fsl_qspi.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright 2013-2015 Freescale Semiconductor, Inc.
  4. *
  5. * Freescale Quad Serial Peripheral Interface (QSPI) driver
  6. */
  7. #include <common.h>
  8. #include <malloc.h>
  9. #include <spi.h>
  10. #include <asm/io.h>
  11. #include <linux/sizes.h>
  12. #include <dm.h>
  13. #include <errno.h>
  14. #include <watchdog.h>
  15. #include <wait_bit.h>
  16. #include "fsl_qspi.h"
  17. DECLARE_GLOBAL_DATA_PTR;
  18. #define RX_BUFFER_SIZE 0x80
  19. #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
  20. defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
  21. #define TX_BUFFER_SIZE 0x200
  22. #else
  23. #define TX_BUFFER_SIZE 0x40
  24. #endif
  25. #define OFFSET_BITS_MASK GENMASK(23, 0)
  26. #define FLASH_STATUS_WEL 0x02
  27. /* SEQID */
  28. #define SEQID_WREN 1
  29. #define SEQID_FAST_READ 2
  30. #define SEQID_RDSR 3
  31. #define SEQID_SE 4
  32. #define SEQID_CHIP_ERASE 5
  33. #define SEQID_PP 6
  34. #define SEQID_RDID 7
  35. #define SEQID_BE_4K 8
  36. #ifdef CONFIG_SPI_FLASH_BAR
  37. #define SEQID_BRRD 9
  38. #define SEQID_BRWR 10
  39. #define SEQID_RDEAR 11
  40. #define SEQID_WREAR 12
  41. #endif
  42. #define SEQID_WRAR 13
  43. #define SEQID_RDAR 14
  44. /* QSPI CMD */
  45. #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
  46. #define QSPI_CMD_RDSR 0x05 /* Read status register */
  47. #define QSPI_CMD_WREN 0x06 /* Write enable */
  48. #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
  49. #define QSPI_CMD_BE_4K 0x20 /* 4K erase */
  50. #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  51. #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
  52. #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
  53. /* Used for Micron, winbond and Macronix flashes */
  54. #define QSPI_CMD_WREAR 0xc5 /* EAR register write */
  55. #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
  56. /* Used for Spansion flashes only. */
  57. #define QSPI_CMD_BRRD 0x16 /* Bank register read */
  58. #define QSPI_CMD_BRWR 0x17 /* Bank register write */
  59. /* Used for Spansion S25FS-S family flash only. */
  60. #define QSPI_CMD_RDAR 0x65 /* Read any device register */
  61. #define QSPI_CMD_WRAR 0x71 /* Write any device register */
  62. /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
  63. #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
  64. #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
  65. #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
  66. /* fsl_qspi_platdata flags */
  67. #define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
  68. /* default SCK frequency, unit: HZ */
  69. #define FSL_QSPI_DEFAULT_SCK_FREQ 50000000
  70. /* QSPI max chipselect signals number */
  71. #define FSL_QSPI_MAX_CHIPSELECT_NUM 4
  72. #ifdef CONFIG_DM_SPI
  73. /**
  74. * struct fsl_qspi_platdata - platform data for Freescale QSPI
  75. *
  76. * @flags: Flags for QSPI QSPI_FLAG_...
  77. * @speed_hz: Default SCK frequency
  78. * @reg_base: Base address of QSPI registers
  79. * @amba_base: Base address of QSPI memory mapping
  80. * @amba_total_size: size of QSPI memory mapping
  81. * @flash_num: Number of active slave devices
  82. * @num_chipselect: Number of QSPI chipselect signals
  83. */
  84. struct fsl_qspi_platdata {
  85. u32 flags;
  86. u32 speed_hz;
  87. fdt_addr_t reg_base;
  88. fdt_addr_t amba_base;
  89. fdt_size_t amba_total_size;
  90. u32 flash_num;
  91. u32 num_chipselect;
  92. };
  93. #endif
  94. /**
  95. * struct fsl_qspi_priv - private data for Freescale QSPI
  96. *
  97. * @flags: Flags for QSPI QSPI_FLAG_...
  98. * @bus_clk: QSPI input clk frequency
  99. * @speed_hz: Default SCK frequency
  100. * @cur_seqid: current LUT table sequence id
  101. * @sf_addr: flash access offset
  102. * @amba_base: Base address of QSPI memory mapping of every CS
  103. * @amba_total_size: size of QSPI memory mapping
  104. * @cur_amba_base: Base address of QSPI memory mapping of current CS
  105. * @flash_num: Number of active slave devices
  106. * @num_chipselect: Number of QSPI chipselect signals
  107. * @regs: Point to QSPI register structure for I/O access
  108. */
  109. struct fsl_qspi_priv {
  110. u32 flags;
  111. u32 bus_clk;
  112. u32 speed_hz;
  113. u32 cur_seqid;
  114. u32 sf_addr;
  115. u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
  116. u32 amba_total_size;
  117. u32 cur_amba_base;
  118. u32 flash_num;
  119. u32 num_chipselect;
  120. struct fsl_qspi_regs *regs;
  121. };
  122. #ifndef CONFIG_DM_SPI
  123. struct fsl_qspi {
  124. struct spi_slave slave;
  125. struct fsl_qspi_priv priv;
  126. };
  127. #endif
  128. static u32 qspi_read32(u32 flags, u32 *addr)
  129. {
  130. return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  131. in_be32(addr) : in_le32(addr);
  132. }
  133. static void qspi_write32(u32 flags, u32 *addr, u32 val)
  134. {
  135. flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  136. out_be32(addr, val) : out_le32(addr, val);
  137. }
  138. static inline int is_controller_busy(const struct fsl_qspi_priv *priv)
  139. {
  140. u32 val;
  141. const u32 mask = QSPI_SR_BUSY_MASK | QSPI_SR_AHB_ACC_MASK |
  142. QSPI_SR_IP_ACC_MASK;
  143. unsigned int retry = 5;
  144. do {
  145. val = qspi_read32(priv->flags, &priv->regs->sr);
  146. if ((~val & mask) == mask)
  147. return 0;
  148. udelay(1);
  149. } while (--retry);
  150. return -ETIMEDOUT;
  151. }
  152. /* QSPI support swapping the flash read/write data
  153. * in hardware for LS102xA, but not for VF610 */
  154. static inline u32 qspi_endian_xchg(u32 data)
  155. {
  156. #ifdef CONFIG_VF610
  157. return swab32(data);
  158. #else
  159. return data;
  160. #endif
  161. }
  162. static void qspi_set_lut(struct fsl_qspi_priv *priv)
  163. {
  164. struct fsl_qspi_regs *regs = priv->regs;
  165. u32 lut_base;
  166. /* Unlock the LUT */
  167. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  168. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
  169. /* Write Enable */
  170. lut_base = SEQID_WREN * 4;
  171. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
  172. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  173. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  174. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  175. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  176. /* Fast Read */
  177. lut_base = SEQID_FAST_READ * 4;
  178. #ifdef CONFIG_SPI_FLASH_BAR
  179. qspi_write32(priv->flags, &regs->lut[lut_base],
  180. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  181. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  182. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  183. #else
  184. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  185. qspi_write32(priv->flags, &regs->lut[lut_base],
  186. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  187. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  188. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  189. else
  190. qspi_write32(priv->flags, &regs->lut[lut_base],
  191. OPRND0(QSPI_CMD_FAST_READ_4B) |
  192. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
  193. OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
  194. INSTR1(LUT_ADDR));
  195. #endif
  196. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  197. OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
  198. OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
  199. INSTR1(LUT_READ));
  200. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  201. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  202. /* Read Status */
  203. lut_base = SEQID_RDSR * 4;
  204. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
  205. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  206. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  207. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  208. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  209. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  210. /* Erase a sector */
  211. lut_base = SEQID_SE * 4;
  212. #ifdef CONFIG_SPI_FLASH_BAR
  213. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
  214. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  215. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  216. #else
  217. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  218. qspi_write32(priv->flags, &regs->lut[lut_base],
  219. OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
  220. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  221. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  222. else
  223. qspi_write32(priv->flags, &regs->lut[lut_base],
  224. OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
  225. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  226. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  227. #endif
  228. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  229. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  230. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  231. /* Erase the whole chip */
  232. lut_base = SEQID_CHIP_ERASE * 4;
  233. qspi_write32(priv->flags, &regs->lut[lut_base],
  234. OPRND0(QSPI_CMD_CHIP_ERASE) |
  235. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  236. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  237. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  238. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  239. /* Page Program */
  240. lut_base = SEQID_PP * 4;
  241. #ifdef CONFIG_SPI_FLASH_BAR
  242. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
  243. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  244. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  245. #else
  246. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  247. qspi_write32(priv->flags, &regs->lut[lut_base],
  248. OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
  249. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  250. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  251. else
  252. qspi_write32(priv->flags, &regs->lut[lut_base],
  253. OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
  254. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  255. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  256. #endif
  257. #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
  258. defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
  259. /*
  260. * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
  261. * So, Use IDATSZ in IPCR to determine the size and here set 0.
  262. */
  263. qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
  264. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  265. #else
  266. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  267. OPRND0(TX_BUFFER_SIZE) |
  268. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  269. #endif
  270. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  271. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  272. /* READ ID */
  273. lut_base = SEQID_RDID * 4;
  274. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
  275. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
  276. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  277. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  278. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  279. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  280. /* SUB SECTOR 4K ERASE */
  281. lut_base = SEQID_BE_4K * 4;
  282. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
  283. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  284. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  285. #ifdef CONFIG_SPI_FLASH_BAR
  286. /*
  287. * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
  288. * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
  289. * initialization.
  290. */
  291. lut_base = SEQID_BRRD * 4;
  292. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
  293. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  294. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  295. lut_base = SEQID_BRWR * 4;
  296. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
  297. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  298. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  299. lut_base = SEQID_RDEAR * 4;
  300. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
  301. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  302. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  303. lut_base = SEQID_WREAR * 4;
  304. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
  305. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  306. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  307. #endif
  308. /*
  309. * Read any device register.
  310. * Used for Spansion S25FS-S family flash only.
  311. */
  312. lut_base = SEQID_RDAR * 4;
  313. qspi_write32(priv->flags, &regs->lut[lut_base],
  314. OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
  315. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  316. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  317. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  318. OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
  319. OPRND1(1) | PAD1(LUT_PAD1) |
  320. INSTR1(LUT_READ));
  321. /*
  322. * Write any device register.
  323. * Used for Spansion S25FS-S family flash only.
  324. */
  325. lut_base = SEQID_WRAR * 4;
  326. qspi_write32(priv->flags, &regs->lut[lut_base],
  327. OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
  328. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  329. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  330. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  331. OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  332. /* Lock the LUT */
  333. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  334. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
  335. }
  336. #if defined(CONFIG_SYS_FSL_QSPI_AHB)
  337. /*
  338. * If we have changed the content of the flash by writing or erasing,
  339. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  340. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  341. * domain at the same time.
  342. */
  343. static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
  344. {
  345. struct fsl_qspi_regs *regs = priv->regs;
  346. u32 reg;
  347. reg = qspi_read32(priv->flags, &regs->mcr);
  348. reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
  349. qspi_write32(priv->flags, &regs->mcr, reg);
  350. /*
  351. * The minimum delay : 1 AHB + 2 SFCK clocks.
  352. * Delay 1 us is enough.
  353. */
  354. udelay(1);
  355. reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
  356. qspi_write32(priv->flags, &regs->mcr, reg);
  357. }
  358. /* Read out the data from the AHB buffer. */
  359. static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
  360. {
  361. struct fsl_qspi_regs *regs = priv->regs;
  362. u32 mcr_reg;
  363. void *rx_addr;
  364. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  365. qspi_write32(priv->flags, &regs->mcr,
  366. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  367. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  368. rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
  369. /* Read out the data directly from the AHB buffer. */
  370. memcpy(rxbuf, rx_addr, len);
  371. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  372. }
  373. static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
  374. {
  375. u32 reg, reg2;
  376. struct fsl_qspi_regs *regs = priv->regs;
  377. reg = qspi_read32(priv->flags, &regs->mcr);
  378. /* Disable the module */
  379. qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
  380. /* Set the Sampling Register for DDR */
  381. reg2 = qspi_read32(priv->flags, &regs->smpr);
  382. reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
  383. reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
  384. qspi_write32(priv->flags, &regs->smpr, reg2);
  385. /* Enable the module again (enable the DDR too) */
  386. reg |= QSPI_MCR_DDR_EN_MASK;
  387. /* Enable bit 29 for imx6sx */
  388. reg |= BIT(29);
  389. qspi_write32(priv->flags, &regs->mcr, reg);
  390. }
  391. /*
  392. * There are two different ways to read out the data from the flash:
  393. * the "IP Command Read" and the "AHB Command Read".
  394. *
  395. * The IC guy suggests we use the "AHB Command Read" which is faster
  396. * then the "IP Command Read". (What's more is that there is a bug in
  397. * the "IP Command Read" in the Vybrid.)
  398. *
  399. * After we set up the registers for the "AHB Command Read", we can use
  400. * the memcpy to read the data directly. A "missed" access to the buffer
  401. * causes the controller to clear the buffer, and use the sequence pointed
  402. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  403. */
  404. static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
  405. {
  406. struct fsl_qspi_regs *regs = priv->regs;
  407. /* AHB configuration for access buffer 0/1/2 .*/
  408. qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
  409. qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
  410. qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
  411. qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
  412. (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
  413. /* We only use the buffer3 */
  414. qspi_write32(priv->flags, &regs->buf0ind, 0);
  415. qspi_write32(priv->flags, &regs->buf1ind, 0);
  416. qspi_write32(priv->flags, &regs->buf2ind, 0);
  417. /*
  418. * Set the default lut sequence for AHB Read.
  419. * Parallel mode is disabled.
  420. */
  421. qspi_write32(priv->flags, &regs->bfgencr,
  422. SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
  423. /*Enable DDR Mode*/
  424. qspi_enable_ddr_mode(priv);
  425. }
  426. #endif
  427. #ifdef CONFIG_SPI_FLASH_BAR
  428. /* Bank register read/write, EAR register read/write */
  429. static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
  430. {
  431. struct fsl_qspi_regs *regs = priv->regs;
  432. u32 reg, mcr_reg, data, seqid;
  433. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  434. qspi_write32(priv->flags, &regs->mcr,
  435. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  436. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  437. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  438. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  439. if (priv->cur_seqid == QSPI_CMD_BRRD)
  440. seqid = SEQID_BRRD;
  441. else
  442. seqid = SEQID_RDEAR;
  443. qspi_write32(priv->flags, &regs->ipcr,
  444. (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
  445. /* Wait previous command complete */
  446. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  447. ;
  448. while (1) {
  449. WATCHDOG_RESET();
  450. reg = qspi_read32(priv->flags, &regs->rbsr);
  451. if (reg & QSPI_RBSR_RDBFL_MASK) {
  452. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  453. data = qspi_endian_xchg(data);
  454. memcpy(rxbuf, &data, len);
  455. qspi_write32(priv->flags, &regs->mcr,
  456. qspi_read32(priv->flags, &regs->mcr) |
  457. QSPI_MCR_CLR_RXF_MASK);
  458. break;
  459. }
  460. }
  461. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  462. }
  463. #endif
  464. static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  465. {
  466. struct fsl_qspi_regs *regs = priv->regs;
  467. u32 mcr_reg, rbsr_reg, data, size;
  468. int i;
  469. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  470. qspi_write32(priv->flags, &regs->mcr,
  471. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  472. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  473. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  474. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  475. qspi_write32(priv->flags, &regs->ipcr,
  476. (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
  477. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  478. ;
  479. i = 0;
  480. while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
  481. WATCHDOG_RESET();
  482. rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
  483. if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
  484. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  485. data = qspi_endian_xchg(data);
  486. size = (len < 4) ? len : 4;
  487. memcpy(rxbuf, &data, size);
  488. len -= size;
  489. rxbuf++;
  490. i++;
  491. }
  492. }
  493. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  494. }
  495. /* If not use AHB read, read data from ip interface */
  496. static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  497. {
  498. struct fsl_qspi_regs *regs = priv->regs;
  499. u32 mcr_reg, data;
  500. int i, size;
  501. u32 to_or_from;
  502. u32 seqid;
  503. if (priv->cur_seqid == QSPI_CMD_RDAR)
  504. seqid = SEQID_RDAR;
  505. else
  506. seqid = SEQID_FAST_READ;
  507. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  508. qspi_write32(priv->flags, &regs->mcr,
  509. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  510. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  511. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  512. to_or_from = priv->sf_addr + priv->cur_amba_base;
  513. while (len > 0) {
  514. WATCHDOG_RESET();
  515. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  516. size = (len > RX_BUFFER_SIZE) ?
  517. RX_BUFFER_SIZE : len;
  518. qspi_write32(priv->flags, &regs->ipcr,
  519. (seqid << QSPI_IPCR_SEQID_SHIFT) |
  520. size);
  521. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  522. ;
  523. to_or_from += size;
  524. len -= size;
  525. i = 0;
  526. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  527. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  528. data = qspi_endian_xchg(data);
  529. if (size < 4)
  530. memcpy(rxbuf, &data, size);
  531. else
  532. memcpy(rxbuf, &data, 4);
  533. rxbuf++;
  534. size -= 4;
  535. i++;
  536. }
  537. qspi_write32(priv->flags, &regs->mcr,
  538. qspi_read32(priv->flags, &regs->mcr) |
  539. QSPI_MCR_CLR_RXF_MASK);
  540. }
  541. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  542. }
  543. static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
  544. {
  545. struct fsl_qspi_regs *regs = priv->regs;
  546. u32 mcr_reg, data, reg, status_reg, seqid;
  547. int i, size, tx_size;
  548. u32 to_or_from = 0;
  549. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  550. qspi_write32(priv->flags, &regs->mcr,
  551. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  552. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  553. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  554. status_reg = 0;
  555. while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
  556. WATCHDOG_RESET();
  557. qspi_write32(priv->flags, &regs->ipcr,
  558. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  559. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  560. ;
  561. qspi_write32(priv->flags, &regs->ipcr,
  562. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
  563. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  564. ;
  565. reg = qspi_read32(priv->flags, &regs->rbsr);
  566. if (reg & QSPI_RBSR_RDBFL_MASK) {
  567. status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
  568. status_reg = qspi_endian_xchg(status_reg);
  569. }
  570. qspi_write32(priv->flags, &regs->mcr,
  571. qspi_read32(priv->flags, &regs->mcr) |
  572. QSPI_MCR_CLR_RXF_MASK);
  573. }
  574. /* Default is page programming */
  575. seqid = SEQID_PP;
  576. if (priv->cur_seqid == QSPI_CMD_WRAR)
  577. seqid = SEQID_WRAR;
  578. #ifdef CONFIG_SPI_FLASH_BAR
  579. if (priv->cur_seqid == QSPI_CMD_BRWR)
  580. seqid = SEQID_BRWR;
  581. else if (priv->cur_seqid == QSPI_CMD_WREAR)
  582. seqid = SEQID_WREAR;
  583. #endif
  584. to_or_from = priv->sf_addr + priv->cur_amba_base;
  585. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  586. tx_size = (len > TX_BUFFER_SIZE) ?
  587. TX_BUFFER_SIZE : len;
  588. size = tx_size / 16;
  589. /*
  590. * There must be atleast 128bit data
  591. * available in TX FIFO for any pop operation
  592. */
  593. if (tx_size % 16)
  594. size++;
  595. for (i = 0; i < size * 4; i++) {
  596. memcpy(&data, txbuf, 4);
  597. data = qspi_endian_xchg(data);
  598. qspi_write32(priv->flags, &regs->tbdr, data);
  599. txbuf += 4;
  600. }
  601. qspi_write32(priv->flags, &regs->ipcr,
  602. (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
  603. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  604. ;
  605. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  606. }
  607. static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
  608. {
  609. struct fsl_qspi_regs *regs = priv->regs;
  610. u32 mcr_reg, reg, data;
  611. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  612. qspi_write32(priv->flags, &regs->mcr,
  613. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  614. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  615. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  616. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  617. qspi_write32(priv->flags, &regs->ipcr,
  618. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
  619. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  620. ;
  621. while (1) {
  622. WATCHDOG_RESET();
  623. reg = qspi_read32(priv->flags, &regs->rbsr);
  624. if (reg & QSPI_RBSR_RDBFL_MASK) {
  625. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  626. data = qspi_endian_xchg(data);
  627. memcpy(rxbuf, &data, len);
  628. qspi_write32(priv->flags, &regs->mcr,
  629. qspi_read32(priv->flags, &regs->mcr) |
  630. QSPI_MCR_CLR_RXF_MASK);
  631. break;
  632. }
  633. }
  634. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  635. }
  636. static void qspi_op_erase(struct fsl_qspi_priv *priv)
  637. {
  638. struct fsl_qspi_regs *regs = priv->regs;
  639. u32 mcr_reg;
  640. u32 to_or_from = 0;
  641. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  642. qspi_write32(priv->flags, &regs->mcr,
  643. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  644. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  645. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  646. to_or_from = priv->sf_addr + priv->cur_amba_base;
  647. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  648. qspi_write32(priv->flags, &regs->ipcr,
  649. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  650. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  651. ;
  652. if (priv->cur_seqid == QSPI_CMD_SE) {
  653. qspi_write32(priv->flags, &regs->ipcr,
  654. (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
  655. } else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
  656. qspi_write32(priv->flags, &regs->ipcr,
  657. (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
  658. }
  659. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  660. ;
  661. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  662. }
  663. int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
  664. const void *dout, void *din, unsigned long flags)
  665. {
  666. u32 bytes = DIV_ROUND_UP(bitlen, 8);
  667. static u32 wr_sfaddr;
  668. u32 txbuf;
  669. WATCHDOG_RESET();
  670. if (dout) {
  671. if (flags & SPI_XFER_BEGIN) {
  672. priv->cur_seqid = *(u8 *)dout;
  673. memcpy(&txbuf, dout, 4);
  674. }
  675. if (flags == SPI_XFER_END) {
  676. priv->sf_addr = wr_sfaddr;
  677. qspi_op_write(priv, (u8 *)dout, bytes);
  678. return 0;
  679. }
  680. if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
  681. priv->cur_seqid == QSPI_CMD_RDAR) {
  682. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  683. } else if ((priv->cur_seqid == QSPI_CMD_SE) ||
  684. (priv->cur_seqid == QSPI_CMD_BE_4K)) {
  685. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  686. qspi_op_erase(priv);
  687. } else if (priv->cur_seqid == QSPI_CMD_PP ||
  688. priv->cur_seqid == QSPI_CMD_WRAR) {
  689. wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
  690. } else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
  691. (priv->cur_seqid == QSPI_CMD_WREAR)) {
  692. #ifdef CONFIG_SPI_FLASH_BAR
  693. wr_sfaddr = 0;
  694. #endif
  695. }
  696. }
  697. if (din) {
  698. if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
  699. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  700. qspi_ahb_read(priv, din, bytes);
  701. #else
  702. qspi_op_read(priv, din, bytes);
  703. #endif
  704. } else if (priv->cur_seqid == QSPI_CMD_RDAR) {
  705. qspi_op_read(priv, din, bytes);
  706. } else if (priv->cur_seqid == QSPI_CMD_RDID)
  707. qspi_op_rdid(priv, din, bytes);
  708. else if (priv->cur_seqid == QSPI_CMD_RDSR)
  709. qspi_op_rdsr(priv, din, bytes);
  710. #ifdef CONFIG_SPI_FLASH_BAR
  711. else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
  712. (priv->cur_seqid == QSPI_CMD_RDEAR)) {
  713. priv->sf_addr = 0;
  714. qspi_op_rdbank(priv, din, bytes);
  715. }
  716. #endif
  717. }
  718. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  719. if ((priv->cur_seqid == QSPI_CMD_SE) ||
  720. (priv->cur_seqid == QSPI_CMD_PP) ||
  721. (priv->cur_seqid == QSPI_CMD_BE_4K) ||
  722. (priv->cur_seqid == QSPI_CMD_WREAR) ||
  723. (priv->cur_seqid == QSPI_CMD_BRWR))
  724. qspi_ahb_invalid(priv);
  725. #endif
  726. return 0;
  727. }
  728. void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
  729. {
  730. u32 mcr_val;
  731. mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
  732. if (disable)
  733. mcr_val |= QSPI_MCR_MDIS_MASK;
  734. else
  735. mcr_val &= ~QSPI_MCR_MDIS_MASK;
  736. qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
  737. }
  738. void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
  739. {
  740. u32 smpr_val;
  741. smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
  742. smpr_val &= ~clear_bits;
  743. smpr_val |= set_bits;
  744. qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
  745. }
  746. #ifndef CONFIG_DM_SPI
  747. static unsigned long spi_bases[] = {
  748. QSPI0_BASE_ADDR,
  749. #ifdef CONFIG_MX6SX
  750. QSPI1_BASE_ADDR,
  751. #endif
  752. };
  753. static unsigned long amba_bases[] = {
  754. QSPI0_AMBA_BASE,
  755. #ifdef CONFIG_MX6SX
  756. QSPI1_AMBA_BASE,
  757. #endif
  758. };
  759. static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
  760. {
  761. return container_of(slave, struct fsl_qspi, slave);
  762. }
  763. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  764. unsigned int max_hz, unsigned int mode)
  765. {
  766. u32 mcr_val;
  767. struct fsl_qspi *qspi;
  768. struct fsl_qspi_regs *regs;
  769. u32 total_size;
  770. if (bus >= ARRAY_SIZE(spi_bases))
  771. return NULL;
  772. if (cs >= FSL_QSPI_FLASH_NUM)
  773. return NULL;
  774. qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
  775. if (!qspi)
  776. return NULL;
  777. #ifdef CONFIG_SYS_FSL_QSPI_BE
  778. qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
  779. #endif
  780. regs = (struct fsl_qspi_regs *)spi_bases[bus];
  781. qspi->priv.regs = regs;
  782. /*
  783. * According cs, use different amba_base to choose the
  784. * corresponding flash devices.
  785. *
  786. * If not, only one flash device is used even if passing
  787. * different cs using `sf probe`
  788. */
  789. qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
  790. qspi->slave.max_write_size = TX_BUFFER_SIZE;
  791. mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
  792. /* Set endianness to LE for i.mx */
  793. if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7))
  794. mcr_val = QSPI_MCR_END_CFD_LE;
  795. qspi_write32(qspi->priv.flags, &regs->mcr,
  796. QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
  797. (mcr_val & QSPI_MCR_END_CFD_MASK));
  798. qspi_cfg_smpr(&qspi->priv,
  799. ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
  800. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
  801. total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
  802. /*
  803. * Any read access to non-implemented addresses will provide
  804. * undefined results.
  805. *
  806. * In case single die flash devices, TOP_ADDR_MEMA2 and
  807. * TOP_ADDR_MEMB2 should be initialized/programmed to
  808. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  809. * setting the size of these devices to 0. This would ensure
  810. * that the complete memory map is assigned to only one flash device.
  811. */
  812. qspi_write32(qspi->priv.flags, &regs->sfa1ad,
  813. FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  814. qspi_write32(qspi->priv.flags, &regs->sfa2ad,
  815. FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  816. qspi_write32(qspi->priv.flags, &regs->sfb1ad,
  817. total_size | amba_bases[bus]);
  818. qspi_write32(qspi->priv.flags, &regs->sfb2ad,
  819. total_size | amba_bases[bus]);
  820. qspi_set_lut(&qspi->priv);
  821. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  822. qspi_init_ahb_read(&qspi->priv);
  823. #endif
  824. qspi_module_disable(&qspi->priv, 0);
  825. return &qspi->slave;
  826. }
  827. void spi_free_slave(struct spi_slave *slave)
  828. {
  829. struct fsl_qspi *qspi = to_qspi_spi(slave);
  830. free(qspi);
  831. }
  832. int spi_claim_bus(struct spi_slave *slave)
  833. {
  834. return 0;
  835. }
  836. void spi_release_bus(struct spi_slave *slave)
  837. {
  838. /* Nothing to do */
  839. }
  840. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  841. const void *dout, void *din, unsigned long flags)
  842. {
  843. struct fsl_qspi *qspi = to_qspi_spi(slave);
  844. return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
  845. }
  846. void spi_init(void)
  847. {
  848. /* Nothing to do */
  849. }
  850. #else
  851. static int fsl_qspi_child_pre_probe(struct udevice *dev)
  852. {
  853. struct spi_slave *slave = dev_get_parent_priv(dev);
  854. slave->max_write_size = TX_BUFFER_SIZE;
  855. return 0;
  856. }
  857. static int fsl_qspi_probe(struct udevice *bus)
  858. {
  859. u32 mcr_val;
  860. u32 amba_size_per_chip;
  861. struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
  862. struct fsl_qspi_priv *priv = dev_get_priv(bus);
  863. struct dm_spi_bus *dm_spi_bus;
  864. int i, ret;
  865. dm_spi_bus = bus->uclass_priv;
  866. dm_spi_bus->max_hz = plat->speed_hz;
  867. priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
  868. priv->flags = plat->flags;
  869. priv->speed_hz = plat->speed_hz;
  870. /*
  871. * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
  872. * AMBA memory zone should be located on the 0~4GB space
  873. * even on a 64bits cpu.
  874. */
  875. priv->amba_base[0] = (u32)plat->amba_base;
  876. priv->amba_total_size = (u32)plat->amba_total_size;
  877. priv->flash_num = plat->flash_num;
  878. priv->num_chipselect = plat->num_chipselect;
  879. /* make sure controller is not busy anywhere */
  880. ret = is_controller_busy(priv);
  881. if (ret) {
  882. debug("ERROR : The controller is busy\n");
  883. return ret;
  884. }
  885. mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
  886. /* Set endianness to LE for i.mx */
  887. if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7))
  888. mcr_val = QSPI_MCR_END_CFD_LE;
  889. qspi_write32(priv->flags, &priv->regs->mcr,
  890. QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
  891. (mcr_val & QSPI_MCR_END_CFD_MASK));
  892. qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
  893. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
  894. /*
  895. * Assign AMBA memory zone for every chipselect
  896. * QuadSPI has two channels, every channel has two chipselects.
  897. * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
  898. * into two parts and assign to every channel. This indicate that every
  899. * channel only has one valid chipselect.
  900. * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
  901. * into four parts and assign to every chipselect.
  902. * Every channel will has two valid chipselects.
  903. */
  904. amba_size_per_chip = priv->amba_total_size >>
  905. (priv->num_chipselect >> 1);
  906. for (i = 1 ; i < priv->num_chipselect ; i++)
  907. priv->amba_base[i] =
  908. amba_size_per_chip + priv->amba_base[i - 1];
  909. /*
  910. * Any read access to non-implemented addresses will provide
  911. * undefined results.
  912. *
  913. * In case single die flash devices, TOP_ADDR_MEMA2 and
  914. * TOP_ADDR_MEMB2 should be initialized/programmed to
  915. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  916. * setting the size of these devices to 0. This would ensure
  917. * that the complete memory map is assigned to only one flash device.
  918. */
  919. qspi_write32(priv->flags, &priv->regs->sfa1ad,
  920. priv->amba_base[0] + amba_size_per_chip);
  921. switch (priv->num_chipselect) {
  922. case 1:
  923. break;
  924. case 2:
  925. qspi_write32(priv->flags, &priv->regs->sfa2ad,
  926. priv->amba_base[1]);
  927. qspi_write32(priv->flags, &priv->regs->sfb1ad,
  928. priv->amba_base[1] + amba_size_per_chip);
  929. qspi_write32(priv->flags, &priv->regs->sfb2ad,
  930. priv->amba_base[1] + amba_size_per_chip);
  931. break;
  932. case 4:
  933. qspi_write32(priv->flags, &priv->regs->sfa2ad,
  934. priv->amba_base[2]);
  935. qspi_write32(priv->flags, &priv->regs->sfb1ad,
  936. priv->amba_base[3]);
  937. qspi_write32(priv->flags, &priv->regs->sfb2ad,
  938. priv->amba_base[3] + amba_size_per_chip);
  939. break;
  940. default:
  941. debug("Error: Unsupported chipselect number %u!\n",
  942. priv->num_chipselect);
  943. qspi_module_disable(priv, 1);
  944. return -EINVAL;
  945. }
  946. qspi_set_lut(priv);
  947. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  948. qspi_init_ahb_read(priv);
  949. #endif
  950. qspi_module_disable(priv, 0);
  951. return 0;
  952. }
  953. static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
  954. {
  955. struct fdt_resource res_regs, res_mem;
  956. struct fsl_qspi_platdata *plat = bus->platdata;
  957. const void *blob = gd->fdt_blob;
  958. int node = dev_of_offset(bus);
  959. int ret, flash_num = 0, subnode;
  960. if (fdtdec_get_bool(blob, node, "big-endian"))
  961. plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
  962. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  963. "QuadSPI", &res_regs);
  964. if (ret) {
  965. debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
  966. return -ENOMEM;
  967. }
  968. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  969. "QuadSPI-memory", &res_mem);
  970. if (ret) {
  971. debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
  972. return -ENOMEM;
  973. }
  974. /* Count flash numbers */
  975. fdt_for_each_subnode(subnode, blob, node)
  976. ++flash_num;
  977. if (flash_num == 0) {
  978. debug("Error: Missing flashes!\n");
  979. return -ENODEV;
  980. }
  981. plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
  982. FSL_QSPI_DEFAULT_SCK_FREQ);
  983. plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
  984. FSL_QSPI_MAX_CHIPSELECT_NUM);
  985. plat->reg_base = res_regs.start;
  986. plat->amba_base = res_mem.start;
  987. plat->amba_total_size = res_mem.end - res_mem.start + 1;
  988. plat->flash_num = flash_num;
  989. debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
  990. __func__,
  991. (u64)plat->reg_base,
  992. (u64)plat->amba_base,
  993. (u64)plat->amba_total_size,
  994. plat->speed_hz,
  995. plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
  996. );
  997. return 0;
  998. }
  999. static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
  1000. const void *dout, void *din, unsigned long flags)
  1001. {
  1002. struct fsl_qspi_priv *priv;
  1003. struct udevice *bus;
  1004. bus = dev->parent;
  1005. priv = dev_get_priv(bus);
  1006. return qspi_xfer(priv, bitlen, dout, din, flags);
  1007. }
  1008. static int fsl_qspi_claim_bus(struct udevice *dev)
  1009. {
  1010. struct fsl_qspi_priv *priv;
  1011. struct udevice *bus;
  1012. struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
  1013. int ret;
  1014. bus = dev->parent;
  1015. priv = dev_get_priv(bus);
  1016. /* make sure controller is not busy anywhere */
  1017. ret = is_controller_busy(priv);
  1018. if (ret) {
  1019. debug("ERROR : The controller is busy\n");
  1020. return ret;
  1021. }
  1022. priv->cur_amba_base = priv->amba_base[slave_plat->cs];
  1023. qspi_module_disable(priv, 0);
  1024. return 0;
  1025. }
  1026. static int fsl_qspi_release_bus(struct udevice *dev)
  1027. {
  1028. struct fsl_qspi_priv *priv;
  1029. struct udevice *bus;
  1030. bus = dev->parent;
  1031. priv = dev_get_priv(bus);
  1032. qspi_module_disable(priv, 1);
  1033. return 0;
  1034. }
  1035. static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
  1036. {
  1037. /* Nothing to do */
  1038. return 0;
  1039. }
  1040. static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
  1041. {
  1042. /* Nothing to do */
  1043. return 0;
  1044. }
  1045. static const struct dm_spi_ops fsl_qspi_ops = {
  1046. .claim_bus = fsl_qspi_claim_bus,
  1047. .release_bus = fsl_qspi_release_bus,
  1048. .xfer = fsl_qspi_xfer,
  1049. .set_speed = fsl_qspi_set_speed,
  1050. .set_mode = fsl_qspi_set_mode,
  1051. };
  1052. static const struct udevice_id fsl_qspi_ids[] = {
  1053. { .compatible = "fsl,vf610-qspi" },
  1054. { .compatible = "fsl,imx6sx-qspi" },
  1055. { .compatible = "fsl,imx6ul-qspi" },
  1056. { .compatible = "fsl,imx7d-qspi" },
  1057. { }
  1058. };
  1059. U_BOOT_DRIVER(fsl_qspi) = {
  1060. .name = "fsl_qspi",
  1061. .id = UCLASS_SPI,
  1062. .of_match = fsl_qspi_ids,
  1063. .ops = &fsl_qspi_ops,
  1064. .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
  1065. .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
  1066. .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
  1067. .probe = fsl_qspi_probe,
  1068. .child_pre_probe = fsl_qspi_child_pre_probe,
  1069. };
  1070. #endif