budget.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * This file is part of UBIFS.
  4. *
  5. * Copyright (C) 2006-2008 Nokia Corporation.
  6. *
  7. * Authors: Adrian Hunter
  8. * Artem Bityutskiy (Битюцкий Артём)
  9. */
  10. /*
  11. * This file implements the budgeting sub-system which is responsible for UBIFS
  12. * space management.
  13. *
  14. * Factors such as compression, wasted space at the ends of LEBs, space in other
  15. * journal heads, the effect of updates on the index, and so on, make it
  16. * impossible to accurately predict the amount of space needed. Consequently
  17. * approximations are used.
  18. */
  19. #include "ubifs.h"
  20. #ifndef __UBOOT__
  21. #include <linux/writeback.h>
  22. #else
  23. #include <linux/err.h>
  24. #endif
  25. #include <linux/math64.h>
  26. /*
  27. * When pessimistic budget calculations say that there is no enough space,
  28. * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
  29. * or committing. The below constant defines maximum number of times UBIFS
  30. * repeats the operations.
  31. */
  32. #define MAX_MKSPC_RETRIES 3
  33. /*
  34. * The below constant defines amount of dirty pages which should be written
  35. * back at when trying to shrink the liability.
  36. */
  37. #define NR_TO_WRITE 16
  38. #ifndef __UBOOT__
  39. /**
  40. * shrink_liability - write-back some dirty pages/inodes.
  41. * @c: UBIFS file-system description object
  42. * @nr_to_write: how many dirty pages to write-back
  43. *
  44. * This function shrinks UBIFS liability by means of writing back some amount
  45. * of dirty inodes and their pages.
  46. *
  47. * Note, this function synchronizes even VFS inodes which are locked
  48. * (@i_mutex) by the caller of the budgeting function, because write-back does
  49. * not touch @i_mutex.
  50. */
  51. static void shrink_liability(struct ubifs_info *c, int nr_to_write)
  52. {
  53. down_read(&c->vfs_sb->s_umount);
  54. writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
  55. up_read(&c->vfs_sb->s_umount);
  56. }
  57. /**
  58. * run_gc - run garbage collector.
  59. * @c: UBIFS file-system description object
  60. *
  61. * This function runs garbage collector to make some more free space. Returns
  62. * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
  63. * negative error code in case of failure.
  64. */
  65. static int run_gc(struct ubifs_info *c)
  66. {
  67. int err, lnum;
  68. /* Make some free space by garbage-collecting dirty space */
  69. down_read(&c->commit_sem);
  70. lnum = ubifs_garbage_collect(c, 1);
  71. up_read(&c->commit_sem);
  72. if (lnum < 0)
  73. return lnum;
  74. /* GC freed one LEB, return it to lprops */
  75. dbg_budg("GC freed LEB %d", lnum);
  76. err = ubifs_return_leb(c, lnum);
  77. if (err)
  78. return err;
  79. return 0;
  80. }
  81. /**
  82. * get_liability - calculate current liability.
  83. * @c: UBIFS file-system description object
  84. *
  85. * This function calculates and returns current UBIFS liability, i.e. the
  86. * amount of bytes UBIFS has "promised" to write to the media.
  87. */
  88. static long long get_liability(struct ubifs_info *c)
  89. {
  90. long long liab;
  91. spin_lock(&c->space_lock);
  92. liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
  93. spin_unlock(&c->space_lock);
  94. return liab;
  95. }
  96. /**
  97. * make_free_space - make more free space on the file-system.
  98. * @c: UBIFS file-system description object
  99. *
  100. * This function is called when an operation cannot be budgeted because there
  101. * is supposedly no free space. But in most cases there is some free space:
  102. * o budgeting is pessimistic, so it always budgets more than it is actually
  103. * needed, so shrinking the liability is one way to make free space - the
  104. * cached data will take less space then it was budgeted for;
  105. * o GC may turn some dark space into free space (budgeting treats dark space
  106. * as not available);
  107. * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
  108. *
  109. * So this function tries to do the above. Returns %-EAGAIN if some free space
  110. * was presumably made and the caller has to re-try budgeting the operation.
  111. * Returns %-ENOSPC if it couldn't do more free space, and other negative error
  112. * codes on failures.
  113. */
  114. static int make_free_space(struct ubifs_info *c)
  115. {
  116. int err, retries = 0;
  117. long long liab1, liab2;
  118. do {
  119. liab1 = get_liability(c);
  120. /*
  121. * We probably have some dirty pages or inodes (liability), try
  122. * to write them back.
  123. */
  124. dbg_budg("liability %lld, run write-back", liab1);
  125. shrink_liability(c, NR_TO_WRITE);
  126. liab2 = get_liability(c);
  127. if (liab2 < liab1)
  128. return -EAGAIN;
  129. dbg_budg("new liability %lld (not shrunk)", liab2);
  130. /* Liability did not shrink again, try GC */
  131. dbg_budg("Run GC");
  132. err = run_gc(c);
  133. if (!err)
  134. return -EAGAIN;
  135. if (err != -EAGAIN && err != -ENOSPC)
  136. /* Some real error happened */
  137. return err;
  138. dbg_budg("Run commit (retries %d)", retries);
  139. err = ubifs_run_commit(c);
  140. if (err)
  141. return err;
  142. } while (retries++ < MAX_MKSPC_RETRIES);
  143. return -ENOSPC;
  144. }
  145. #endif
  146. /**
  147. * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
  148. * @c: UBIFS file-system description object
  149. *
  150. * This function calculates and returns the number of LEBs which should be kept
  151. * for index usage.
  152. */
  153. int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
  154. {
  155. int idx_lebs;
  156. long long idx_size;
  157. idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
  158. /* And make sure we have thrice the index size of space reserved */
  159. idx_size += idx_size << 1;
  160. /*
  161. * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
  162. * pair, nor similarly the two variables for the new index size, so we
  163. * have to do this costly 64-bit division on fast-path.
  164. */
  165. idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
  166. /*
  167. * The index head is not available for the in-the-gaps method, so add an
  168. * extra LEB to compensate.
  169. */
  170. idx_lebs += 1;
  171. if (idx_lebs < MIN_INDEX_LEBS)
  172. idx_lebs = MIN_INDEX_LEBS;
  173. return idx_lebs;
  174. }
  175. #ifndef __UBOOT__
  176. /**
  177. * ubifs_calc_available - calculate available FS space.
  178. * @c: UBIFS file-system description object
  179. * @min_idx_lebs: minimum number of LEBs reserved for the index
  180. *
  181. * This function calculates and returns amount of FS space available for use.
  182. */
  183. long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
  184. {
  185. int subtract_lebs;
  186. long long available;
  187. available = c->main_bytes - c->lst.total_used;
  188. /*
  189. * Now 'available' contains theoretically available flash space
  190. * assuming there is no index, so we have to subtract the space which
  191. * is reserved for the index.
  192. */
  193. subtract_lebs = min_idx_lebs;
  194. /* Take into account that GC reserves one LEB for its own needs */
  195. subtract_lebs += 1;
  196. /*
  197. * The GC journal head LEB is not really accessible. And since
  198. * different write types go to different heads, we may count only on
  199. * one head's space.
  200. */
  201. subtract_lebs += c->jhead_cnt - 1;
  202. /* We also reserve one LEB for deletions, which bypass budgeting */
  203. subtract_lebs += 1;
  204. available -= (long long)subtract_lebs * c->leb_size;
  205. /* Subtract the dead space which is not available for use */
  206. available -= c->lst.total_dead;
  207. /*
  208. * Subtract dark space, which might or might not be usable - it depends
  209. * on the data which we have on the media and which will be written. If
  210. * this is a lot of uncompressed or not-compressible data, the dark
  211. * space cannot be used.
  212. */
  213. available -= c->lst.total_dark;
  214. /*
  215. * However, there is more dark space. The index may be bigger than
  216. * @min_idx_lebs. Those extra LEBs are assumed to be available, but
  217. * their dark space is not included in total_dark, so it is subtracted
  218. * here.
  219. */
  220. if (c->lst.idx_lebs > min_idx_lebs) {
  221. subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
  222. available -= subtract_lebs * c->dark_wm;
  223. }
  224. /* The calculations are rough and may end up with a negative number */
  225. return available > 0 ? available : 0;
  226. }
  227. /**
  228. * can_use_rp - check whether the user is allowed to use reserved pool.
  229. * @c: UBIFS file-system description object
  230. *
  231. * UBIFS has so-called "reserved pool" which is flash space reserved
  232. * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
  233. * This function checks whether current user is allowed to use reserved pool.
  234. * Returns %1 current user is allowed to use reserved pool and %0 otherwise.
  235. */
  236. static int can_use_rp(struct ubifs_info *c)
  237. {
  238. if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
  239. (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
  240. return 1;
  241. return 0;
  242. }
  243. /**
  244. * do_budget_space - reserve flash space for index and data growth.
  245. * @c: UBIFS file-system description object
  246. *
  247. * This function makes sure UBIFS has enough free LEBs for index growth and
  248. * data.
  249. *
  250. * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
  251. * would take if it was consolidated and written to the flash. This guarantees
  252. * that the "in-the-gaps" commit method always succeeds and UBIFS will always
  253. * be able to commit dirty index. So this function basically adds amount of
  254. * budgeted index space to the size of the current index, multiplies this by 3,
  255. * and makes sure this does not exceed the amount of free LEBs.
  256. *
  257. * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
  258. * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
  259. * be large, because UBIFS does not do any index consolidation as long as
  260. * there is free space. IOW, the index may take a lot of LEBs, but the LEBs
  261. * will contain a lot of dirt.
  262. * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
  263. * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
  264. *
  265. * This function returns zero in case of success, and %-ENOSPC in case of
  266. * failure.
  267. */
  268. static int do_budget_space(struct ubifs_info *c)
  269. {
  270. long long outstanding, available;
  271. int lebs, rsvd_idx_lebs, min_idx_lebs;
  272. /* First budget index space */
  273. min_idx_lebs = ubifs_calc_min_idx_lebs(c);
  274. /* Now 'min_idx_lebs' contains number of LEBs to reserve */
  275. if (min_idx_lebs > c->lst.idx_lebs)
  276. rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
  277. else
  278. rsvd_idx_lebs = 0;
  279. /*
  280. * The number of LEBs that are available to be used by the index is:
  281. *
  282. * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
  283. * @c->lst.taken_empty_lebs
  284. *
  285. * @c->lst.empty_lebs are available because they are empty.
  286. * @c->freeable_cnt are available because they contain only free and
  287. * dirty space, @c->idx_gc_cnt are available because they are index
  288. * LEBs that have been garbage collected and are awaiting the commit
  289. * before they can be used. And the in-the-gaps method will grab these
  290. * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
  291. * already been allocated for some purpose.
  292. *
  293. * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
  294. * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
  295. * are taken until after the commit).
  296. *
  297. * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
  298. * because of the way we serialize LEB allocations and budgeting. See a
  299. * comment in 'ubifs_find_free_space()'.
  300. */
  301. lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
  302. c->lst.taken_empty_lebs;
  303. if (unlikely(rsvd_idx_lebs > lebs)) {
  304. dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
  305. min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
  306. return -ENOSPC;
  307. }
  308. available = ubifs_calc_available(c, min_idx_lebs);
  309. outstanding = c->bi.data_growth + c->bi.dd_growth;
  310. if (unlikely(available < outstanding)) {
  311. dbg_budg("out of data space: available %lld, outstanding %lld",
  312. available, outstanding);
  313. return -ENOSPC;
  314. }
  315. if (available - outstanding <= c->rp_size && !can_use_rp(c))
  316. return -ENOSPC;
  317. c->bi.min_idx_lebs = min_idx_lebs;
  318. return 0;
  319. }
  320. /**
  321. * calc_idx_growth - calculate approximate index growth from budgeting request.
  322. * @c: UBIFS file-system description object
  323. * @req: budgeting request
  324. *
  325. * For now we assume each new node adds one znode. But this is rather poor
  326. * approximation, though.
  327. */
  328. static int calc_idx_growth(const struct ubifs_info *c,
  329. const struct ubifs_budget_req *req)
  330. {
  331. int znodes;
  332. znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
  333. req->new_dent;
  334. return znodes * c->max_idx_node_sz;
  335. }
  336. /**
  337. * calc_data_growth - calculate approximate amount of new data from budgeting
  338. * request.
  339. * @c: UBIFS file-system description object
  340. * @req: budgeting request
  341. */
  342. static int calc_data_growth(const struct ubifs_info *c,
  343. const struct ubifs_budget_req *req)
  344. {
  345. int data_growth;
  346. data_growth = req->new_ino ? c->bi.inode_budget : 0;
  347. if (req->new_page)
  348. data_growth += c->bi.page_budget;
  349. if (req->new_dent)
  350. data_growth += c->bi.dent_budget;
  351. data_growth += req->new_ino_d;
  352. return data_growth;
  353. }
  354. /**
  355. * calc_dd_growth - calculate approximate amount of data which makes other data
  356. * dirty from budgeting request.
  357. * @c: UBIFS file-system description object
  358. * @req: budgeting request
  359. */
  360. static int calc_dd_growth(const struct ubifs_info *c,
  361. const struct ubifs_budget_req *req)
  362. {
  363. int dd_growth;
  364. dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
  365. if (req->dirtied_ino)
  366. dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
  367. if (req->mod_dent)
  368. dd_growth += c->bi.dent_budget;
  369. dd_growth += req->dirtied_ino_d;
  370. return dd_growth;
  371. }
  372. /**
  373. * ubifs_budget_space - ensure there is enough space to complete an operation.
  374. * @c: UBIFS file-system description object
  375. * @req: budget request
  376. *
  377. * This function allocates budget for an operation. It uses pessimistic
  378. * approximation of how much flash space the operation needs. The goal of this
  379. * function is to make sure UBIFS always has flash space to flush all dirty
  380. * pages, dirty inodes, and dirty znodes (liability). This function may force
  381. * commit, garbage-collection or write-back. Returns zero in case of success,
  382. * %-ENOSPC if there is no free space and other negative error codes in case of
  383. * failures.
  384. */
  385. int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
  386. {
  387. int err, idx_growth, data_growth, dd_growth, retried = 0;
  388. ubifs_assert(req->new_page <= 1);
  389. ubifs_assert(req->dirtied_page <= 1);
  390. ubifs_assert(req->new_dent <= 1);
  391. ubifs_assert(req->mod_dent <= 1);
  392. ubifs_assert(req->new_ino <= 1);
  393. ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
  394. ubifs_assert(req->dirtied_ino <= 4);
  395. ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
  396. ubifs_assert(!(req->new_ino_d & 7));
  397. ubifs_assert(!(req->dirtied_ino_d & 7));
  398. data_growth = calc_data_growth(c, req);
  399. dd_growth = calc_dd_growth(c, req);
  400. if (!data_growth && !dd_growth)
  401. return 0;
  402. idx_growth = calc_idx_growth(c, req);
  403. again:
  404. spin_lock(&c->space_lock);
  405. ubifs_assert(c->bi.idx_growth >= 0);
  406. ubifs_assert(c->bi.data_growth >= 0);
  407. ubifs_assert(c->bi.dd_growth >= 0);
  408. if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
  409. dbg_budg("no space");
  410. spin_unlock(&c->space_lock);
  411. return -ENOSPC;
  412. }
  413. c->bi.idx_growth += idx_growth;
  414. c->bi.data_growth += data_growth;
  415. c->bi.dd_growth += dd_growth;
  416. err = do_budget_space(c);
  417. if (likely(!err)) {
  418. req->idx_growth = idx_growth;
  419. req->data_growth = data_growth;
  420. req->dd_growth = dd_growth;
  421. spin_unlock(&c->space_lock);
  422. return 0;
  423. }
  424. /* Restore the old values */
  425. c->bi.idx_growth -= idx_growth;
  426. c->bi.data_growth -= data_growth;
  427. c->bi.dd_growth -= dd_growth;
  428. spin_unlock(&c->space_lock);
  429. if (req->fast) {
  430. dbg_budg("no space for fast budgeting");
  431. return err;
  432. }
  433. err = make_free_space(c);
  434. cond_resched();
  435. if (err == -EAGAIN) {
  436. dbg_budg("try again");
  437. goto again;
  438. } else if (err == -ENOSPC) {
  439. if (!retried) {
  440. retried = 1;
  441. dbg_budg("-ENOSPC, but anyway try once again");
  442. goto again;
  443. }
  444. dbg_budg("FS is full, -ENOSPC");
  445. c->bi.nospace = 1;
  446. if (can_use_rp(c) || c->rp_size == 0)
  447. c->bi.nospace_rp = 1;
  448. smp_wmb();
  449. } else
  450. ubifs_err(c, "cannot budget space, error %d", err);
  451. return err;
  452. }
  453. /**
  454. * ubifs_release_budget - release budgeted free space.
  455. * @c: UBIFS file-system description object
  456. * @req: budget request
  457. *
  458. * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
  459. * since the index changes (which were budgeted for in @req->idx_growth) will
  460. * only be written to the media on commit, this function moves the index budget
  461. * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
  462. * by the commit operation.
  463. */
  464. void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
  465. {
  466. ubifs_assert(req->new_page <= 1);
  467. ubifs_assert(req->dirtied_page <= 1);
  468. ubifs_assert(req->new_dent <= 1);
  469. ubifs_assert(req->mod_dent <= 1);
  470. ubifs_assert(req->new_ino <= 1);
  471. ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
  472. ubifs_assert(req->dirtied_ino <= 4);
  473. ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
  474. ubifs_assert(!(req->new_ino_d & 7));
  475. ubifs_assert(!(req->dirtied_ino_d & 7));
  476. if (!req->recalculate) {
  477. ubifs_assert(req->idx_growth >= 0);
  478. ubifs_assert(req->data_growth >= 0);
  479. ubifs_assert(req->dd_growth >= 0);
  480. }
  481. if (req->recalculate) {
  482. req->data_growth = calc_data_growth(c, req);
  483. req->dd_growth = calc_dd_growth(c, req);
  484. req->idx_growth = calc_idx_growth(c, req);
  485. }
  486. if (!req->data_growth && !req->dd_growth)
  487. return;
  488. c->bi.nospace = c->bi.nospace_rp = 0;
  489. smp_wmb();
  490. spin_lock(&c->space_lock);
  491. c->bi.idx_growth -= req->idx_growth;
  492. c->bi.uncommitted_idx += req->idx_growth;
  493. c->bi.data_growth -= req->data_growth;
  494. c->bi.dd_growth -= req->dd_growth;
  495. c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
  496. ubifs_assert(c->bi.idx_growth >= 0);
  497. ubifs_assert(c->bi.data_growth >= 0);
  498. ubifs_assert(c->bi.dd_growth >= 0);
  499. ubifs_assert(c->bi.min_idx_lebs < c->main_lebs);
  500. ubifs_assert(!(c->bi.idx_growth & 7));
  501. ubifs_assert(!(c->bi.data_growth & 7));
  502. ubifs_assert(!(c->bi.dd_growth & 7));
  503. spin_unlock(&c->space_lock);
  504. }
  505. /**
  506. * ubifs_convert_page_budget - convert budget of a new page.
  507. * @c: UBIFS file-system description object
  508. *
  509. * This function converts budget which was allocated for a new page of data to
  510. * the budget of changing an existing page of data. The latter is smaller than
  511. * the former, so this function only does simple re-calculation and does not
  512. * involve any write-back.
  513. */
  514. void ubifs_convert_page_budget(struct ubifs_info *c)
  515. {
  516. spin_lock(&c->space_lock);
  517. /* Release the index growth reservation */
  518. c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
  519. /* Release the data growth reservation */
  520. c->bi.data_growth -= c->bi.page_budget;
  521. /* Increase the dirty data growth reservation instead */
  522. c->bi.dd_growth += c->bi.page_budget;
  523. /* And re-calculate the indexing space reservation */
  524. c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
  525. spin_unlock(&c->space_lock);
  526. }
  527. /**
  528. * ubifs_release_dirty_inode_budget - release dirty inode budget.
  529. * @c: UBIFS file-system description object
  530. * @ui: UBIFS inode to release the budget for
  531. *
  532. * This function releases budget corresponding to a dirty inode. It is usually
  533. * called when after the inode has been written to the media and marked as
  534. * clean. It also causes the "no space" flags to be cleared.
  535. */
  536. void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
  537. struct ubifs_inode *ui)
  538. {
  539. struct ubifs_budget_req req;
  540. memset(&req, 0, sizeof(struct ubifs_budget_req));
  541. /* The "no space" flags will be cleared because dd_growth is > 0 */
  542. req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
  543. ubifs_release_budget(c, &req);
  544. }
  545. #endif
  546. /**
  547. * ubifs_reported_space - calculate reported free space.
  548. * @c: the UBIFS file-system description object
  549. * @free: amount of free space
  550. *
  551. * This function calculates amount of free space which will be reported to
  552. * user-space. User-space application tend to expect that if the file-system
  553. * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
  554. * are able to write a file of size N. UBIFS attaches node headers to each data
  555. * node and it has to write indexing nodes as well. This introduces additional
  556. * overhead, and UBIFS has to report slightly less free space to meet the above
  557. * expectations.
  558. *
  559. * This function assumes free space is made up of uncompressed data nodes and
  560. * full index nodes (one per data node, tripled because we always allow enough
  561. * space to write the index thrice).
  562. *
  563. * Note, the calculation is pessimistic, which means that most of the time
  564. * UBIFS reports less space than it actually has.
  565. */
  566. long long ubifs_reported_space(const struct ubifs_info *c, long long free)
  567. {
  568. int divisor, factor, f;
  569. /*
  570. * Reported space size is @free * X, where X is UBIFS block size
  571. * divided by UBIFS block size + all overhead one data block
  572. * introduces. The overhead is the node header + indexing overhead.
  573. *
  574. * Indexing overhead calculations are based on the following formula:
  575. * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
  576. * of data nodes, f - fanout. Because effective UBIFS fanout is twice
  577. * as less than maximum fanout, we assume that each data node
  578. * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
  579. * Note, the multiplier 3 is because UBIFS reserves thrice as more space
  580. * for the index.
  581. */
  582. f = c->fanout > 3 ? c->fanout >> 1 : 2;
  583. factor = UBIFS_BLOCK_SIZE;
  584. divisor = UBIFS_MAX_DATA_NODE_SZ;
  585. divisor += (c->max_idx_node_sz * 3) / (f - 1);
  586. free *= factor;
  587. return div_u64(free, divisor);
  588. }
  589. #ifndef __UBOOT__
  590. /**
  591. * ubifs_get_free_space_nolock - return amount of free space.
  592. * @c: UBIFS file-system description object
  593. *
  594. * This function calculates amount of free space to report to user-space.
  595. *
  596. * Because UBIFS may introduce substantial overhead (the index, node headers,
  597. * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
  598. * free flash space it has (well, because not all dirty space is reclaimable,
  599. * UBIFS does not actually know the real amount). If UBIFS did so, it would
  600. * bread user expectations about what free space is. Users seem to accustomed
  601. * to assume that if the file-system reports N bytes of free space, they would
  602. * be able to fit a file of N bytes to the FS. This almost works for
  603. * traditional file-systems, because they have way less overhead than UBIFS.
  604. * So, to keep users happy, UBIFS tries to take the overhead into account.
  605. */
  606. long long ubifs_get_free_space_nolock(struct ubifs_info *c)
  607. {
  608. int rsvd_idx_lebs, lebs;
  609. long long available, outstanding, free;
  610. ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
  611. outstanding = c->bi.data_growth + c->bi.dd_growth;
  612. available = ubifs_calc_available(c, c->bi.min_idx_lebs);
  613. /*
  614. * When reporting free space to user-space, UBIFS guarantees that it is
  615. * possible to write a file of free space size. This means that for
  616. * empty LEBs we may use more precise calculations than
  617. * 'ubifs_calc_available()' is using. Namely, we know that in empty
  618. * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
  619. * Thus, amend the available space.
  620. *
  621. * Note, the calculations below are similar to what we have in
  622. * 'do_budget_space()', so refer there for comments.
  623. */
  624. if (c->bi.min_idx_lebs > c->lst.idx_lebs)
  625. rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
  626. else
  627. rsvd_idx_lebs = 0;
  628. lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
  629. c->lst.taken_empty_lebs;
  630. lebs -= rsvd_idx_lebs;
  631. available += lebs * (c->dark_wm - c->leb_overhead);
  632. if (available > outstanding)
  633. free = ubifs_reported_space(c, available - outstanding);
  634. else
  635. free = 0;
  636. return free;
  637. }
  638. /**
  639. * ubifs_get_free_space - return amount of free space.
  640. * @c: UBIFS file-system description object
  641. *
  642. * This function calculates and returns amount of free space to report to
  643. * user-space.
  644. */
  645. long long ubifs_get_free_space(struct ubifs_info *c)
  646. {
  647. long long free;
  648. spin_lock(&c->space_lock);
  649. free = ubifs_get_free_space_nolock(c);
  650. spin_unlock(&c->space_lock);
  651. return free;
  652. }
  653. #endif