masks.
  265. */
  266. static DEFINE_SPINLOCK(ipi_lock);
  267. static DEFINE_PER_CPU(int, ipi_action_mask);
  268. static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
  269. {
  270. unsigned long flags;
  271. spin_lock_irqsave(&ipi_lock, flags);
  272. set_c0_cause(cpu ? C_SW1 : C_SW0);
  273. per_cpu(ipi_action_mask, cpu) |= action;
  274. irq_enable_hazard();
  275. spin_unlock_irqrestore(&ipi_lock, flags);
  276. }
  277. static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
  278. {
  279. unsigned long flags;
  280. int action, cpu = irq - IPI0_IRQ;
  281. spin_lock_irqsave(&ipi_lock, flags);
  282. action = __this_cpu_read(ipi_action_mask);
  283. per_cpu(ipi_action_mask, cpu) = 0;
  284. clear_c0_cause(cpu ? C_SW1 : C_SW0);
  285. spin_unlock_irqrestore(&ipi_lock, flags);
  286. if (action & SMP_RESCHEDULE_YOURSELF)
  287. scheduler_ipi();
  288. if (action & SMP_CALL_FUNCTION)
  289. generic_smp_call_function_interrupt();
  290. return IRQ_HANDLED;
  291. }
  292. static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
  293. unsigned int action)
  294. {
  295. unsigned int i;
  296. for_each_cpu(i, mask)
  297. bmips43xx_send_ipi_single(i, action);
  298. }
  299. #ifdef CONFIG_HOTPLUG_CPU
  300. static int bmips_cpu_disable(void)
  301. {
  302. unsigned int cpu = smp_processor_id();
  303. if (cpu == 0)
  304. return -EBUSY;
  305. pr_info("SMP: CPU%d is offline\n", cpu);
  306. set_cpu_online(cpu, false);
  307. calculate_cpu_foreign_map();
  308. irq_cpu_offline();
  309. clear_c0_status(IE_IRQ5);
  310. local_flush_tlb_all();
  311. local_flush_icache_range(0, ~0);
  312. return 0;
  313. }
  314. static void bmips_cpu_die(unsigned int cpu)
  315. {
  316. }
  317. void __ref play_dead(void)
  318. {
  319. idle_task_exit();
  320. /* flush data cache */
  321. _dma_cache_wback_inv(0, ~0);
  322. /*
  323. * Wakeup is on SW0 or SW1; disable everything else
  324. * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
  325. * IRQ handlers; this clears ST0_IE and returns immediately.
  326. */
  327. clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
  328. change_c0_status(
  329. IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
  330. IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
  331. irq_disable_hazard();
  332. /*
  333. * wait for SW interrupt from bmips_boot_secondary(), then jump
  334. * back to start_secondary()
  335. */
  336. __asm__ __volatile__(
  337. " wait\n"
  338. " j bmips_secondary_reentry\n"
  339. : : : "memory");
  340. }
  341. #endif /* CONFIG_HOTPLUG_CPU */
  342. const struct plat_smp_ops bmips43xx_smp_ops = {
  343. .smp_setup = bmips_smp_setup,
  344. .prepare_cpus = bmips_prepare_cpus,
  345. .boot_secondary = bmips_boot_secondary,
  346. .smp_finish = bmips_smp_finish,
  347. .init_secondary = bmips_init_secondary,
  348. .send_ipi_single = bmips43xx_send_ipi_single,
  349. .send_ipi_mask = bmips43xx_send_ipi_mask,
  350. #ifdef CONFIG_HOTPLUG_CPU
  351. .cpu_disable = bmips_cpu_disable,
  352. .cpu_die = bmips_cpu_die,
  353. #endif
  354. };
  355. const struct plat_smp_ops bmips5000_smp_ops = {
  356. .smp_setup = bmips_smp_setup,
  357. .prepare_cpus = bmips_prepare_cpus,
  358. .boot_secondary = bmips_boot_secondary,
  359. .smp_finish = bmips_smp_finish,
  360. .init_secondary = bmips_init_secondary,
  361. .send_ipi_single = bmips5000_send_ipi_single,
  362. .send_ipi_mask = bmips5000_send_ipi_mask,
  363. #ifdef CONFIG_HOTPLUG_CPU
  364. .cpu_disable = bmips_cpu_disable,
  365. .cpu_die = bmips_cpu_die,
  366. #endif
  367. };
  368. #endif /* CONFIG_SMP */
  369. /***********************************************************************
  370. * BMIPS vector relocation
  371. * This is primarily used for SMP boot, but it is applicable to some
  372. * UP BMIPS systems as well.
  373. ***********************************************************************/
  374. static void bmips_wr_vec(unsigned long dst, char *start, char *end)
  375. {
  376. memcpy((void *)dst, start, end - start);
  377. dma_cache_wback(dst, end - start);
  378. local_flush_icache_range(dst, dst + (end - start));
  379. instruction_hazard();
  380. }
  381. static inline void bmips_nmi_handler_setup(void)
  382. {
  383. bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
  384. bmips_reset_nmi_vec_end);
  385. bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
  386. bmips_smp_int_vec_end);
  387. }
  388. struct reset_vec_info {
  389. int cpu;
  390. u32 val;
  391. };
  392. static void bmips_set_reset_vec_remote(void *vinfo)
  393. {
  394. struct reset_vec_info *info = vinfo;
  395. int shift = info->cpu & 0x01 ? 16 : 0;
  396. u32 mask = ~(0xffff << shift), val = info->val >> 16;
  397. preempt_disable();
  398. if (smp_processor_id() > 0) {
  399. smp_call_function_single(0, &bmips_set_reset_vec_remote,
  400. info, 1);
  401. } else {
  402. if (info->cpu & 0x02) {
  403. /* BMIPS5200 "should" use mask/shift, but it's buggy */
  404. bmips_write_zscm_reg(0xa0, (val << 16) | val);
  405. bmips_read_zscm_reg(0xa0);
  406. } else {
  407. write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
  408. (val << shift));
  409. }
  410. }
  411. preempt_enable();
  412. }
  413. static void bmips_set_reset_vec(int cpu, u32 val)
  414. {
  415. struct reset_vec_info info;
  416. if (current_cpu_type() == CPU_BMIPS5000) {
  417. /* this needs to run from CPU0 (which is always online) */
  418. info.cpu = cpu;
  419. info.val = val;
  420. bmips_set_reset_vec_remote(&info);
  421. } else {
  422. void __iomem *cbr = BMIPS_GET_CBR();
  423. if (cpu == 0)
  424. __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
  425. else {
  426. if (current_cpu_type() != CPU_BMIPS4380)
  427. return;
  428. __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  429. }
  430. }
  431. __sync();
  432. back_to_back_c0_hazard();
  433. }
  434. void bmips_ebase_setup(void)
  435. {
  436. unsigned long new_ebase = ebase;
  437. BUG_ON(ebase != CKSEG0);
  438. switch (current_cpu_type()) {
  439. case CPU_BMIPS4350:
  440. /*
  441. * BMIPS4350 cannot relocate the normal vectors, but it
  442. * can relocate the BEV=1 vectors. So CPU1 starts up at
  443. * the relocated BEV=1, IV=0 general exception vector @
  444. * 0xa000_0380.
  445. *
  446. * set_uncached_handler() is used here because:
  447. * - CPU1 will run this from uncached space
  448. * - None of the cacheflush functions are set up yet
  449. */
  450. set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
  451. &bmips_smp_int_vec, 0x80);
  452. __sync();
  453. return;
  454. case CPU_BMIPS3300:
  455. case CPU_BMIPS4380:
  456. /*
  457. * 0x8000_0000: reset/NMI (initially in kseg1)
  458. * 0x8000_0400: normal vectors
  459. */
  460. new_ebase = 0x80000400;
  461. bmips_set_reset_vec(0, RESET_FROM_KSEG0);
  462. break;
  463. case CPU_BMIPS5000:
  464. /*
  465. * 0x8000_0000: reset/NMI (initially in kseg1)
  466. * 0x8000_1000: normal vectors
  467. */
  468. new_ebase = 0x80001000;
  469. bmips_set_reset_vec(0, RESET_FROM_KSEG0);
  470. write_c0_ebase(new_ebase);
  471. break;
  472. default:
  473. return;
  474. }
  475. board_nmi_handler_setup = &bmips_nmi_handler_setup;
  476. ebase = new_ebase;
  477. }
  478. asmlinkage void __weak plat_wired_tlb_setup(void)
  479. {
  480. /*
  481. * Called when starting/restarting a secondary CPU.
  482. * Kernel stacks and other important data might only be accessible
  483. * once the wired entries are present.
  484. */
  485. }
  486. void bmips_cpu_setup(void)
  487. {
  488. void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
  489. u32 __maybe_unused cfg;
  490. switch (current_cpu_type()) {
  491. case CPU_BMIPS3300:
  492. /* Set BIU to async mode */
  493. set_c0_brcm_bus_pll(BIT(22));
  494. __sync();
  495. /* put the BIU back in sync mode */
  496. clear_c0_brcm_bus_pll(BIT(22));
  497. /* clear BHTD to enable branch history table */
  498. clear_c0_brcm_reset(BIT(16));
  499. /* Flush and enable RAC */
  500. cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
  501. __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
  502. __raw_readl(cbr + BMIPS_RAC_CONFIG);
  503. cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
  504. __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
  505. __raw_readl(cbr + BMIPS_RAC_CONFIG);
  506. cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
  507. __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
  508. __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
  509. break;
  510. case CPU_BMIPS4380:
  511. /* CBG workaround for early BMIPS4380 CPUs */
  512. switch (read_c0_prid()) {
  513. case 0x2a040:
  514. case 0x2a042:
  515. case 0x2a044:
  516. case 0x2a060:
  517. cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
  518. __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
  519. __raw_readl(cbr + BMIPS_L2_CONFIG);
  520. }
  521. /* clear BHTD to enable branch history table */
  522. clear_c0_brcm_config_0(BIT(21));
  523. /* XI/ROTR enable */
  524. set_c0_brcm_config_0(BIT(23));
  525. set_c0_brcm_cmt_ctrl(BIT(15));
  526. break;
  527. case CPU_BMIPS5000:
  528. /* enable RDHWR, BRDHWR */
  529. set_c0_brcm_config(BIT(17) | BIT(21));
  530. /* Disable JTB */
  531. __asm__ __volatile__(
  532. " .set noreorder\n"
  533. " li $8, 0x5a455048\n"
  534. " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
  535. " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
  536. " li $9, 0x00008000\n"
  537. " or $8, $8, $9\n"
  538. " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
  539. " sync\n"
  540. " li $8, 0x0\n"
  541. " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
  542. " .set reorder\n"
  543. : : : "$8", "$9");
  544. /* XI enable */
  545. set_c0_brcm_config(BIT(27));
  546. /* enable MIPS32R2 ROR instruction for XI TLB handlers */
  547. __asm__ __volatile__(
  548. " li $8, 0x5a455048\n"
  549. " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
  550. " nop; nop; nop\n"
  551. " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
  552. " lui $9, 0x0100\n"
  553. " or $8, $9\n"
  554. " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
  555. : : : "$8", "$9");
  556. break;
  557. }
  558. }