atmel_ssc_dai.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081
  1. /*
  2. * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
  3. *
  4. * Copyright (C) 2005 SAN People
  5. * Copyright (C) 2008 Atmel
  6. *
  7. * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
  8. * ATMEL CORP.
  9. *
  10. * Based on at91-ssc.c by
  11. * Frank Mandarino <fmandarino@endrelia.com>
  12. * Based on pxa2xx Platform drivers by
  13. * Liam Girdwood <lrg@slimlogic.co.uk>
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. *
  20. * This program is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  23. * GNU General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public License
  26. * along with this program; if not, write to the Free Software
  27. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  28. */
  29. #include <linux/init.h>
  30. #include <linux/module.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/device.h>
  33. #include <linux/delay.h>
  34. #include <linux/clk.h>
  35. #include <linux/atmel_pdc.h>
  36. #include <linux/atmel-ssc.h>
  37. #include <sound/core.h>
  38. #include <sound/pcm.h>
  39. #include <sound/pcm_params.h>
  40. #include <sound/initval.h>
  41. #include <sound/soc.h>
  42. #include "atmel-pcm.h"
  43. #include "atmel_ssc_dai.h"
  44. #define NUM_SSC_DEVICES 3
  45. /*
  46. * SSC PDC registers required by the PCM DMA engine.
  47. */
  48. static struct atmel_pdc_regs pdc_tx_reg = {
  49. .xpr = ATMEL_PDC_TPR,
  50. .xcr = ATMEL_PDC_TCR,
  51. .xnpr = ATMEL_PDC_TNPR,
  52. .xncr = ATMEL_PDC_TNCR,
  53. };
  54. static struct atmel_pdc_regs pdc_rx_reg = {
  55. .xpr = ATMEL_PDC_RPR,
  56. .xcr = ATMEL_PDC_RCR,
  57. .xnpr = ATMEL_PDC_RNPR,
  58. .xncr = ATMEL_PDC_RNCR,
  59. };
  60. /*
  61. * SSC & PDC status bits for transmit and receive.
  62. */
  63. static struct atmel_ssc_mask ssc_tx_mask = {
  64. .ssc_enable = SSC_BIT(CR_TXEN),
  65. .ssc_disable = SSC_BIT(CR_TXDIS),
  66. .ssc_endx = SSC_BIT(SR_ENDTX),
  67. .ssc_endbuf = SSC_BIT(SR_TXBUFE),
  68. .ssc_error = SSC_BIT(SR_OVRUN),
  69. .pdc_enable = ATMEL_PDC_TXTEN,
  70. .pdc_disable = ATMEL_PDC_TXTDIS,
  71. };
  72. static struct atmel_ssc_mask ssc_rx_mask = {
  73. .ssc_enable = SSC_BIT(CR_RXEN),
  74. .ssc_disable = SSC_BIT(CR_RXDIS),
  75. .ssc_endx = SSC_BIT(SR_ENDRX),
  76. .ssc_endbuf = SSC_BIT(SR_RXBUFF),
  77. .ssc_error = SSC_BIT(SR_OVRUN),
  78. .pdc_enable = ATMEL_PDC_RXTEN,
  79. .pdc_disable = ATMEL_PDC_RXTDIS,
  80. };
  81. /*
  82. * DMA parameters.
  83. */
  84. static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
  85. {{
  86. .name = "SSC0 PCM out",
  87. .pdc = &pdc_tx_reg,
  88. .mask = &ssc_tx_mask,
  89. },
  90. {
  91. .name = "SSC0 PCM in",
  92. .pdc = &pdc_rx_reg,
  93. .mask = &ssc_rx_mask,
  94. } },
  95. {{
  96. .name = "SSC1 PCM out",
  97. .pdc = &pdc_tx_reg,
  98. .mask = &ssc_tx_mask,
  99. },
  100. {
  101. .name = "SSC1 PCM in",
  102. .pdc = &pdc_rx_reg,
  103. .mask = &ssc_rx_mask,
  104. } },
  105. {{
  106. .name = "SSC2 PCM out",
  107. .pdc = &pdc_tx_reg,
  108. .mask = &ssc_tx_mask,
  109. },
  110. {
  111. .name = "SSC2 PCM in",
  112. .pdc = &pdc_rx_reg,
  113. .mask = &ssc_rx_mask,
  114. } },
  115. };
  116. static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
  117. {
  118. .name = "ssc0",
  119. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
  120. .dir_mask = SSC_DIR_MASK_UNUSED,
  121. .initialized = 0,
  122. },
  123. {
  124. .name = "ssc1",
  125. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
  126. .dir_mask = SSC_DIR_MASK_UNUSED,
  127. .initialized = 0,
  128. },
  129. {
  130. .name = "ssc2",
  131. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
  132. .dir_mask = SSC_DIR_MASK_UNUSED,
  133. .initialized = 0,
  134. },
  135. };
  136. /*
  137. * SSC interrupt handler. Passes PDC interrupts to the DMA
  138. * interrupt handler in the PCM driver.
  139. */
  140. static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
  141. {
  142. struct atmel_ssc_info *ssc_p = dev_id;
  143. struct atmel_pcm_dma_params *dma_params;
  144. u32 ssc_sr;
  145. u32 ssc_substream_mask;
  146. int i;
  147. ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
  148. & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
  149. /*
  150. * Loop through the substreams attached to this SSC. If
  151. * a DMA-related interrupt occurred on that substream, call
  152. * the DMA interrupt handler function, if one has been
  153. * registered in the dma_params structure by the PCM driver.
  154. */
  155. for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
  156. dma_params = ssc_p->dma_params[i];
  157. if ((dma_params != NULL) &&
  158. (dma_params->dma_intr_handler != NULL)) {
  159. ssc_substream_mask = (dma_params->mask->ssc_endx |
  160. dma_params->mask->ssc_endbuf);
  161. if (ssc_sr & ssc_substream_mask) {
  162. dma_params->dma_intr_handler(ssc_sr,
  163. dma_params->
  164. substream);
  165. }
  166. }
  167. }
  168. return IRQ_HANDLED;
  169. }
  170. /*
  171. * When the bit clock is input, limit the maximum rate according to the
  172. * Serial Clock Ratio Considerations section from the SSC documentation:
  173. *
  174. * The Transmitter and the Receiver can be programmed to operate
  175. * with the clock signals provided on either the TK or RK pins.
  176. * This allows the SSC to support many slave-mode data transfers.
  177. * In this case, the maximum clock speed allowed on the RK pin is:
  178. * - Peripheral clock divided by 2 if Receiver Frame Synchro is input
  179. * - Peripheral clock divided by 3 if Receiver Frame Synchro is output
  180. * In addition, the maximum clock speed allowed on the TK pin is:
  181. * - Peripheral clock divided by 6 if Transmit Frame Synchro is input
  182. * - Peripheral clock divided by 2 if Transmit Frame Synchro is output
  183. *
  184. * When the bit clock is output, limit the rate according to the
  185. * SSC divider restrictions.
  186. */
  187. static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
  188. struct snd_pcm_hw_rule *rule)
  189. {
  190. struct atmel_ssc_info *ssc_p = rule->private;
  191. struct ssc_device *ssc = ssc_p->ssc;
  192. struct snd_interval *i = hw_param_interval(params, rule->var);
  193. struct snd_interval t;
  194. struct snd_ratnum r = {
  195. .den_min = 1,
  196. .den_max = 4095,
  197. .den_step = 1,
  198. };
  199. unsigned int num = 0, den = 0;
  200. int frame_size;
  201. int mck_div = 2;
  202. int ret;
  203. frame_size = snd_soc_params_to_frame_size(params);
  204. if (frame_size < 0)
  205. return frame_size;
  206. switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
  207. case SND_SOC_DAIFMT_CBM_CFS:
  208. if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
  209. && ssc->clk_from_rk_pin)
  210. /* Receiver Frame Synchro (i.e. capture)
  211. * is output (format is _CFS) and the RK pin
  212. * is used for input (format is _CBM_).
  213. */
  214. mck_div = 3;
  215. break;
  216. case SND_SOC_DAIFMT_CBM_CFM:
  217. if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
  218. && !ssc->clk_from_rk_pin)
  219. /* Transmit Frame Synchro (i.e. playback)
  220. * is input (format is _CFM) and the TK pin
  221. * is used for input (format _CBM_ but not
  222. * using the RK pin).
  223. */
  224. mck_div = 6;
  225. break;
  226. }
  227. switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
  228. case SND_SOC_DAIFMT_CBS_CFS:
  229. r.num = ssc_p->mck_rate / mck_div / frame_size;
  230. ret = snd_interval_ratnum(i, 1, &r, &num, &den);
  231. if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
  232. params->rate_num = num;
  233. params->rate_den = den;
  234. }
  235. break;
  236. case SND_SOC_DAIFMT_CBM_CFS:
  237. case SND_SOC_DAIFMT_CBM_CFM:
  238. t.min = 8000;
  239. t.max = ssc_p->mck_rate / mck_div / frame_size;
  240. t.openmin = t.openmax = 0;
  241. t.integer = 0;
  242. ret = snd_interval_refine(i, &t);
  243. break;
  244. default:
  245. ret = -EINVAL;
  246. break;
  247. }
  248. return ret;
  249. }
  250. /*-------------------------------------------------------------------------*\
  251. * DAI functions
  252. \*-------------------------------------------------------------------------*/
  253. /*
  254. * Startup. Only that one substream allowed in each direction.
  255. */
  256. static int atmel_ssc_startup(struct snd_pcm_substream *substream,
  257. struct snd_soc_dai *dai)
  258. {
  259. struct platform_device *pdev = to_platform_device(dai->dev);
  260. struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
  261. struct atmel_pcm_dma_params *dma_params;
  262. int dir, dir_mask;
  263. int ret;
  264. pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
  265. ssc_readl(ssc_p->ssc->regs, SR));
  266. /* Enable PMC peripheral clock for this SSC */
  267. pr_debug("atmel_ssc_dai: Starting clock\n");
  268. clk_enable(ssc_p->ssc->clk);
  269. ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
  270. /* Reset the SSC unless initialized to keep it in a clean state */
  271. if (!ssc_p->initialized)
  272. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
  273. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  274. dir = 0;
  275. dir_mask = SSC_DIR_MASK_PLAYBACK;
  276. } else {
  277. dir = 1;
  278. dir_mask = SSC_DIR_MASK_CAPTURE;
  279. }
  280. ret = snd_pcm_hw_rule_add(substream->runtime, 0,
  281. SNDRV_PCM_HW_PARAM_RATE,
  282. atmel_ssc_hw_rule_rate,
  283. ssc_p,
  284. SNDRV_PCM_HW_PARAM_FRAME_BITS,
  285. SNDRV_PCM_HW_PARAM_CHANNELS, -1);
  286. if (ret < 0) {
  287. dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
  288. return ret;
  289. }
  290. dma_params = &ssc_dma_params[pdev->id][dir];
  291. dma_params->ssc = ssc_p->ssc;
  292. dma_params->substream = substream;
  293. ssc_p->dma_params[dir] = dma_params;
  294. snd_soc_dai_set_dma_data(dai, substream, dma_params);
  295. spin_lock_irq(&ssc_p->lock);
  296. if (ssc_p->dir_mask & dir_mask) {
  297. spin_unlock_irq(&ssc_p->lock);
  298. return -EBUSY;
  299. }
  300. ssc_p->dir_mask |= dir_mask;
  301. spin_unlock_irq(&ssc_p->lock);
  302. return 0;
  303. }
  304. /*
  305. * Shutdown. Clear DMA parameters and shutdown the SSC if there
  306. * are no other substreams open.
  307. */
  308. static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
  309. struct snd_soc_dai *dai)
  310. {
  311. struct platform_device *pdev = to_platform_device(dai->dev);
  312. struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
  313. struct atmel_pcm_dma_params *dma_params;
  314. int dir, dir_mask;
  315. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  316. dir = 0;
  317. else
  318. dir = 1;
  319. dma_params = ssc_p->dma_params[dir];
  320. if (dma_params != NULL) {
  321. dma_params->ssc = NULL;
  322. dma_params->substream = NULL;
  323. ssc_p->dma_params[dir] = NULL;
  324. }
  325. dir_mask = 1 << dir;
  326. spin_lock_irq(&ssc_p->lock);
  327. ssc_p->dir_mask &= ~dir_mask;
  328. if (!ssc_p->dir_mask) {
  329. if (ssc_p->initialized) {
  330. free_irq(ssc_p->ssc->irq, ssc_p);
  331. ssc_p->initialized = 0;
  332. }
  333. /* Reset the SSC */
  334. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
  335. /* Clear the SSC dividers */
  336. ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
  337. ssc_p->forced_divider = 0;
  338. }
  339. spin_unlock_irq(&ssc_p->lock);
  340. /* Shutdown the SSC clock. */
  341. pr_debug("atmel_ssc_dai: Stopping clock\n");
  342. clk_disable(ssc_p->ssc->clk);
  343. }
  344. /*
  345. * Record the DAI format for use in hw_params().
  346. */
  347. static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
  348. unsigned int fmt)
  349. {
  350. struct platform_device *pdev = to_platform_device(cpu_dai->dev);
  351. struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
  352. ssc_p->daifmt = fmt;
  353. return 0;
  354. }
  355. /*
  356. * Record SSC clock dividers for use in hw_params().
  357. */
  358. static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
  359. int div_id, int div)
  360. {
  361. struct platform_device *pdev = to_platform_device(cpu_dai->dev);
  362. struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
  363. switch (div_id) {
  364. case ATMEL_SSC_CMR_DIV:
  365. /*
  366. * The same master clock divider is used for both
  367. * transmit and receive, so if a value has already
  368. * been set, it must match this value.
  369. */
  370. if (ssc_p->dir_mask !=
  371. (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
  372. ssc_p->cmr_div = div;
  373. else if (ssc_p->cmr_div == 0)
  374. ssc_p->cmr_div = div;
  375. else
  376. if (div != ssc_p->cmr_div)
  377. return -EBUSY;
  378. ssc_p->forced_divider |= BIT(ATMEL_SSC_CMR_DIV);
  379. break;
  380. case ATMEL_SSC_TCMR_PERIOD:
  381. ssc_p->tcmr_period = div;
  382. ssc_p->forced_divider |= BIT(ATMEL_SSC_TCMR_PERIOD);
  383. break;
  384. case ATMEL_SSC_RCMR_PERIOD:
  385. ssc_p->rcmr_period = div;
  386. ssc_p->forced_divider |= BIT(ATMEL_SSC_RCMR_PERIOD);
  387. break;
  388. default:
  389. return -EINVAL;
  390. }
  391. return 0;
  392. }
  393. /* Is the cpu-dai master of the frame clock? */
  394. static int atmel_ssc_cfs(struct atmel_ssc_info *ssc_p)
  395. {
  396. switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
  397. case SND_SOC_DAIFMT_CBM_CFS:
  398. case SND_SOC_DAIFMT_CBS_CFS:
  399. return 1;
  400. }
  401. return 0;
  402. }
  403. /* Is the cpu-dai master of the bit clock? */
  404. static int atmel_ssc_cbs(struct atmel_ssc_info *ssc_p)
  405. {
  406. switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
  407. case SND_SOC_DAIFMT_CBS_CFM:
  408. case SND_SOC_DAIFMT_CBS_CFS:
  409. return 1;
  410. }
  411. return 0;
  412. }
  413. /*
  414. * Configure the SSC.
  415. */
  416. static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
  417. struct snd_pcm_hw_params *params,
  418. struct snd_soc_dai *dai)
  419. {
  420. struct platform_device *pdev = to_platform_device(dai->dev);
  421. int id = pdev->id;
  422. struct atmel_ssc_info *ssc_p = &ssc_info[id];
  423. struct ssc_device *ssc = ssc_p->ssc;
  424. struct atmel_pcm_dma_params *dma_params;
  425. int dir, channels, bits;
  426. u32 tfmr, rfmr, tcmr, rcmr;
  427. int ret;
  428. int fslen, fslen_ext;
  429. u32 cmr_div;
  430. u32 tcmr_period;
  431. u32 rcmr_period;
  432. /*
  433. * Currently, there is only one set of dma params for
  434. * each direction. If more are added, this code will
  435. * have to be changed to select the proper set.
  436. */
  437. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  438. dir = 0;
  439. else
  440. dir = 1;
  441. /*
  442. * If the cpu dai should provide BCLK, but noone has provided the
  443. * divider needed for that to work, fall back to something sensible.
  444. */
  445. cmr_div = ssc_p->cmr_div;
  446. if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_CMR_DIV)) &&
  447. atmel_ssc_cbs(ssc_p)) {
  448. int bclk_rate = snd_soc_params_to_bclk(params);
  449. if (bclk_rate < 0) {
  450. dev_err(dai->dev, "unable to calculate cmr_div: %d\n",
  451. bclk_rate);
  452. return bclk_rate;
  453. }
  454. cmr_div = DIV_ROUND_CLOSEST(ssc_p->mck_rate, 2 * bclk_rate);
  455. }
  456. /*
  457. * If the cpu dai should provide LRCLK, but noone has provided the
  458. * dividers needed for that to work, fall back to something sensible.
  459. */
  460. tcmr_period = ssc_p->tcmr_period;
  461. rcmr_period = ssc_p->rcmr_period;
  462. if (atmel_ssc_cfs(ssc_p)) {
  463. int frame_size = snd_soc_params_to_frame_size(params);
  464. if (frame_size < 0) {
  465. dev_err(dai->dev,
  466. "unable to calculate tx/rx cmr_period: %d\n",
  467. frame_size);
  468. return frame_size;
  469. }
  470. if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_TCMR_PERIOD)))
  471. tcmr_period = frame_size / 2 - 1;
  472. if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_RCMR_PERIOD)))
  473. rcmr_period = frame_size / 2 - 1;
  474. }
  475. dma_params = ssc_p->dma_params[dir];
  476. channels = params_channels(params);
  477. /*
  478. * Determine sample size in bits and the PDC increment.
  479. */
  480. switch (params_format(params)) {
  481. case SNDRV_PCM_FORMAT_S8:
  482. bits = 8;
  483. dma_params->pdc_xfer_size = 1;
  484. break;
  485. case SNDRV_PCM_FORMAT_S16_LE:
  486. bits = 16;
  487. dma_params->pdc_xfer_size = 2;
  488. break;
  489. case SNDRV_PCM_FORMAT_S24_LE:
  490. bits = 24;
  491. dma_params->pdc_xfer_size = 4;
  492. break;
  493. case SNDRV_PCM_FORMAT_S32_LE:
  494. bits = 32;
  495. dma_params->pdc_xfer_size = 4;
  496. break;
  497. default:
  498. printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
  499. return -EINVAL;
  500. }
  501. /*
  502. * Compute SSC register settings.
  503. */
  504. switch (ssc_p->daifmt
  505. & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
  506. case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
  507. /*
  508. * I2S format, SSC provides BCLK and LRC clocks.
  509. *
  510. * The SSC transmit and receive clocks are generated
  511. * from the MCK divider, and the BCLK signal
  512. * is output on the SSC TK line.
  513. */
  514. if (bits > 16 && !ssc->pdata->has_fslen_ext) {
  515. dev_err(dai->dev,
  516. "sample size %d is too large for SSC device\n",
  517. bits);
  518. return -EINVAL;
  519. }
  520. fslen_ext = (bits - 1) / 16;
  521. fslen = (bits - 1) % 16;
  522. rcmr = SSC_BF(RCMR_PERIOD, rcmr_period)
  523. | SSC_BF(RCMR_STTDLY, START_DELAY)
  524. | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
  525. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  526. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  527. | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
  528. rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
  529. | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  530. | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
  531. | SSC_BF(RFMR_FSLEN, fslen)
  532. | SSC_BF(RFMR_DATNB, (channels - 1))
  533. | SSC_BIT(RFMR_MSBF)
  534. | SSC_BF(RFMR_LOOP, 0)
  535. | SSC_BF(RFMR_DATLEN, (bits - 1));
  536. tcmr = SSC_BF(TCMR_PERIOD, tcmr_period)
  537. | SSC_BF(TCMR_STTDLY, START_DELAY)
  538. | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
  539. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  540. | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
  541. | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
  542. tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
  543. | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  544. | SSC_BF(TFMR_FSDEN, 0)
  545. | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
  546. | SSC_BF(TFMR_FSLEN, fslen)
  547. | SSC_BF(TFMR_DATNB, (channels - 1))
  548. | SSC_BIT(TFMR_MSBF)
  549. | SSC_BF(TFMR_DATDEF, 0)
  550. | SSC_BF(TFMR_DATLEN, (bits - 1));
  551. break;
  552. case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
  553. /* I2S format, CODEC supplies BCLK and LRC clocks. */
  554. rcmr = SSC_BF(RCMR_PERIOD, 0)
  555. | SSC_BF(RCMR_STTDLY, START_DELAY)
  556. | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
  557. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  558. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  559. | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
  560. SSC_CKS_PIN : SSC_CKS_CLOCK);
  561. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  562. | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
  563. | SSC_BF(RFMR_FSLEN, 0)
  564. | SSC_BF(RFMR_DATNB, (channels - 1))
  565. | SSC_BIT(RFMR_MSBF)
  566. | SSC_BF(RFMR_LOOP, 0)
  567. | SSC_BF(RFMR_DATLEN, (bits - 1));
  568. tcmr = SSC_BF(TCMR_PERIOD, 0)
  569. | SSC_BF(TCMR_STTDLY, START_DELAY)
  570. | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
  571. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  572. | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
  573. | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
  574. SSC_CKS_CLOCK : SSC_CKS_PIN);
  575. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  576. | SSC_BF(TFMR_FSDEN, 0)
  577. | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
  578. | SSC_BF(TFMR_FSLEN, 0)
  579. | SSC_BF(TFMR_DATNB, (channels - 1))
  580. | SSC_BIT(TFMR_MSBF)
  581. | SSC_BF(TFMR_DATDEF, 0)
  582. | SSC_BF(TFMR_DATLEN, (bits - 1));
  583. break;
  584. case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
  585. /* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
  586. if (bits > 16 && !ssc->pdata->has_fslen_ext) {
  587. dev_err(dai->dev,
  588. "sample size %d is too large for SSC device\n",
  589. bits);
  590. return -EINVAL;
  591. }
  592. fslen_ext = (bits - 1) / 16;
  593. fslen = (bits - 1) % 16;
  594. rcmr = SSC_BF(RCMR_PERIOD, rcmr_period)
  595. | SSC_BF(RCMR_STTDLY, START_DELAY)
  596. | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
  597. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  598. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  599. | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
  600. SSC_CKS_PIN : SSC_CKS_CLOCK);
  601. rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
  602. | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  603. | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
  604. | SSC_BF(RFMR_FSLEN, fslen)
  605. | SSC_BF(RFMR_DATNB, (channels - 1))
  606. | SSC_BIT(RFMR_MSBF)
  607. | SSC_BF(RFMR_LOOP, 0)
  608. | SSC_BF(RFMR_DATLEN, (bits - 1));
  609. tcmr = SSC_BF(TCMR_PERIOD, tcmr_period)
  610. | SSC_BF(TCMR_STTDLY, START_DELAY)
  611. | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
  612. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  613. | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
  614. | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
  615. SSC_CKS_CLOCK : SSC_CKS_PIN);
  616. tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
  617. | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
  618. | SSC_BF(TFMR_FSDEN, 0)
  619. | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
  620. | SSC_BF(TFMR_FSLEN, fslen)
  621. | SSC_BF(TFMR_DATNB, (channels - 1))
  622. | SSC_BIT(TFMR_MSBF)
  623. | SSC_BF(TFMR_DATDEF, 0)
  624. | SSC_BF(TFMR_DATLEN, (bits - 1));
  625. break;
  626. case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
  627. /*
  628. * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
  629. *
  630. * The SSC transmit and receive clocks are generated from the
  631. * MCK divider, and the BCLK signal is output
  632. * on the SSC TK line.
  633. */
  634. rcmr = SSC_BF(RCMR_PERIOD, rcmr_period)
  635. | SSC_BF(RCMR_STTDLY, 1)
  636. | SSC_BF(RCMR_START, SSC_START_RISING_RF)
  637. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  638. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  639. | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
  640. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  641. | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
  642. | SSC_BF(RFMR_FSLEN, 0)
  643. | SSC_BF(RFMR_DATNB, (channels - 1))
  644. | SSC_BIT(RFMR_MSBF)
  645. | SSC_BF(RFMR_LOOP, 0)
  646. | SSC_BF(RFMR_DATLEN, (bits - 1));
  647. tcmr = SSC_BF(TCMR_PERIOD, tcmr_period)
  648. | SSC_BF(TCMR_STTDLY, 1)
  649. | SSC_BF(TCMR_START, SSC_START_RISING_RF)
  650. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  651. | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
  652. | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
  653. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  654. | SSC_BF(TFMR_FSDEN, 0)
  655. | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
  656. | SSC_BF(TFMR_FSLEN, 0)
  657. | SSC_BF(TFMR_DATNB, (channels - 1))
  658. | SSC_BIT(TFMR_MSBF)
  659. | SSC_BF(TFMR_DATDEF, 0)
  660. | SSC_BF(TFMR_DATLEN, (bits - 1));
  661. break;
  662. case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
  663. /*
  664. * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
  665. *
  666. * Data is transferred on first BCLK after LRC pulse rising
  667. * edge.If stereo, the right channel data is contiguous with
  668. * the left channel data.
  669. */
  670. rcmr = SSC_BF(RCMR_PERIOD, 0)
  671. | SSC_BF(RCMR_STTDLY, START_DELAY)
  672. | SSC_BF(RCMR_START, SSC_START_RISING_RF)
  673. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  674. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  675. | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
  676. SSC_CKS_PIN : SSC_CKS_CLOCK);
  677. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  678. | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
  679. | SSC_BF(RFMR_FSLEN, 0)
  680. | SSC_BF(RFMR_DATNB, (channels - 1))
  681. | SSC_BIT(RFMR_MSBF)
  682. | SSC_BF(RFMR_LOOP, 0)
  683. | SSC_BF(RFMR_DATLEN, (bits - 1));
  684. tcmr = SSC_BF(TCMR_PERIOD, 0)
  685. | SSC_BF(TCMR_STTDLY, START_DELAY)
  686. | SSC_BF(TCMR_START, SSC_START_RISING_RF)
  687. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  688. | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
  689. | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
  690. SSC_CKS_CLOCK : SSC_CKS_PIN);
  691. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  692. | SSC_BF(TFMR_FSDEN, 0)
  693. | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
  694. | SSC_BF(TFMR_FSLEN, 0)
  695. | SSC_BF(TFMR_DATNB, (channels - 1))
  696. | SSC_BIT(TFMR_MSBF)
  697. | SSC_BF(TFMR_DATDEF, 0)
  698. | SSC_BF(TFMR_DATLEN, (bits - 1));
  699. break;
  700. default:
  701. printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
  702. ssc_p->daifmt);
  703. return -EINVAL;
  704. }
  705. pr_debug("atmel_ssc_hw_params: "
  706. "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
  707. rcmr, rfmr, tcmr, tfmr);
  708. if (!ssc_p->initialized) {
  709. if (!ssc_p->ssc->pdata->use_dma) {
  710. ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
  711. ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
  712. ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
  713. ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
  714. ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
  715. ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
  716. ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
  717. ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
  718. }
  719. ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
  720. ssc_p->name, ssc_p);
  721. if (ret < 0) {
  722. printk(KERN_WARNING
  723. "atmel_ssc_dai: request_irq failure\n");
  724. pr_debug("Atmel_ssc_dai: Stopping clock\n");
  725. clk_disable(ssc_p->ssc->clk);
  726. return ret;
  727. }
  728. ssc_p->initialized = 1;
  729. }
  730. /* set SSC clock mode register */
  731. ssc_writel(ssc_p->ssc->regs, CMR, cmr_div);
  732. /* set receive clock mode and format */
  733. ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
  734. ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
  735. /* set transmit clock mode and format */
  736. ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
  737. ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
  738. pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
  739. return 0;
  740. }
  741. static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
  742. struct snd_soc_dai *dai)
  743. {
  744. struct platform_device *pdev = to_platform_device(dai->dev);
  745. struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
  746. struct atmel_pcm_dma_params *dma_params;
  747. int dir;
  748. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  749. dir = 0;
  750. else
  751. dir = 1;
  752. dma_params = ssc_p->dma_params[dir];
  753. ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
  754. ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
  755. pr_debug("%s enabled SSC_SR=0x%08x\n",
  756. dir ? "receive" : "transmit",
  757. ssc_readl(ssc_p->ssc->regs, SR));
  758. return 0;
  759. }
  760. static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
  761. int cmd, struct snd_soc_dai *dai)
  762. {
  763. struct platform_device *pdev = to_platform_device(dai->dev);
  764. struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
  765. struct atmel_pcm_dma_params *dma_params;
  766. int dir;
  767. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  768. dir = 0;
  769. else
  770. dir = 1;
  771. dma_params = ssc_p->dma_params[dir];
  772. switch (cmd) {
  773. case SNDRV_PCM_TRIGGER_START:
  774. case SNDRV_PCM_TRIGGER_RESUME:
  775. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  776. ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
  777. break;
  778. default:
  779. ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
  780. break;
  781. }
  782. return 0;
  783. }
  784. #ifdef CONFIG_PM
  785. static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
  786. {
  787. struct atmel_ssc_info *ssc_p;
  788. struct platform_device *pdev = to_platform_device(cpu_dai->dev);
  789. if (!cpu_dai->active)
  790. return 0;
  791. ssc_p = &ssc_info[pdev->id];
  792. /* Save the status register before disabling transmit and receive */
  793. ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
  794. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
  795. /* Save the current interrupt mask, then disable unmasked interrupts */
  796. ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
  797. ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
  798. ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
  799. ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
  800. ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
  801. ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
  802. ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
  803. return 0;
  804. }
  805. static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
  806. {
  807. struct atmel_ssc_info *ssc_p;
  808. struct platform_device *pdev = to_platform_device(cpu_dai->dev);
  809. u32 cr;
  810. if (!cpu_dai->active)
  811. return 0;
  812. ssc_p = &ssc_info[pdev->id];
  813. /* restore SSC register settings */
  814. ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
  815. ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
  816. ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
  817. ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
  818. ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
  819. /* re-enable interrupts */
  820. ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
  821. /* Re-enable receive and transmit as appropriate */
  822. cr = 0;
  823. cr |=
  824. (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
  825. cr |=
  826. (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
  827. ssc_writel(ssc_p->ssc->regs, CR, cr);
  828. return 0;
  829. }
  830. #else /* CONFIG_PM */
  831. # define atmel_ssc_suspend NULL
  832. # define atmel_ssc_resume NULL
  833. #endif /* CONFIG_PM */
  834. #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
  835. SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
  836. static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
  837. .startup = atmel_ssc_startup,
  838. .shutdown = atmel_ssc_shutdown,
  839. .prepare = atmel_ssc_prepare,
  840. .trigger = atmel_ssc_trigger,
  841. .hw_params = atmel_ssc_hw_params,
  842. .set_fmt = atmel_ssc_set_dai_fmt,
  843. .set_clkdiv = atmel_ssc_set_dai_clkdiv,
  844. };
  845. static struct snd_soc_dai_driver atmel_ssc_dai = {
  846. .suspend = atmel_ssc_suspend,
  847. .resume = atmel_ssc_resume,
  848. .playback = {
  849. .channels_min = 1,
  850. .channels_max = 2,
  851. .rates = SNDRV_PCM_RATE_CONTINUOUS,
  852. .rate_min = 8000,
  853. .rate_max = 384000,
  854. .formats = ATMEL_SSC_FORMATS,},
  855. .capture = {
  856. .channels_min = 1,
  857. .channels_max = 2,
  858. .rates = SNDRV_PCM_RATE_CONTINUOUS,
  859. .rate_min = 8000,
  860. .rate_max = 384000,
  861. .formats = ATMEL_SSC_FORMATS,},
  862. .ops = &atmel_ssc_dai_ops,
  863. };
  864. static const struct snd_soc_component_driver atmel_ssc_component = {
  865. .name = "atmel-ssc",
  866. };
  867. static int asoc_ssc_init(struct device *dev)
  868. {
  869. struct ssc_device *ssc = dev_get_drvdata(dev);
  870. int ret;
  871. ret = snd_soc_register_component(dev, &atmel_ssc_component,
  872. &atmel_ssc_dai, 1);
  873. if (ret) {
  874. dev_err(dev, "Could not register DAI: %d\n", ret);
  875. goto err;
  876. }
  877. if (ssc->pdata->use_dma)
  878. ret = atmel_pcm_dma_platform_register(dev);
  879. else
  880. ret = atmel_pcm_pdc_platform_register(dev);
  881. if (ret) {
  882. dev_err(dev, "Could not register PCM: %d\n", ret);
  883. goto err_unregister_dai;
  884. }
  885. return 0;
  886. err_unregister_dai:
  887. snd_soc_unregister_component(dev);
  888. err:
  889. return ret;
  890. }
  891. static void asoc_ssc_exit(struct device *dev)
  892. {
  893. struct ssc_device *ssc = dev_get_drvdata(dev);
  894. if (ssc->pdata->use_dma)
  895. atmel_pcm_dma_platform_unregister(dev);
  896. else
  897. atmel_pcm_pdc_platform_unregister(dev);
  898. snd_soc_unregister_component(dev);
  899. }
  900. /**
  901. * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
  902. */
  903. int atmel_ssc_set_audio(int ssc_id)
  904. {
  905. struct ssc_device *ssc;
  906. int ret;
  907. /* If we can grab the SSC briefly to parent the DAI device off it */
  908. ssc = ssc_request(ssc_id);
  909. if (IS_ERR(ssc)) {
  910. pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
  911. PTR_ERR(ssc));
  912. return PTR_ERR(ssc);
  913. } else {
  914. ssc_info[ssc_id].ssc = ssc;
  915. }
  916. ret = asoc_ssc_init(&ssc->pdev->dev);
  917. return ret;
  918. }
  919. EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
  920. void atmel_ssc_put_audio(int ssc_id)
  921. {
  922. struct ssc_device *ssc = ssc_info[ssc_id].ssc;
  923. asoc_ssc_exit(&ssc->pdev->dev);
  924. ssc_free(ssc);
  925. }
  926. EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
  927. /* Module information */
  928. MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
  929. MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
  930. MODULE_LICENSE("GPL");