serial_stm32.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
  4. * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
  5. */
  6. #include <common.h>
  7. #include <clk.h>
  8. #include <dm.h>
  9. #include <serial.h>
  10. #include <watchdog.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/stm32.h>
  13. #include "serial_stm32.h"
  14. static void _stm32_serial_setbrg(fdt_addr_t base,
  15. struct stm32_uart_info *uart_info,
  16. u32 clock_rate,
  17. int baudrate)
  18. {
  19. bool stm32f4 = uart_info->stm32f4;
  20. u32 int_div, mantissa, fraction, oversampling;
  21. int_div = DIV_ROUND_CLOSEST(clock_rate, baudrate);
  22. if (int_div < 16) {
  23. oversampling = 8;
  24. setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8);
  25. } else {
  26. oversampling = 16;
  27. clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8);
  28. }
  29. mantissa = (int_div / oversampling) << USART_BRR_M_SHIFT;
  30. fraction = int_div % oversampling;
  31. writel(mantissa | fraction, base + BRR_OFFSET(stm32f4));
  32. }
  33. static int stm32_serial_setbrg(struct udevice *dev, int baudrate)
  34. {
  35. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  36. _stm32_serial_setbrg(plat->base, plat->uart_info,
  37. plat->clock_rate, baudrate);
  38. return 0;
  39. }
  40. static int stm32_serial_setparity(struct udevice *dev, enum serial_par parity)
  41. {
  42. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  43. bool stm32f4 = plat->uart_info->stm32f4;
  44. u8 uart_enable_bit = plat->uart_info->uart_enable_bit;
  45. u32 cr1 = plat->base + CR1_OFFSET(stm32f4);
  46. u32 config = 0;
  47. if (stm32f4)
  48. return -EINVAL; /* not supported in driver*/
  49. clrbits_le32(cr1, USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit));
  50. /* update usart configuration (uart need to be disable)
  51. * PCE: parity check control
  52. * PS : '0' : Even / '1' : Odd
  53. * M[1:0] = '00' : 8 Data bits
  54. * M[1:0] = '01' : 9 Data bits with parity
  55. */
  56. switch (parity) {
  57. default:
  58. case SERIAL_PAR_NONE:
  59. config = 0;
  60. break;
  61. case SERIAL_PAR_ODD:
  62. config = USART_CR1_PCE | USART_CR1_PS | USART_CR1_M0;
  63. break;
  64. case SERIAL_PAR_EVEN:
  65. config = USART_CR1_PCE | USART_CR1_M0;
  66. break;
  67. }
  68. clrsetbits_le32(cr1,
  69. USART_CR1_PCE | USART_CR1_PS | USART_CR1_M1 |
  70. USART_CR1_M0,
  71. config);
  72. setbits_le32(cr1, USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit));
  73. return 0;
  74. }
  75. static int stm32_serial_getc(struct udevice *dev)
  76. {
  77. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  78. bool stm32f4 = plat->uart_info->stm32f4;
  79. fdt_addr_t base = plat->base;
  80. u32 isr = readl(base + ISR_OFFSET(stm32f4));
  81. if ((isr & USART_ISR_RXNE) == 0)
  82. return -EAGAIN;
  83. if (isr & (USART_ISR_PE | USART_ISR_ORE)) {
  84. if (!stm32f4)
  85. setbits_le32(base + ICR_OFFSET,
  86. USART_ICR_PCECF | USART_ICR_ORECF);
  87. else
  88. readl(base + RDR_OFFSET(stm32f4));
  89. return -EIO;
  90. }
  91. return readl(base + RDR_OFFSET(stm32f4));
  92. }
  93. static int _stm32_serial_putc(fdt_addr_t base,
  94. struct stm32_uart_info *uart_info,
  95. const char c)
  96. {
  97. bool stm32f4 = uart_info->stm32f4;
  98. if ((readl(base + ISR_OFFSET(stm32f4)) & USART_ISR_TXE) == 0)
  99. return -EAGAIN;
  100. writel(c, base + TDR_OFFSET(stm32f4));
  101. return 0;
  102. }
  103. static int stm32_serial_putc(struct udevice *dev, const char c)
  104. {
  105. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  106. return _stm32_serial_putc(plat->base, plat->uart_info, c);
  107. }
  108. static int stm32_serial_pending(struct udevice *dev, bool input)
  109. {
  110. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  111. bool stm32f4 = plat->uart_info->stm32f4;
  112. fdt_addr_t base = plat->base;
  113. if (input)
  114. return readl(base + ISR_OFFSET(stm32f4)) &
  115. USART_ISR_RXNE ? 1 : 0;
  116. else
  117. return readl(base + ISR_OFFSET(stm32f4)) &
  118. USART_ISR_TXE ? 0 : 1;
  119. }
  120. static void _stm32_serial_init(fdt_addr_t base,
  121. struct stm32_uart_info *uart_info)
  122. {
  123. bool stm32f4 = uart_info->stm32f4;
  124. u8 uart_enable_bit = uart_info->uart_enable_bit;
  125. /* Disable uart-> enable fifo -> enable uart */
  126. clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE |
  127. BIT(uart_enable_bit));
  128. if (uart_info->has_fifo)
  129. setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_FIFOEN);
  130. setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE |
  131. BIT(uart_enable_bit));
  132. }
  133. static int stm32_serial_probe(struct udevice *dev)
  134. {
  135. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  136. struct clk clk;
  137. int ret;
  138. plat->uart_info = (struct stm32_uart_info *)dev_get_driver_data(dev);
  139. ret = clk_get_by_index(dev, 0, &clk);
  140. if (ret < 0)
  141. return ret;
  142. ret = clk_enable(&clk);
  143. if (ret) {
  144. dev_err(dev, "failed to enable clock\n");
  145. return ret;
  146. }
  147. plat->clock_rate = clk_get_rate(&clk);
  148. if (plat->clock_rate < 0) {
  149. clk_disable(&clk);
  150. return plat->clock_rate;
  151. };
  152. _stm32_serial_init(plat->base, plat->uart_info);
  153. return 0;
  154. }
  155. static const struct udevice_id stm32_serial_id[] = {
  156. { .compatible = "st,stm32-uart", .data = (ulong)&stm32f4_info},
  157. { .compatible = "st,stm32f7-uart", .data = (ulong)&stm32f7_info},
  158. { .compatible = "st,stm32h7-uart", .data = (ulong)&stm32h7_info},
  159. {}
  160. };
  161. static int stm32_serial_ofdata_to_platdata(struct udevice *dev)
  162. {
  163. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  164. plat->base = devfdt_get_addr(dev);
  165. if (plat->base == FDT_ADDR_T_NONE)
  166. return -EINVAL;
  167. return 0;
  168. }
  169. static const struct dm_serial_ops stm32_serial_ops = {
  170. .putc = stm32_serial_putc,
  171. .pending = stm32_serial_pending,
  172. .getc = stm32_serial_getc,
  173. .setbrg = stm32_serial_setbrg,
  174. .setparity = stm32_serial_setparity
  175. };
  176. U_BOOT_DRIVER(serial_stm32) = {
  177. .name = "serial_stm32",
  178. .id = UCLASS_SERIAL,
  179. .of_match = of_match_ptr(stm32_serial_id),
  180. .ofdata_to_platdata = of_match_ptr(stm32_serial_ofdata_to_platdata),
  181. .platdata_auto_alloc_size = sizeof(struct stm32x7_serial_platdata),
  182. .ops = &stm32_serial_ops,
  183. .probe = stm32_serial_probe,
  184. .flags = DM_FLAG_PRE_RELOC,
  185. };
  186. #ifdef CONFIG_DEBUG_UART_STM32
  187. #include <debug_uart.h>
  188. static inline struct stm32_uart_info *_debug_uart_info(void)
  189. {
  190. struct stm32_uart_info *uart_info;
  191. #if defined(CONFIG_STM32F4)
  192. uart_info = &stm32f4_info;
  193. #elif defined(CONFIG_STM32F7)
  194. uart_info = &stm32f7_info;
  195. #else
  196. uart_info = &stm32h7_info;
  197. #endif
  198. return uart_info;
  199. }
  200. static inline void _debug_uart_init(void)
  201. {
  202. fdt_addr_t base = CONFIG_DEBUG_UART_BASE;
  203. struct stm32_uart_info *uart_info = _debug_uart_info();
  204. _stm32_serial_init(base, uart_info);
  205. _stm32_serial_setbrg(base, uart_info,
  206. CONFIG_DEBUG_UART_CLOCK,
  207. CONFIG_BAUDRATE);
  208. printf("DEBUG done\n");
  209. }
  210. static inline void _debug_uart_putc(int c)
  211. {
  212. fdt_addr_t base = CONFIG_DEBUG_UART_BASE;
  213. struct stm32_uart_info *uart_info = _debug_uart_info();
  214. while (_stm32_serial_putc(base, uart_info, c) == -EAGAIN)
  215. WATCHDOG_RESET();
  216. }
  217. DEBUG_UART_FUNCS
  218. #endif