armada-37xx-cpufreq.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * CPU frequency scaling support for Armada 37xx platform.
  4. *
  5. * Copyright (C) 2017 Marvell
  6. *
  7. * Gregory CLEMENT <gregory.clement@free-electrons.com>
  8. */
  9. #include <linux/clk.h>
  10. #include <linux/cpu.h>
  11. #include <linux/cpufreq.h>
  12. #include <linux/err.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/io.h>
  15. #include <linux/mfd/syscon.h>
  16. #include <linux/module.h>
  17. #include <linux/of_address.h>
  18. #include <linux/of_device.h>
  19. #include <linux/of_irq.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/pm_opp.h>
  22. #include <linux/regmap.h>
  23. #include <linux/slab.h>
  24. #include "cpufreq-dt.h"
  25. /* Clk register set */
  26. #define ARMADA_37XX_CLK_TBG_SEL 0
  27. #define ARMADA_37XX_CLK_TBG_SEL_CPU_OFF 22
  28. /* Power management in North Bridge register set */
  29. #define ARMADA_37XX_NB_L0L1 0x18
  30. #define ARMADA_37XX_NB_L2L3 0x1C
  31. #define ARMADA_37XX_NB_TBG_DIV_OFF 13
  32. #define ARMADA_37XX_NB_TBG_DIV_MASK 0x7
  33. #define ARMADA_37XX_NB_CLK_SEL_OFF 11
  34. #define ARMADA_37XX_NB_CLK_SEL_MASK 0x1
  35. #define ARMADA_37XX_NB_CLK_SEL_TBG 0x1
  36. #define ARMADA_37XX_NB_TBG_SEL_OFF 9
  37. #define ARMADA_37XX_NB_TBG_SEL_MASK 0x3
  38. #define ARMADA_37XX_NB_VDD_SEL_OFF 6
  39. #define ARMADA_37XX_NB_VDD_SEL_MASK 0x3
  40. #define ARMADA_37XX_NB_CONFIG_SHIFT 16
  41. #define ARMADA_37XX_NB_DYN_MOD 0x24
  42. #define ARMADA_37XX_NB_CLK_SEL_EN BIT(26)
  43. #define ARMADA_37XX_NB_TBG_EN BIT(28)
  44. #define ARMADA_37XX_NB_DIV_EN BIT(29)
  45. #define ARMADA_37XX_NB_VDD_EN BIT(30)
  46. #define ARMADA_37XX_NB_DFS_EN BIT(31)
  47. #define ARMADA_37XX_NB_CPU_LOAD 0x30
  48. #define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3
  49. #define ARMADA_37XX_DVFS_LOAD_0 0
  50. #define ARMADA_37XX_DVFS_LOAD_1 1
  51. #define ARMADA_37XX_DVFS_LOAD_2 2
  52. #define ARMADA_37XX_DVFS_LOAD_3 3
  53. /* AVS register set */
  54. #define ARMADA_37XX_AVS_CTL0 0x0
  55. #define ARMADA_37XX_AVS_ENABLE BIT(30)
  56. #define ARMADA_37XX_AVS_HIGH_VDD_LIMIT 16
  57. #define ARMADA_37XX_AVS_LOW_VDD_LIMIT 22
  58. #define ARMADA_37XX_AVS_VDD_MASK 0x3F
  59. #define ARMADA_37XX_AVS_CTL2 0x8
  60. #define ARMADA_37XX_AVS_LOW_VDD_EN BIT(6)
  61. #define ARMADA_37XX_AVS_VSET(x) (0x1C + 4 * (x))
  62. /*
  63. * On Armada 37xx the Power management manages 4 level of CPU load,
  64. * each level can be associated with a CPU clock source, a CPU
  65. * divider, a VDD level, etc...
  66. */
  67. #define LOAD_LEVEL_NR 4
  68. #define MIN_VOLT_MV 1000
  69. #define MIN_VOLT_MV_FOR_L1_1000MHZ 1108
  70. #define MIN_VOLT_MV_FOR_L1_1200MHZ 1155
  71. /* AVS value for the corresponding voltage (in mV) */
  72. static int avs_map[] = {
  73. 747, 758, 770, 782, 793, 805, 817, 828, 840, 852, 863, 875, 887, 898,
  74. 910, 922, 933, 945, 957, 968, 980, 992, 1003, 1015, 1027, 1038, 1050,
  75. 1062, 1073, 1085, 1097, 1108, 1120, 1132, 1143, 1155, 1167, 1178, 1190,
  76. 1202, 1213, 1225, 1237, 1248, 1260, 1272, 1283, 1295, 1307, 1318, 1330,
  77. 1342
  78. };
  79. struct armada37xx_cpufreq_state {
  80. struct regmap *regmap;
  81. u32 nb_l0l1;
  82. u32 nb_l2l3;
  83. u32 nb_dyn_mod;
  84. u32 nb_cpu_load;
  85. };
  86. static struct armada37xx_cpufreq_state *armada37xx_cpufreq_state;
  87. struct armada_37xx_dvfs {
  88. u32 cpu_freq_max;
  89. u8 divider[LOAD_LEVEL_NR];
  90. u32 avs[LOAD_LEVEL_NR];
  91. };
  92. static struct armada_37xx_dvfs armada_37xx_dvfs[] = {
  93. {.cpu_freq_max = 1200*1000*1000, .divider = {1, 2, 4, 6} },
  94. {.cpu_freq_max = 1000*1000*1000, .divider = {1, 2, 4, 5} },
  95. {.cpu_freq_max = 800*1000*1000, .divider = {1, 2, 3, 4} },
  96. {.cpu_freq_max = 600*1000*1000, .divider = {2, 4, 5, 6} },
  97. };
  98. static struct armada_37xx_dvfs *armada_37xx_cpu_freq_info_get(u32 freq)
  99. {
  100. int i;
  101. for (i = 0; i < ARRAY_SIZE(armada_37xx_dvfs); i++) {
  102. if (freq == armada_37xx_dvfs[i].cpu_freq_max)
  103. return &armada_37xx_dvfs[i];
  104. }
  105. pr_err("Unsupported CPU frequency %d MHz\n", freq/1000000);
  106. return NULL;
  107. }
  108. /*
  109. * Setup the four level managed by the hardware. Once the four level
  110. * will be configured then the DVFS will be enabled.
  111. */
  112. static void __init armada37xx_cpufreq_dvfs_setup(struct regmap *base,
  113. struct regmap *clk_base, u8 *divider)
  114. {
  115. u32 cpu_tbg_sel;
  116. int load_lvl;
  117. /* Determine to which TBG clock is CPU connected */
  118. regmap_read(clk_base, ARMADA_37XX_CLK_TBG_SEL, &cpu_tbg_sel);
  119. cpu_tbg_sel >>= ARMADA_37XX_CLK_TBG_SEL_CPU_OFF;
  120. cpu_tbg_sel &= ARMADA_37XX_NB_TBG_SEL_MASK;
  121. for (load_lvl = 0; load_lvl < LOAD_LEVEL_NR; load_lvl++) {
  122. unsigned int reg, mask, val, offset = 0;
  123. if (load_lvl <= ARMADA_37XX_DVFS_LOAD_1)
  124. reg = ARMADA_37XX_NB_L0L1;
  125. else
  126. reg = ARMADA_37XX_NB_L2L3;
  127. if (load_lvl == ARMADA_37XX_DVFS_LOAD_0 ||
  128. load_lvl == ARMADA_37XX_DVFS_LOAD_2)
  129. offset += ARMADA_37XX_NB_CONFIG_SHIFT;
  130. /* Set cpu clock source, for all the level we use TBG */
  131. val = ARMADA_37XX_NB_CLK_SEL_TBG << ARMADA_37XX_NB_CLK_SEL_OFF;
  132. mask = (ARMADA_37XX_NB_CLK_SEL_MASK
  133. << ARMADA_37XX_NB_CLK_SEL_OFF);
  134. /* Set TBG index, for all levels we use the same TBG */
  135. val = cpu_tbg_sel << ARMADA_37XX_NB_TBG_SEL_OFF;
  136. mask = (ARMADA_37XX_NB_TBG_SEL_MASK
  137. << ARMADA_37XX_NB_TBG_SEL_OFF);
  138. /*
  139. * Set cpu divider based on the pre-computed array in
  140. * order to have balanced step.
  141. */
  142. val |= divider[load_lvl] << ARMADA_37XX_NB_TBG_DIV_OFF;
  143. mask |= (ARMADA_37XX_NB_TBG_DIV_MASK
  144. << ARMADA_37XX_NB_TBG_DIV_OFF);
  145. /* Set VDD divider which is actually the load level. */
  146. val |= load_lvl << ARMADA_37XX_NB_VDD_SEL_OFF;
  147. mask |= (ARMADA_37XX_NB_VDD_SEL_MASK
  148. << ARMADA_37XX_NB_VDD_SEL_OFF);
  149. val <<= offset;
  150. mask <<= offset;
  151. regmap_update_bits(base, reg, mask, val);
  152. }
  153. }
  154. /*
  155. * Find out the armada 37x supported AVS value whose voltage value is
  156. * the round-up closest to the target voltage value.
  157. */
  158. static u32 armada_37xx_avs_val_match(int target_vm)
  159. {
  160. u32 avs;
  161. /* Find out the round-up closest supported voltage value */
  162. for (avs = 0; avs < ARRAY_SIZE(avs_map); avs++)
  163. if (avs_map[avs] >= target_vm)
  164. break;
  165. /*
  166. * If all supported voltages are smaller than target one,
  167. * choose the largest supported voltage
  168. */
  169. if (avs == ARRAY_SIZE(avs_map))
  170. avs = ARRAY_SIZE(avs_map) - 1;
  171. return avs;
  172. }
  173. /*
  174. * For Armada 37xx soc, L0(VSET0) VDD AVS value is set to SVC revision
  175. * value or a default value when SVC is not supported.
  176. * - L0 can be read out from the register of AVS_CTRL_0 and L0 voltage
  177. * can be got from the mapping table of avs_map.
  178. * - L1 voltage should be about 100mv smaller than L0 voltage
  179. * - L2 & L3 voltage should be about 150mv smaller than L0 voltage.
  180. * This function calculates L1 & L2 & L3 AVS values dynamically based
  181. * on L0 voltage and fill all AVS values to the AVS value table.
  182. * When base CPU frequency is 1000 or 1200 MHz then there is additional
  183. * minimal avs value for load L1.
  184. */
  185. static void __init armada37xx_cpufreq_avs_configure(struct regmap *base,
  186. struct armada_37xx_dvfs *dvfs)
  187. {
  188. unsigned int target_vm;
  189. int load_level = 0;
  190. u32 l0_vdd_min;
  191. if (base == NULL)
  192. return;
  193. /* Get L0 VDD min value */
  194. regmap_read(base, ARMADA_37XX_AVS_CTL0, &l0_vdd_min);
  195. l0_vdd_min = (l0_vdd_min >> ARMADA_37XX_AVS_LOW_VDD_LIMIT) &
  196. ARMADA_37XX_AVS_VDD_MASK;
  197. if (l0_vdd_min >= ARRAY_SIZE(avs_map)) {
  198. pr_err("L0 VDD MIN %d is not correct.\n", l0_vdd_min);
  199. return;
  200. }
  201. dvfs->avs[0] = l0_vdd_min;
  202. if (avs_map[l0_vdd_min] <= MIN_VOLT_MV) {
  203. /*
  204. * If L0 voltage is smaller than 1000mv, then all VDD sets
  205. * use L0 voltage;
  206. */
  207. u32 avs_min = armada_37xx_avs_val_match(MIN_VOLT_MV);
  208. for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++)
  209. dvfs->avs[load_level] = avs_min;
  210. /*
  211. * Set the avs values for load L0 and L1 when base CPU frequency
  212. * is 1000/1200 MHz to its typical initial values according to
  213. * the Armada 3700 Hardware Specifications.
  214. */
  215. if (dvfs->cpu_freq_max >= 1000*1000*1000) {
  216. if (dvfs->cpu_freq_max >= 1200*1000*1000)
  217. avs_min = armada_37xx_avs_val_match(MIN_VOLT_MV_FOR_L1_1200MHZ);
  218. else
  219. avs_min = armada_37xx_avs_val_match(MIN_VOLT_MV_FOR_L1_1000MHZ);
  220. dvfs->avs[0] = dvfs->avs[1] = avs_min;
  221. }
  222. return;
  223. }
  224. /*
  225. * L1 voltage is equal to L0 voltage - 100mv and it must be
  226. * larger than 1000mv
  227. */
  228. target_vm = avs_map[l0_vdd_min] - 100;
  229. target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV;
  230. dvfs->avs[1] = armada_37xx_avs_val_match(target_vm);
  231. /*
  232. * L2 & L3 voltage is equal to L0 voltage - 150mv and it must
  233. * be larger than 1000mv
  234. */
  235. target_vm = avs_map[l0_vdd_min] - 150;
  236. target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV;
  237. dvfs->avs[2] = dvfs->avs[3] = armada_37xx_avs_val_match(target_vm);
  238. /*
  239. * Fix the avs value for load L1 when base CPU frequency is 1000/1200 MHz,
  240. * otherwise the CPU gets stuck when switching from load L1 to load L0.
  241. * Also ensure that avs value for load L1 is not higher than for L0.
  242. */
  243. if (dvfs->cpu_freq_max >= 1000*1000*1000) {
  244. u32 avs_min_l1;
  245. if (dvfs->cpu_freq_max >= 1200*1000*1000)
  246. avs_min_l1 = armada_37xx_avs_val_match(MIN_VOLT_MV_FOR_L1_1200MHZ);
  247. else
  248. avs_min_l1 = armada_37xx_avs_val_match(MIN_VOLT_MV_FOR_L1_1000MHZ);
  249. if (avs_min_l1 > dvfs->avs[0])
  250. avs_min_l1 = dvfs->avs[0];
  251. if (dvfs->avs[1] < avs_min_l1)
  252. dvfs->avs[1] = avs_min_l1;
  253. }
  254. }
  255. static void __init armada37xx_cpufreq_avs_setup(struct regmap *base,
  256. struct armada_37xx_dvfs *dvfs)
  257. {
  258. unsigned int avs_val = 0, freq;
  259. int load_level = 0;
  260. if (base == NULL)
  261. return;
  262. /* Disable AVS before the configuration */
  263. regmap_update_bits(base, ARMADA_37XX_AVS_CTL0,
  264. ARMADA_37XX_AVS_ENABLE, 0);
  265. /* Enable low voltage mode */
  266. regmap_update_bits(base, ARMADA_37XX_AVS_CTL2,
  267. ARMADA_37XX_AVS_LOW_VDD_EN,
  268. ARMADA_37XX_AVS_LOW_VDD_EN);
  269. for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++) {
  270. freq = dvfs->cpu_freq_max / dvfs->divider[load_level];
  271. avs_val = dvfs->avs[load_level];
  272. regmap_update_bits(base, ARMADA_37XX_AVS_VSET(load_level-1),
  273. ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_HIGH_VDD_LIMIT |
  274. ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_LOW_VDD_LIMIT,
  275. avs_val << ARMADA_37XX_AVS_HIGH_VDD_LIMIT |
  276. avs_val << ARMADA_37XX_AVS_LOW_VDD_LIMIT);
  277. }
  278. /* Enable AVS after the configuration */
  279. regmap_update_bits(base, ARMADA_37XX_AVS_CTL0,
  280. ARMADA_37XX_AVS_ENABLE,
  281. ARMADA_37XX_AVS_ENABLE);
  282. }
  283. static void armada37xx_cpufreq_disable_dvfs(struct regmap *base)
  284. {
  285. unsigned int reg = ARMADA_37XX_NB_DYN_MOD,
  286. mask = ARMADA_37XX_NB_DFS_EN;
  287. regmap_update_bits(base, reg, mask, 0);
  288. }
  289. static void __init armada37xx_cpufreq_enable_dvfs(struct regmap *base)
  290. {
  291. unsigned int val, reg = ARMADA_37XX_NB_CPU_LOAD,
  292. mask = ARMADA_37XX_NB_CPU_LOAD_MASK;
  293. /* Start with the highest load (0) */
  294. val = ARMADA_37XX_DVFS_LOAD_0;
  295. regmap_update_bits(base, reg, mask, val);
  296. /* Now enable DVFS for the CPUs */
  297. reg = ARMADA_37XX_NB_DYN_MOD;
  298. mask = ARMADA_37XX_NB_CLK_SEL_EN | ARMADA_37XX_NB_TBG_EN |
  299. ARMADA_37XX_NB_DIV_EN | ARMADA_37XX_NB_VDD_EN |
  300. ARMADA_37XX_NB_DFS_EN;
  301. regmap_update_bits(base, reg, mask, mask);
  302. }
  303. static int armada37xx_cpufreq_suspend(struct cpufreq_policy *policy)
  304. {
  305. struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state;
  306. regmap_read(state->regmap, ARMADA_37XX_NB_L0L1, &state->nb_l0l1);
  307. regmap_read(state->regmap, ARMADA_37XX_NB_L2L3, &state->nb_l2l3);
  308. regmap_read(state->regmap, ARMADA_37XX_NB_CPU_LOAD,
  309. &state->nb_cpu_load);
  310. regmap_read(state->regmap, ARMADA_37XX_NB_DYN_MOD, &state->nb_dyn_mod);
  311. return 0;
  312. }
  313. static int armada37xx_cpufreq_resume(struct cpufreq_policy *policy)
  314. {
  315. struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state;
  316. /* Ensure DVFS is disabled otherwise the following registers are RO */
  317. armada37xx_cpufreq_disable_dvfs(state->regmap);
  318. regmap_write(state->regmap, ARMADA_37XX_NB_L0L1, state->nb_l0l1);
  319. regmap_write(state->regmap, ARMADA_37XX_NB_L2L3, state->nb_l2l3);
  320. regmap_write(state->regmap, ARMADA_37XX_NB_CPU_LOAD,
  321. state->nb_cpu_load);
  322. /*
  323. * NB_DYN_MOD register is the one that actually enable back DVFS if it
  324. * was enabled before the suspend operation. This must be done last
  325. * otherwise other registers are not writable.
  326. */
  327. regmap_write(state->regmap, ARMADA_37XX_NB_DYN_MOD, state->nb_dyn_mod);
  328. return 0;
  329. }
  330. static int __init armada37xx_cpufreq_driver_init(void)
  331. {
  332. struct cpufreq_dt_platform_data pdata;
  333. struct armada_37xx_dvfs *dvfs;
  334. struct platform_device *pdev;
  335. unsigned long freq;
  336. unsigned int cur_frequency, base_frequency;
  337. struct regmap *nb_clk_base, *nb_pm_base, *avs_base;
  338. struct device *cpu_dev;
  339. int load_lvl, ret;
  340. struct clk *clk, *parent;
  341. nb_clk_base =
  342. syscon_regmap_lookup_by_compatible("marvell,armada-3700-periph-clock-nb");
  343. if (IS_ERR(nb_clk_base))
  344. return -ENODEV;
  345. nb_pm_base =
  346. syscon_regmap_lookup_by_compatible("marvell,armada-3700-nb-pm");
  347. if (IS_ERR(nb_pm_base))
  348. return -ENODEV;
  349. avs_base =
  350. syscon_regmap_lookup_by_compatible("marvell,armada-3700-avs");
  351. /* if AVS is not present don't use it but still try to setup dvfs */
  352. if (IS_ERR(avs_base)) {
  353. pr_info("Syscon failed for Adapting Voltage Scaling: skip it\n");
  354. avs_base = NULL;
  355. }
  356. /* Before doing any configuration on the DVFS first, disable it */
  357. armada37xx_cpufreq_disable_dvfs(nb_pm_base);
  358. /*
  359. * On CPU 0 register the operating points supported (which are
  360. * the nominal CPU frequency and full integer divisions of
  361. * it).
  362. */
  363. cpu_dev = get_cpu_device(0);
  364. if (!cpu_dev) {
  365. dev_err(cpu_dev, "Cannot get CPU\n");
  366. return -ENODEV;
  367. }
  368. clk = clk_get(cpu_dev, 0);
  369. if (IS_ERR(clk)) {
  370. dev_err(cpu_dev, "Cannot get clock for CPU0\n");
  371. return PTR_ERR(clk);
  372. }
  373. parent = clk_get_parent(clk);
  374. if (IS_ERR(parent)) {
  375. dev_err(cpu_dev, "Cannot get parent clock for CPU0\n");
  376. clk_put(clk);
  377. return PTR_ERR(parent);
  378. }
  379. /* Get parent CPU frequency */
  380. base_frequency = clk_get_rate(parent);
  381. if (!base_frequency) {
  382. dev_err(cpu_dev, "Failed to get parent clock rate for CPU\n");
  383. clk_put(clk);
  384. return -EINVAL;
  385. }
  386. /* Get nominal (current) CPU frequency */
  387. cur_frequency = clk_get_rate(clk);
  388. if (!cur_frequency) {
  389. dev_err(cpu_dev, "Failed to get clock rate for CPU\n");
  390. clk_put(clk);
  391. return -EINVAL;
  392. }
  393. dvfs = armada_37xx_cpu_freq_info_get(base_frequency);
  394. if (!dvfs) {
  395. clk_put(clk);
  396. return -EINVAL;
  397. }
  398. armada37xx_cpufreq_state = kmalloc(sizeof(*armada37xx_cpufreq_state),
  399. GFP_KERNEL);
  400. if (!armada37xx_cpufreq_state) {
  401. clk_put(clk);
  402. return -ENOMEM;
  403. }
  404. armada37xx_cpufreq_state->regmap = nb_pm_base;
  405. armada37xx_cpufreq_avs_configure(avs_base, dvfs);
  406. armada37xx_cpufreq_avs_setup(avs_base, dvfs);
  407. armada37xx_cpufreq_dvfs_setup(nb_pm_base, nb_clk_base, dvfs->divider);
  408. clk_put(clk);
  409. for (load_lvl = ARMADA_37XX_DVFS_LOAD_0; load_lvl < LOAD_LEVEL_NR;
  410. load_lvl++) {
  411. unsigned long u_volt = avs_map[dvfs->avs[load_lvl]] * 1000;
  412. freq = base_frequency / dvfs->divider[load_lvl];
  413. ret = dev_pm_opp_add(cpu_dev, freq, u_volt);
  414. if (ret)
  415. goto remove_opp;
  416. }
  417. /* Now that everything is setup, enable the DVFS at hardware level */
  418. armada37xx_cpufreq_enable_dvfs(nb_pm_base);
  419. memset(&pdata, 0, sizeof(pdata));
  420. pdata.suspend = armada37xx_cpufreq_suspend;
  421. pdata.resume = armada37xx_cpufreq_resume;
  422. pdev = platform_device_register_data(NULL, "cpufreq-dt", -1, &pdata,
  423. sizeof(pdata));
  424. ret = PTR_ERR_OR_ZERO(pdev);
  425. if (ret)
  426. goto disable_dvfs;
  427. return 0;
  428. disable_dvfs:
  429. armada37xx_cpufreq_disable_dvfs(nb_pm_base);
  430. remove_opp:
  431. /* clean-up the already added opp before leaving */
  432. while (load_lvl-- > ARMADA_37XX_DVFS_LOAD_0) {
  433. freq = base_frequency / dvfs->divider[load_lvl];
  434. dev_pm_opp_remove(cpu_dev, freq);
  435. }
  436. kfree(armada37xx_cpufreq_state);
  437. return ret;
  438. }
  439. /* late_initcall, to guarantee the driver is loaded after A37xx clock driver */
  440. late_initcall(armada37xx_cpufreq_driver_init);
  441. static const struct of_device_id __maybe_unused armada37xx_cpufreq_of_match[] = {
  442. { .compatible = "marvell,armada-3700-nb-pm" },
  443. { },
  444. };
  445. MODULE_DEVICE_TABLE(of, armada37xx_cpufreq_of_match);
  446. MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
  447. MODULE_DESCRIPTION("Armada 37xx cpufreq driver");
  448. MODULE_LICENSE("GPL");