data.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include <linux/uio.h>
  22. #include <linux/cleancache.h>
  23. #include <linux/sched/signal.h>
  24. #include "f2fs.h"
  25. #include "node.h"
  26. #include "segment.h"
  27. #include "trace.h"
  28. #include <trace/events/f2fs.h>
  29. #define NUM_PREALLOC_POST_READ_CTXS 128
  30. static struct kmem_cache *bio_post_read_ctx_cache;
  31. static mempool_t *bio_post_read_ctx_pool;
  32. static bool __is_cp_guaranteed(struct page *page)
  33. {
  34. struct address_space *mapping = page->mapping;
  35. struct inode *inode;
  36. struct f2fs_sb_info *sbi;
  37. if (!mapping)
  38. return false;
  39. inode = mapping->host;
  40. sbi = F2FS_I_SB(inode);
  41. if (inode->i_ino == F2FS_META_INO(sbi) ||
  42. inode->i_ino == F2FS_NODE_INO(sbi) ||
  43. S_ISDIR(inode->i_mode) ||
  44. (S_ISREG(inode->i_mode) &&
  45. is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
  46. is_cold_data(page))
  47. return true;
  48. return false;
  49. }
  50. /* postprocessing steps for read bios */
  51. enum bio_post_read_step {
  52. STEP_INITIAL = 0,
  53. STEP_DECRYPT,
  54. };
  55. struct bio_post_read_ctx {
  56. struct bio *bio;
  57. struct work_struct work;
  58. unsigned int cur_step;
  59. unsigned int enabled_steps;
  60. };
  61. static void __read_end_io(struct bio *bio)
  62. {
  63. struct page *page;
  64. struct bio_vec *bv;
  65. int i;
  66. bio_for_each_segment_all(bv, bio, i) {
  67. page = bv->bv_page;
  68. /* PG_error was set if any post_read step failed */
  69. if (bio->bi_status || PageError(page)) {
  70. ClearPageUptodate(page);
  71. /* will re-read again later */
  72. ClearPageError(page);
  73. } else {
  74. SetPageUptodate(page);
  75. }
  76. unlock_page(page);
  77. }
  78. if (bio->bi_private)
  79. mempool_free(bio->bi_private, bio_post_read_ctx_pool);
  80. bio_put(bio);
  81. }
  82. static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
  83. static void decrypt_work(struct work_struct *work)
  84. {
  85. struct bio_post_read_ctx *ctx =
  86. container_of(work, struct bio_post_read_ctx, work);
  87. fscrypt_decrypt_bio(ctx->bio);
  88. bio_post_read_processing(ctx);
  89. }
  90. static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
  91. {
  92. switch (++ctx->cur_step) {
  93. case STEP_DECRYPT:
  94. if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
  95. INIT_WORK(&ctx->work, decrypt_work);
  96. fscrypt_enqueue_decrypt_work(&ctx->work);
  97. return;
  98. }
  99. ctx->cur_step++;
  100. /* fall-through */
  101. default:
  102. __read_end_io(ctx->bio);
  103. }
  104. }
  105. static bool f2fs_bio_post_read_required(struct bio *bio)
  106. {
  107. return bio->bi_private && !bio->bi_status;
  108. }
  109. static void f2fs_read_end_io(struct bio *bio)
  110. {
  111. if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
  112. f2fs_show_injection_info(FAULT_IO);
  113. bio->bi_status = BLK_STS_IOERR;
  114. }
  115. if (f2fs_bio_post_read_required(bio)) {
  116. struct bio_post_read_ctx *ctx = bio->bi_private;
  117. ctx->cur_step = STEP_INITIAL;
  118. bio_post_read_processing(ctx);
  119. return;
  120. }
  121. __read_end_io(bio);
  122. }
  123. static void f2fs_write_end_io(struct bio *bio)
  124. {
  125. struct f2fs_sb_info *sbi = bio->bi_private;
  126. struct bio_vec *bvec;
  127. int i;
  128. bio_for_each_segment_all(bvec, bio, i) {
  129. struct page *page = bvec->bv_page;
  130. enum count_type type = WB_DATA_TYPE(page);
  131. if (IS_DUMMY_WRITTEN_PAGE(page)) {
  132. set_page_private(page, (unsigned long)NULL);
  133. ClearPagePrivate(page);
  134. unlock_page(page);
  135. mempool_free(page, sbi->write_io_dummy);
  136. if (unlikely(bio->bi_status))
  137. f2fs_stop_checkpoint(sbi, true);
  138. continue;
  139. }
  140. fscrypt_pullback_bio_page(&page, true);
  141. if (unlikely(bio->bi_status)) {
  142. mapping_set_error(page->mapping, -EIO);
  143. if (type == F2FS_WB_CP_DATA)
  144. f2fs_stop_checkpoint(sbi, true);
  145. }
  146. f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
  147. page->index != nid_of_node(page));
  148. dec_page_count(sbi, type);
  149. if (f2fs_in_warm_node_list(sbi, page))
  150. f2fs_del_fsync_node_entry(sbi, page);
  151. clear_cold_data(page);
  152. end_page_writeback(page);
  153. }
  154. if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
  155. wq_has_sleeper(&sbi->cp_wait))
  156. wake_up(&sbi->cp_wait);
  157. bio_put(bio);
  158. }
  159. /*
  160. * Return true, if pre_bio's bdev is same as its target device.
  161. */
  162. struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
  163. block_t blk_addr, struct bio *bio)
  164. {
  165. struct block_device *bdev = sbi->sb->s_bdev;
  166. int i;
  167. if (f2fs_is_multi_device(sbi)) {
  168. for (i = 0; i < sbi->s_ndevs; i++) {
  169. if (FDEV(i).start_blk <= blk_addr &&
  170. FDEV(i).end_blk >= blk_addr) {
  171. blk_addr -= FDEV(i).start_blk;
  172. bdev = FDEV(i).bdev;
  173. break;
  174. }
  175. }
  176. }
  177. if (bio) {
  178. bio_set_dev(bio, bdev);
  179. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
  180. }
  181. return bdev;
  182. }
  183. int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
  184. {
  185. int i;
  186. if (!f2fs_is_multi_device(sbi))
  187. return 0;
  188. for (i = 0; i < sbi->s_ndevs; i++)
  189. if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
  190. return i;
  191. return 0;
  192. }
  193. static bool __same_bdev(struct f2fs_sb_info *sbi,
  194. block_t blk_addr, struct bio *bio)
  195. {
  196. struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
  197. return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
  198. }
  199. /*
  200. * Low-level block read/write IO operations.
  201. */
  202. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  203. struct writeback_control *wbc,
  204. int npages, bool is_read,
  205. enum page_type type, enum temp_type temp)
  206. {
  207. struct bio *bio;
  208. bio = f2fs_bio_alloc(sbi, npages, true);
  209. f2fs_target_device(sbi, blk_addr, bio);
  210. if (is_read) {
  211. bio->bi_end_io = f2fs_read_end_io;
  212. bio->bi_private = NULL;
  213. } else {
  214. bio->bi_end_io = f2fs_write_end_io;
  215. bio->bi_private = sbi;
  216. bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
  217. }
  218. if (wbc)
  219. wbc_init_bio(wbc, bio);
  220. return bio;
  221. }
  222. static inline void __submit_bio(struct f2fs_sb_info *sbi,
  223. struct bio *bio, enum page_type type)
  224. {
  225. if (!is_read_io(bio_op(bio))) {
  226. unsigned int start;
  227. if (type != DATA && type != NODE)
  228. goto submit_io;
  229. if (test_opt(sbi, LFS) && current->plug)
  230. blk_finish_plug(current->plug);
  231. start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
  232. start %= F2FS_IO_SIZE(sbi);
  233. if (start == 0)
  234. goto submit_io;
  235. /* fill dummy pages */
  236. for (; start < F2FS_IO_SIZE(sbi); start++) {
  237. struct page *page =
  238. mempool_alloc(sbi->write_io_dummy,
  239. GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
  240. f2fs_bug_on(sbi, !page);
  241. SetPagePrivate(page);
  242. set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
  243. lock_page(page);
  244. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
  245. f2fs_bug_on(sbi, 1);
  246. }
  247. /*
  248. * In the NODE case, we lose next block address chain. So, we
  249. * need to do checkpoint in f2fs_sync_file.
  250. */
  251. if (type == NODE)
  252. set_sbi_flag(sbi, SBI_NEED_CP);
  253. }
  254. submit_io:
  255. if (is_read_io(bio_op(bio)))
  256. trace_f2fs_submit_read_bio(sbi->sb, type, bio);
  257. else
  258. trace_f2fs_submit_write_bio(sbi->sb, type, bio);
  259. submit_bio(bio);
  260. }
  261. static void __submit_merged_bio(struct f2fs_bio_info *io)
  262. {
  263. struct f2fs_io_info *fio = &io->fio;
  264. if (!io->bio)
  265. return;
  266. bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
  267. if (is_read_io(fio->op))
  268. trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
  269. else
  270. trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
  271. __submit_bio(io->sbi, io->bio, fio->type);
  272. io->bio = NULL;
  273. }
  274. static bool __has_merged_page(struct f2fs_bio_info *io,
  275. struct inode *inode, nid_t ino, pgoff_t idx)
  276. {
  277. struct bio_vec *bvec;
  278. struct page *target;
  279. int i;
  280. if (!io->bio)
  281. return false;
  282. if (!inode && !ino)
  283. return true;
  284. bio_for_each_segment_all(bvec, io->bio, i) {
  285. if (bvec->bv_page->mapping)
  286. target = bvec->bv_page;
  287. else
  288. target = fscrypt_control_page(bvec->bv_page);
  289. if (idx != target->index)
  290. continue;
  291. if (inode && inode == target->mapping->host)
  292. return true;
  293. if (ino && ino == ino_of_node(target))
  294. return true;
  295. }
  296. return false;
  297. }
  298. static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
  299. nid_t ino, pgoff_t idx, enum page_type type)
  300. {
  301. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  302. enum temp_type temp;
  303. struct f2fs_bio_info *io;
  304. bool ret = false;
  305. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  306. io = sbi->write_io[btype] + temp;
  307. down_read(&io->io_rwsem);
  308. ret = __has_merged_page(io, inode, ino, idx);
  309. up_read(&io->io_rwsem);
  310. /* TODO: use HOT temp only for meta pages now. */
  311. if (ret || btype == META)
  312. break;
  313. }
  314. return ret;
  315. }
  316. static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
  317. enum page_type type, enum temp_type temp)
  318. {
  319. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  320. struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
  321. down_write(&io->io_rwsem);
  322. /* change META to META_FLUSH in the checkpoint procedure */
  323. if (type >= META_FLUSH) {
  324. io->fio.type = META_FLUSH;
  325. io->fio.op = REQ_OP_WRITE;
  326. io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
  327. if (!test_opt(sbi, NOBARRIER))
  328. io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  329. }
  330. __submit_merged_bio(io);
  331. up_write(&io->io_rwsem);
  332. }
  333. static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
  334. struct inode *inode, nid_t ino, pgoff_t idx,
  335. enum page_type type, bool force)
  336. {
  337. enum temp_type temp;
  338. if (!force && !has_merged_page(sbi, inode, ino, idx, type))
  339. return;
  340. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  341. __f2fs_submit_merged_write(sbi, type, temp);
  342. /* TODO: use HOT temp only for meta pages now. */
  343. if (type >= META)
  344. break;
  345. }
  346. }
  347. void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
  348. {
  349. __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
  350. }
  351. void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
  352. struct inode *inode, nid_t ino, pgoff_t idx,
  353. enum page_type type)
  354. {
  355. __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
  356. }
  357. void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
  358. {
  359. f2fs_submit_merged_write(sbi, DATA);
  360. f2fs_submit_merged_write(sbi, NODE);
  361. f2fs_submit_merged_write(sbi, META);
  362. }
  363. /*
  364. * Fill the locked page with data located in the block address.
  365. * A caller needs to unlock the page on failure.
  366. */
  367. int f2fs_submit_page_bio(struct f2fs_io_info *fio)
  368. {
  369. struct bio *bio;
  370. struct page *page = fio->encrypted_page ?
  371. fio->encrypted_page : fio->page;
  372. if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
  373. __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
  374. return -EFSCORRUPTED;
  375. trace_f2fs_submit_page_bio(page, fio);
  376. f2fs_trace_ios(fio, 0);
  377. /* Allocate a new bio */
  378. bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
  379. 1, is_read_io(fio->op), fio->type, fio->temp);
  380. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  381. bio_put(bio);
  382. return -EFAULT;
  383. }
  384. if (fio->io_wbc && !is_read_io(fio->op))
  385. wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
  386. bio_set_op_attrs(bio, fio->op, fio->op_flags);
  387. if (!is_read_io(fio->op))
  388. inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
  389. __submit_bio(fio->sbi, bio, fio->type);
  390. return 0;
  391. }
  392. void f2fs_submit_page_write(struct f2fs_io_info *fio)
  393. {
  394. struct f2fs_sb_info *sbi = fio->sbi;
  395. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  396. struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
  397. struct page *bio_page;
  398. f2fs_bug_on(sbi, is_read_io(fio->op));
  399. down_write(&io->io_rwsem);
  400. next:
  401. if (fio->in_list) {
  402. spin_lock(&io->io_lock);
  403. if (list_empty(&io->io_list)) {
  404. spin_unlock(&io->io_lock);
  405. goto out;
  406. }
  407. fio = list_first_entry(&io->io_list,
  408. struct f2fs_io_info, list);
  409. list_del(&fio->list);
  410. spin_unlock(&io->io_lock);
  411. }
  412. if (__is_valid_data_blkaddr(fio->old_blkaddr))
  413. verify_block_addr(fio, fio->old_blkaddr);
  414. verify_block_addr(fio, fio->new_blkaddr);
  415. bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
  416. /* set submitted = true as a return value */
  417. fio->submitted = true;
  418. inc_page_count(sbi, WB_DATA_TYPE(bio_page));
  419. if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
  420. (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
  421. !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
  422. __submit_merged_bio(io);
  423. alloc_new:
  424. if (io->bio == NULL) {
  425. if ((fio->type == DATA || fio->type == NODE) &&
  426. fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
  427. dec_page_count(sbi, WB_DATA_TYPE(bio_page));
  428. fio->retry = true;
  429. goto skip;
  430. }
  431. io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
  432. BIO_MAX_PAGES, false,
  433. fio->type, fio->temp);
  434. io->fio = *fio;
  435. }
  436. if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
  437. __submit_merged_bio(io);
  438. goto alloc_new;
  439. }
  440. if (fio->io_wbc)
  441. wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
  442. io->last_block_in_bio = fio->new_blkaddr;
  443. f2fs_trace_ios(fio, 0);
  444. trace_f2fs_submit_page_write(fio->page, fio);
  445. skip:
  446. if (fio->in_list)
  447. goto next;
  448. out:
  449. if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
  450. __submit_merged_bio(io);
  451. up_write(&io->io_rwsem);
  452. }
  453. static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
  454. unsigned nr_pages, unsigned op_flag)
  455. {
  456. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  457. struct bio *bio;
  458. struct bio_post_read_ctx *ctx;
  459. unsigned int post_read_steps = 0;
  460. if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
  461. return ERR_PTR(-EFAULT);
  462. bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
  463. if (!bio)
  464. return ERR_PTR(-ENOMEM);
  465. f2fs_target_device(sbi, blkaddr, bio);
  466. bio->bi_end_io = f2fs_read_end_io;
  467. bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
  468. if (f2fs_encrypted_file(inode))
  469. post_read_steps |= 1 << STEP_DECRYPT;
  470. if (post_read_steps) {
  471. ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
  472. if (!ctx) {
  473. bio_put(bio);
  474. return ERR_PTR(-ENOMEM);
  475. }
  476. ctx->bio = bio;
  477. ctx->enabled_steps = post_read_steps;
  478. bio->bi_private = ctx;
  479. }
  480. return bio;
  481. }
  482. /* This can handle encryption stuffs */
  483. static int f2fs_submit_page_read(struct inode *inode, struct page *page,
  484. block_t blkaddr)
  485. {
  486. struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
  487. if (IS_ERR(bio))
  488. return PTR_ERR(bio);
  489. /* wait for GCed page writeback via META_MAPPING */
  490. f2fs_wait_on_block_writeback(inode, blkaddr);
  491. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  492. bio_put(bio);
  493. return -EFAULT;
  494. }
  495. ClearPageError(page);
  496. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  497. return 0;
  498. }
  499. static void __set_data_blkaddr(struct dnode_of_data *dn)
  500. {
  501. struct f2fs_node *rn = F2FS_NODE(dn->node_page);
  502. __le32 *addr_array;
  503. int base = 0;
  504. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  505. base = get_extra_isize(dn->inode);
  506. /* Get physical address of data block */
  507. addr_array = blkaddr_in_node(rn);
  508. addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
  509. }
  510. /*
  511. * Lock ordering for the change of data block address:
  512. * ->data_page
  513. * ->node_page
  514. * update block addresses in the node page
  515. */
  516. void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
  517. {
  518. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  519. __set_data_blkaddr(dn);
  520. if (set_page_dirty(dn->node_page))
  521. dn->node_changed = true;
  522. }
  523. void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
  524. {
  525. dn->data_blkaddr = blkaddr;
  526. f2fs_set_data_blkaddr(dn);
  527. f2fs_update_extent_cache(dn);
  528. }
  529. /* dn->ofs_in_node will be returned with up-to-date last block pointer */
  530. int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
  531. {
  532. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  533. int err;
  534. if (!count)
  535. return 0;
  536. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  537. return -EPERM;
  538. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  539. return err;
  540. trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
  541. dn->ofs_in_node, count);
  542. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  543. for (; count > 0; dn->ofs_in_node++) {
  544. block_t blkaddr = datablock_addr(dn->inode,
  545. dn->node_page, dn->ofs_in_node);
  546. if (blkaddr == NULL_ADDR) {
  547. dn->data_blkaddr = NEW_ADDR;
  548. __set_data_blkaddr(dn);
  549. count--;
  550. }
  551. }
  552. if (set_page_dirty(dn->node_page))
  553. dn->node_changed = true;
  554. return 0;
  555. }
  556. /* Should keep dn->ofs_in_node unchanged */
  557. int f2fs_reserve_new_block(struct dnode_of_data *dn)
  558. {
  559. unsigned int ofs_in_node = dn->ofs_in_node;
  560. int ret;
  561. ret = f2fs_reserve_new_blocks(dn, 1);
  562. dn->ofs_in_node = ofs_in_node;
  563. return ret;
  564. }
  565. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  566. {
  567. bool need_put = dn->inode_page ? false : true;
  568. int err;
  569. err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
  570. if (err)
  571. return err;
  572. if (dn->data_blkaddr == NULL_ADDR)
  573. err = f2fs_reserve_new_block(dn);
  574. if (err || need_put)
  575. f2fs_put_dnode(dn);
  576. return err;
  577. }
  578. int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
  579. {
  580. struct extent_info ei = {0,0,0};
  581. struct inode *inode = dn->inode;
  582. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  583. dn->data_blkaddr = ei.blk + index - ei.fofs;
  584. return 0;
  585. }
  586. return f2fs_reserve_block(dn, index);
  587. }
  588. struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
  589. int op_flags, bool for_write)
  590. {
  591. struct address_space *mapping = inode->i_mapping;
  592. struct dnode_of_data dn;
  593. struct page *page;
  594. struct extent_info ei = {0,0,0};
  595. int err;
  596. page = f2fs_grab_cache_page(mapping, index, for_write);
  597. if (!page)
  598. return ERR_PTR(-ENOMEM);
  599. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  600. dn.data_blkaddr = ei.blk + index - ei.fofs;
  601. goto got_it;
  602. }
  603. set_new_dnode(&dn, inode, NULL, NULL, 0);
  604. err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
  605. if (err)
  606. goto put_err;
  607. f2fs_put_dnode(&dn);
  608. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  609. err = -ENOENT;
  610. goto put_err;
  611. }
  612. got_it:
  613. if (PageUptodate(page)) {
  614. unlock_page(page);
  615. return page;
  616. }
  617. /*
  618. * A new dentry page is allocated but not able to be written, since its
  619. * new inode page couldn't be allocated due to -ENOSPC.
  620. * In such the case, its blkaddr can be remained as NEW_ADDR.
  621. * see, f2fs_add_link -> f2fs_get_new_data_page ->
  622. * f2fs_init_inode_metadata.
  623. */
  624. if (dn.data_blkaddr == NEW_ADDR) {
  625. zero_user_segment(page, 0, PAGE_SIZE);
  626. if (!PageUptodate(page))
  627. SetPageUptodate(page);
  628. unlock_page(page);
  629. return page;
  630. }
  631. err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
  632. if (err)
  633. goto put_err;
  634. return page;
  635. put_err:
  636. f2fs_put_page(page, 1);
  637. return ERR_PTR(err);
  638. }
  639. struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
  640. {
  641. struct address_space *mapping = inode->i_mapping;
  642. struct page *page;
  643. page = find_get_page(mapping, index);
  644. if (page && PageUptodate(page))
  645. return page;
  646. f2fs_put_page(page, 0);
  647. page = f2fs_get_read_data_page(inode, index, 0, false);
  648. if (IS_ERR(page))
  649. return page;
  650. if (PageUptodate(page))
  651. return page;
  652. wait_on_page_locked(page);
  653. if (unlikely(!PageUptodate(page))) {
  654. f2fs_put_page(page, 0);
  655. return ERR_PTR(-EIO);
  656. }
  657. return page;
  658. }
  659. /*
  660. * If it tries to access a hole, return an error.
  661. * Because, the callers, functions in dir.c and GC, should be able to know
  662. * whether this page exists or not.
  663. */
  664. struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
  665. bool for_write)
  666. {
  667. struct address_space *mapping = inode->i_mapping;
  668. struct page *page;
  669. repeat:
  670. page = f2fs_get_read_data_page(inode, index, 0, for_write);
  671. if (IS_ERR(page))
  672. return page;
  673. /* wait for read completion */
  674. lock_page(page);
  675. if (unlikely(page->mapping != mapping)) {
  676. f2fs_put_page(page, 1);
  677. goto repeat;
  678. }
  679. if (unlikely(!PageUptodate(page))) {
  680. f2fs_put_page(page, 1);
  681. return ERR_PTR(-EIO);
  682. }
  683. return page;
  684. }
  685. /*
  686. * Caller ensures that this data page is never allocated.
  687. * A new zero-filled data page is allocated in the page cache.
  688. *
  689. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  690. * f2fs_unlock_op().
  691. * Note that, ipage is set only by make_empty_dir, and if any error occur,
  692. * ipage should be released by this function.
  693. */
  694. struct page *f2fs_get_new_data_page(struct inode *inode,
  695. struct page *ipage, pgoff_t index, bool new_i_size)
  696. {
  697. struct address_space *mapping = inode->i_mapping;
  698. struct page *page;
  699. struct dnode_of_data dn;
  700. int err;
  701. page = f2fs_grab_cache_page(mapping, index, true);
  702. if (!page) {
  703. /*
  704. * before exiting, we should make sure ipage will be released
  705. * if any error occur.
  706. */
  707. f2fs_put_page(ipage, 1);
  708. return ERR_PTR(-ENOMEM);
  709. }
  710. set_new_dnode(&dn, inode, ipage, NULL, 0);
  711. err = f2fs_reserve_block(&dn, index);
  712. if (err) {
  713. f2fs_put_page(page, 1);
  714. return ERR_PTR(err);
  715. }
  716. if (!ipage)
  717. f2fs_put_dnode(&dn);
  718. if (PageUptodate(page))
  719. goto got_it;
  720. if (dn.data_blkaddr == NEW_ADDR) {
  721. zero_user_segment(page, 0, PAGE_SIZE);
  722. if (!PageUptodate(page))
  723. SetPageUptodate(page);
  724. } else {
  725. f2fs_put_page(page, 1);
  726. /* if ipage exists, blkaddr should be NEW_ADDR */
  727. f2fs_bug_on(F2FS_I_SB(inode), ipage);
  728. page = f2fs_get_lock_data_page(inode, index, true);
  729. if (IS_ERR(page))
  730. return page;
  731. }
  732. got_it:
  733. if (new_i_size && i_size_read(inode) <
  734. ((loff_t)(index + 1) << PAGE_SHIFT))
  735. f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
  736. return page;
  737. }
  738. static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
  739. {
  740. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  741. struct f2fs_summary sum;
  742. struct node_info ni;
  743. block_t old_blkaddr;
  744. blkcnt_t count = 1;
  745. int err;
  746. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  747. return -EPERM;
  748. err = f2fs_get_node_info(sbi, dn->nid, &ni);
  749. if (err)
  750. return err;
  751. dn->data_blkaddr = datablock_addr(dn->inode,
  752. dn->node_page, dn->ofs_in_node);
  753. if (dn->data_blkaddr == NEW_ADDR)
  754. goto alloc;
  755. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  756. return err;
  757. alloc:
  758. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  759. old_blkaddr = dn->data_blkaddr;
  760. f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
  761. &sum, seg_type, NULL, false);
  762. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  763. invalidate_mapping_pages(META_MAPPING(sbi),
  764. old_blkaddr, old_blkaddr);
  765. f2fs_set_data_blkaddr(dn);
  766. /*
  767. * i_size will be updated by direct_IO. Otherwise, we'll get stale
  768. * data from unwritten block via dio_read.
  769. */
  770. return 0;
  771. }
  772. int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
  773. {
  774. struct inode *inode = file_inode(iocb->ki_filp);
  775. struct f2fs_map_blocks map;
  776. int flag;
  777. int err = 0;
  778. bool direct_io = iocb->ki_flags & IOCB_DIRECT;
  779. /* convert inline data for Direct I/O*/
  780. if (direct_io) {
  781. err = f2fs_convert_inline_inode(inode);
  782. if (err)
  783. return err;
  784. }
  785. if (is_inode_flag_set(inode, FI_NO_PREALLOC))
  786. return 0;
  787. map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
  788. map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
  789. if (map.m_len > map.m_lblk)
  790. map.m_len -= map.m_lblk;
  791. else
  792. map.m_len = 0;
  793. map.m_next_pgofs = NULL;
  794. map.m_next_extent = NULL;
  795. map.m_seg_type = NO_CHECK_TYPE;
  796. if (direct_io) {
  797. map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
  798. flag = f2fs_force_buffered_io(inode, WRITE) ?
  799. F2FS_GET_BLOCK_PRE_AIO :
  800. F2FS_GET_BLOCK_PRE_DIO;
  801. goto map_blocks;
  802. }
  803. if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
  804. err = f2fs_convert_inline_inode(inode);
  805. if (err)
  806. return err;
  807. }
  808. if (f2fs_has_inline_data(inode))
  809. return err;
  810. flag = F2FS_GET_BLOCK_PRE_AIO;
  811. map_blocks:
  812. err = f2fs_map_blocks(inode, &map, 1, flag);
  813. if (map.m_len > 0 && err == -ENOSPC) {
  814. if (!direct_io)
  815. set_inode_flag(inode, FI_NO_PREALLOC);
  816. err = 0;
  817. }
  818. return err;
  819. }
  820. static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
  821. {
  822. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  823. if (lock)
  824. down_read(&sbi->node_change);
  825. else
  826. up_read(&sbi->node_change);
  827. } else {
  828. if (lock)
  829. f2fs_lock_op(sbi);
  830. else
  831. f2fs_unlock_op(sbi);
  832. }
  833. }
  834. /*
  835. * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
  836. * f2fs_map_blocks structure.
  837. * If original data blocks are allocated, then give them to blockdev.
  838. * Otherwise,
  839. * a. preallocate requested block addresses
  840. * b. do not use extent cache for better performance
  841. * c. give the block addresses to blockdev
  842. */
  843. int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
  844. int create, int flag)
  845. {
  846. unsigned int maxblocks = map->m_len;
  847. struct dnode_of_data dn;
  848. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  849. int mode = create ? ALLOC_NODE : LOOKUP_NODE;
  850. pgoff_t pgofs, end_offset, end;
  851. int err = 0, ofs = 1;
  852. unsigned int ofs_in_node, last_ofs_in_node;
  853. blkcnt_t prealloc;
  854. struct extent_info ei = {0,0,0};
  855. block_t blkaddr;
  856. unsigned int start_pgofs;
  857. if (!maxblocks)
  858. return 0;
  859. map->m_len = 0;
  860. map->m_flags = 0;
  861. /* it only supports block size == page size */
  862. pgofs = (pgoff_t)map->m_lblk;
  863. end = pgofs + maxblocks;
  864. if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
  865. map->m_pblk = ei.blk + pgofs - ei.fofs;
  866. map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
  867. map->m_flags = F2FS_MAP_MAPPED;
  868. if (map->m_next_extent)
  869. *map->m_next_extent = pgofs + map->m_len;
  870. goto out;
  871. }
  872. next_dnode:
  873. if (create)
  874. __do_map_lock(sbi, flag, true);
  875. /* When reading holes, we need its node page */
  876. set_new_dnode(&dn, inode, NULL, NULL, 0);
  877. err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
  878. if (err) {
  879. if (flag == F2FS_GET_BLOCK_BMAP)
  880. map->m_pblk = 0;
  881. if (err == -ENOENT) {
  882. err = 0;
  883. if (map->m_next_pgofs)
  884. *map->m_next_pgofs =
  885. f2fs_get_next_page_offset(&dn, pgofs);
  886. if (map->m_next_extent)
  887. *map->m_next_extent =
  888. f2fs_get_next_page_offset(&dn, pgofs);
  889. }
  890. goto unlock_out;
  891. }
  892. start_pgofs = pgofs;
  893. prealloc = 0;
  894. last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
  895. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  896. next_block:
  897. blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
  898. if (__is_valid_data_blkaddr(blkaddr) &&
  899. !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
  900. err = -EFSCORRUPTED;
  901. goto sync_out;
  902. }
  903. if (!is_valid_data_blkaddr(sbi, blkaddr)) {
  904. if (create) {
  905. if (unlikely(f2fs_cp_error(sbi))) {
  906. err = -EIO;
  907. goto sync_out;
  908. }
  909. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  910. if (blkaddr == NULL_ADDR) {
  911. prealloc++;
  912. last_ofs_in_node = dn.ofs_in_node;
  913. }
  914. } else {
  915. WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
  916. flag != F2FS_GET_BLOCK_DIO);
  917. err = __allocate_data_block(&dn,
  918. map->m_seg_type);
  919. if (!err)
  920. set_inode_flag(inode, FI_APPEND_WRITE);
  921. }
  922. if (err)
  923. goto sync_out;
  924. map->m_flags |= F2FS_MAP_NEW;
  925. blkaddr = dn.data_blkaddr;
  926. } else {
  927. if (flag == F2FS_GET_BLOCK_BMAP) {
  928. map->m_pblk = 0;
  929. goto sync_out;
  930. }
  931. if (flag == F2FS_GET_BLOCK_PRECACHE)
  932. goto sync_out;
  933. if (flag == F2FS_GET_BLOCK_FIEMAP &&
  934. blkaddr == NULL_ADDR) {
  935. if (map->m_next_pgofs)
  936. *map->m_next_pgofs = pgofs + 1;
  937. goto sync_out;
  938. }
  939. if (flag != F2FS_GET_BLOCK_FIEMAP) {
  940. /* for defragment case */
  941. if (map->m_next_pgofs)
  942. *map->m_next_pgofs = pgofs + 1;
  943. goto sync_out;
  944. }
  945. }
  946. }
  947. if (flag == F2FS_GET_BLOCK_PRE_AIO)
  948. goto skip;
  949. if (map->m_len == 0) {
  950. /* preallocated unwritten block should be mapped for fiemap. */
  951. if (blkaddr == NEW_ADDR)
  952. map->m_flags |= F2FS_MAP_UNWRITTEN;
  953. map->m_flags |= F2FS_MAP_MAPPED;
  954. map->m_pblk = blkaddr;
  955. map->m_len = 1;
  956. } else if ((map->m_pblk != NEW_ADDR &&
  957. blkaddr == (map->m_pblk + ofs)) ||
  958. (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
  959. flag == F2FS_GET_BLOCK_PRE_DIO) {
  960. ofs++;
  961. map->m_len++;
  962. } else {
  963. goto sync_out;
  964. }
  965. skip:
  966. dn.ofs_in_node++;
  967. pgofs++;
  968. /* preallocate blocks in batch for one dnode page */
  969. if (flag == F2FS_GET_BLOCK_PRE_AIO &&
  970. (pgofs == end || dn.ofs_in_node == end_offset)) {
  971. dn.ofs_in_node = ofs_in_node;
  972. err = f2fs_reserve_new_blocks(&dn, prealloc);
  973. if (err)
  974. goto sync_out;
  975. map->m_len += dn.ofs_in_node - ofs_in_node;
  976. if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
  977. err = -ENOSPC;
  978. goto sync_out;
  979. }
  980. dn.ofs_in_node = end_offset;
  981. }
  982. if (pgofs >= end)
  983. goto sync_out;
  984. else if (dn.ofs_in_node < end_offset)
  985. goto next_block;
  986. if (flag == F2FS_GET_BLOCK_PRECACHE) {
  987. if (map->m_flags & F2FS_MAP_MAPPED) {
  988. unsigned int ofs = start_pgofs - map->m_lblk;
  989. f2fs_update_extent_cache_range(&dn,
  990. start_pgofs, map->m_pblk + ofs,
  991. map->m_len - ofs);
  992. }
  993. }
  994. f2fs_put_dnode(&dn);
  995. if (create) {
  996. __do_map_lock(sbi, flag, false);
  997. f2fs_balance_fs(sbi, dn.node_changed);
  998. }
  999. goto next_dnode;
  1000. sync_out:
  1001. if (flag == F2FS_GET_BLOCK_PRECACHE) {
  1002. if (map->m_flags & F2FS_MAP_MAPPED) {
  1003. unsigned int ofs = start_pgofs - map->m_lblk;
  1004. f2fs_update_extent_cache_range(&dn,
  1005. start_pgofs, map->m_pblk + ofs,
  1006. map->m_len - ofs);
  1007. }
  1008. if (map->m_next_extent)
  1009. *map->m_next_extent = pgofs + 1;
  1010. }
  1011. f2fs_put_dnode(&dn);
  1012. unlock_out:
  1013. if (create) {
  1014. __do_map_lock(sbi, flag, false);
  1015. f2fs_balance_fs(sbi, dn.node_changed);
  1016. }
  1017. out:
  1018. trace_f2fs_map_blocks(inode, map, err);
  1019. return err;
  1020. }
  1021. bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
  1022. {
  1023. struct f2fs_map_blocks map;
  1024. block_t last_lblk;
  1025. int err;
  1026. if (pos + len > i_size_read(inode))
  1027. return false;
  1028. map.m_lblk = F2FS_BYTES_TO_BLK(pos);
  1029. map.m_next_pgofs = NULL;
  1030. map.m_next_extent = NULL;
  1031. map.m_seg_type = NO_CHECK_TYPE;
  1032. last_lblk = F2FS_BLK_ALIGN(pos + len);
  1033. while (map.m_lblk < last_lblk) {
  1034. map.m_len = last_lblk - map.m_lblk;
  1035. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1036. if (err || map.m_len == 0)
  1037. return false;
  1038. map.m_lblk += map.m_len;
  1039. }
  1040. return true;
  1041. }
  1042. static int __get_data_block(struct inode *inode, sector_t iblock,
  1043. struct buffer_head *bh, int create, int flag,
  1044. pgoff_t *next_pgofs, int seg_type)
  1045. {
  1046. struct f2fs_map_blocks map;
  1047. int err;
  1048. map.m_lblk = iblock;
  1049. map.m_len = bh->b_size >> inode->i_blkbits;
  1050. map.m_next_pgofs = next_pgofs;
  1051. map.m_next_extent = NULL;
  1052. map.m_seg_type = seg_type;
  1053. err = f2fs_map_blocks(inode, &map, create, flag);
  1054. if (!err) {
  1055. map_bh(bh, inode->i_sb, map.m_pblk);
  1056. bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
  1057. bh->b_size = (u64)map.m_len << inode->i_blkbits;
  1058. }
  1059. return err;
  1060. }
  1061. static int get_data_block(struct inode *inode, sector_t iblock,
  1062. struct buffer_head *bh_result, int create, int flag,
  1063. pgoff_t *next_pgofs)
  1064. {
  1065. return __get_data_block(inode, iblock, bh_result, create,
  1066. flag, next_pgofs,
  1067. NO_CHECK_TYPE);
  1068. }
  1069. static int get_data_block_dio(struct inode *inode, sector_t iblock,
  1070. struct buffer_head *bh_result, int create)
  1071. {
  1072. return __get_data_block(inode, iblock, bh_result, create,
  1073. F2FS_GET_BLOCK_DIO, NULL,
  1074. f2fs_rw_hint_to_seg_type(
  1075. inode->i_write_hint));
  1076. }
  1077. static int get_data_block_bmap(struct inode *inode, sector_t iblock,
  1078. struct buffer_head *bh_result, int create)
  1079. {
  1080. /* Block number less than F2FS MAX BLOCKS */
  1081. if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
  1082. return -EFBIG;
  1083. return __get_data_block(inode, iblock, bh_result, create,
  1084. F2FS_GET_BLOCK_BMAP, NULL,
  1085. NO_CHECK_TYPE);
  1086. }
  1087. static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
  1088. {
  1089. return (offset >> inode->i_blkbits);
  1090. }
  1091. static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
  1092. {
  1093. return (blk << inode->i_blkbits);
  1094. }
  1095. static int f2fs_xattr_fiemap(struct inode *inode,
  1096. struct fiemap_extent_info *fieinfo)
  1097. {
  1098. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1099. struct page *page;
  1100. struct node_info ni;
  1101. __u64 phys = 0, len;
  1102. __u32 flags;
  1103. nid_t xnid = F2FS_I(inode)->i_xattr_nid;
  1104. int err = 0;
  1105. if (f2fs_has_inline_xattr(inode)) {
  1106. int offset;
  1107. page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
  1108. inode->i_ino, false);
  1109. if (!page)
  1110. return -ENOMEM;
  1111. err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
  1112. if (err) {
  1113. f2fs_put_page(page, 1);
  1114. return err;
  1115. }
  1116. phys = (__u64)blk_to_logical(inode, ni.blk_addr);
  1117. offset = offsetof(struct f2fs_inode, i_addr) +
  1118. sizeof(__le32) * (DEF_ADDRS_PER_INODE -
  1119. get_inline_xattr_addrs(inode));
  1120. phys += offset;
  1121. len = inline_xattr_size(inode);
  1122. f2fs_put_page(page, 1);
  1123. flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
  1124. if (!xnid)
  1125. flags |= FIEMAP_EXTENT_LAST;
  1126. err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
  1127. if (err || err == 1)
  1128. return err;
  1129. }
  1130. if (xnid) {
  1131. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
  1132. if (!page)
  1133. return -ENOMEM;
  1134. err = f2fs_get_node_info(sbi, xnid, &ni);
  1135. if (err) {
  1136. f2fs_put_page(page, 1);
  1137. return err;
  1138. }
  1139. phys = (__u64)blk_to_logical(inode, ni.blk_addr);
  1140. len = inode->i_sb->s_blocksize;
  1141. f2fs_put_page(page, 1);
  1142. flags = FIEMAP_EXTENT_LAST;
  1143. }
  1144. if (phys)
  1145. err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
  1146. return (err < 0 ? err : 0);
  1147. }
  1148. int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  1149. u64 start, u64 len)
  1150. {
  1151. struct buffer_head map_bh;
  1152. sector_t start_blk, last_blk;
  1153. pgoff_t next_pgofs;
  1154. u64 logical = 0, phys = 0, size = 0;
  1155. u32 flags = 0;
  1156. int ret = 0;
  1157. if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
  1158. ret = f2fs_precache_extents(inode);
  1159. if (ret)
  1160. return ret;
  1161. }
  1162. ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
  1163. if (ret)
  1164. return ret;
  1165. inode_lock(inode);
  1166. if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
  1167. ret = f2fs_xattr_fiemap(inode, fieinfo);
  1168. goto out;
  1169. }
  1170. if (f2fs_has_inline_data(inode)) {
  1171. ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
  1172. if (ret != -EAGAIN)
  1173. goto out;
  1174. }
  1175. if (logical_to_blk(inode, len) == 0)
  1176. len = blk_to_logical(inode, 1);
  1177. start_blk = logical_to_blk(inode, start);
  1178. last_blk = logical_to_blk(inode, start + len - 1);
  1179. next:
  1180. memset(&map_bh, 0, sizeof(struct buffer_head));
  1181. map_bh.b_size = len;
  1182. ret = get_data_block(inode, start_blk, &map_bh, 0,
  1183. F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
  1184. if (ret)
  1185. goto out;
  1186. /* HOLE */
  1187. if (!buffer_mapped(&map_bh)) {
  1188. start_blk = next_pgofs;
  1189. if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
  1190. F2FS_I_SB(inode)->max_file_blocks))
  1191. goto prep_next;
  1192. flags |= FIEMAP_EXTENT_LAST;
  1193. }
  1194. if (size) {
  1195. if (f2fs_encrypted_inode(inode))
  1196. flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
  1197. ret = fiemap_fill_next_extent(fieinfo, logical,
  1198. phys, size, flags);
  1199. }
  1200. if (start_blk > last_blk || ret)
  1201. goto out;
  1202. logical = blk_to_logical(inode, start_blk);
  1203. phys = blk_to_logical(inode, map_bh.b_blocknr);
  1204. size = map_bh.b_size;
  1205. flags = 0;
  1206. if (buffer_unwritten(&map_bh))
  1207. flags = FIEMAP_EXTENT_UNWRITTEN;
  1208. start_blk += logical_to_blk(inode, size);
  1209. prep_next:
  1210. cond_resched();
  1211. if (fatal_signal_pending(current))
  1212. ret = -EINTR;
  1213. else
  1214. goto next;
  1215. out:
  1216. if (ret == 1)
  1217. ret = 0;
  1218. inode_unlock(inode);
  1219. return ret;
  1220. }
  1221. /*
  1222. * This function was originally taken from fs/mpage.c, and customized for f2fs.
  1223. * Major change was from block_size == page_size in f2fs by default.
  1224. *
  1225. * Note that the aops->readpages() function is ONLY used for read-ahead. If
  1226. * this function ever deviates from doing just read-ahead, it should either
  1227. * use ->readpage() or do the necessary surgery to decouple ->readpages()
  1228. * from read-ahead.
  1229. */
  1230. static int f2fs_mpage_readpages(struct address_space *mapping,
  1231. struct list_head *pages, struct page *page,
  1232. unsigned nr_pages, bool is_readahead)
  1233. {
  1234. struct bio *bio = NULL;
  1235. sector_t last_block_in_bio = 0;
  1236. struct inode *inode = mapping->host;
  1237. const unsigned blkbits = inode->i_blkbits;
  1238. const unsigned blocksize = 1 << blkbits;
  1239. sector_t block_in_file;
  1240. sector_t last_block;
  1241. sector_t last_block_in_file;
  1242. sector_t block_nr;
  1243. struct f2fs_map_blocks map;
  1244. map.m_pblk = 0;
  1245. map.m_lblk = 0;
  1246. map.m_len = 0;
  1247. map.m_flags = 0;
  1248. map.m_next_pgofs = NULL;
  1249. map.m_next_extent = NULL;
  1250. map.m_seg_type = NO_CHECK_TYPE;
  1251. for (; nr_pages; nr_pages--) {
  1252. if (pages) {
  1253. page = list_last_entry(pages, struct page, lru);
  1254. prefetchw(&page->flags);
  1255. list_del(&page->lru);
  1256. if (add_to_page_cache_lru(page, mapping,
  1257. page->index,
  1258. readahead_gfp_mask(mapping)))
  1259. goto next_page;
  1260. }
  1261. block_in_file = (sector_t)page->index;
  1262. last_block = block_in_file + nr_pages;
  1263. last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
  1264. blkbits;
  1265. if (last_block > last_block_in_file)
  1266. last_block = last_block_in_file;
  1267. /*
  1268. * Map blocks using the previous result first.
  1269. */
  1270. if ((map.m_flags & F2FS_MAP_MAPPED) &&
  1271. block_in_file > map.m_lblk &&
  1272. block_in_file < (map.m_lblk + map.m_len))
  1273. goto got_it;
  1274. /*
  1275. * Then do more f2fs_map_blocks() calls until we are
  1276. * done with this page.
  1277. */
  1278. map.m_flags = 0;
  1279. if (block_in_file < last_block) {
  1280. map.m_lblk = block_in_file;
  1281. map.m_len = last_block - block_in_file;
  1282. if (f2fs_map_blocks(inode, &map, 0,
  1283. F2FS_GET_BLOCK_DEFAULT))
  1284. goto set_error_page;
  1285. }
  1286. got_it:
  1287. if ((map.m_flags & F2FS_MAP_MAPPED)) {
  1288. block_nr = map.m_pblk + block_in_file - map.m_lblk;
  1289. SetPageMappedToDisk(page);
  1290. if (!PageUptodate(page) && !cleancache_get_page(page)) {
  1291. SetPageUptodate(page);
  1292. goto confused;
  1293. }
  1294. if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
  1295. DATA_GENERIC))
  1296. goto set_error_page;
  1297. } else {
  1298. zero_user_segment(page, 0, PAGE_SIZE);
  1299. if (!PageUptodate(page))
  1300. SetPageUptodate(page);
  1301. unlock_page(page);
  1302. goto next_page;
  1303. }
  1304. /*
  1305. * This page will go to BIO. Do we need to send this
  1306. * BIO off first?
  1307. */
  1308. if (bio && (last_block_in_bio != block_nr - 1 ||
  1309. !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
  1310. submit_and_realloc:
  1311. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1312. bio = NULL;
  1313. }
  1314. if (bio == NULL) {
  1315. bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
  1316. is_readahead ? REQ_RAHEAD : 0);
  1317. if (IS_ERR(bio)) {
  1318. bio = NULL;
  1319. goto set_error_page;
  1320. }
  1321. }
  1322. /*
  1323. * If the page is under writeback, we need to wait for
  1324. * its completion to see the correct decrypted data.
  1325. */
  1326. f2fs_wait_on_block_writeback(inode, block_nr);
  1327. if (bio_add_page(bio, page, blocksize, 0) < blocksize)
  1328. goto submit_and_realloc;
  1329. ClearPageError(page);
  1330. last_block_in_bio = block_nr;
  1331. goto next_page;
  1332. set_error_page:
  1333. SetPageError(page);
  1334. zero_user_segment(page, 0, PAGE_SIZE);
  1335. unlock_page(page);
  1336. goto next_page;
  1337. confused:
  1338. if (bio) {
  1339. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1340. bio = NULL;
  1341. }
  1342. unlock_page(page);
  1343. next_page:
  1344. if (pages)
  1345. put_page(page);
  1346. }
  1347. BUG_ON(pages && !list_empty(pages));
  1348. if (bio)
  1349. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1350. return 0;
  1351. }
  1352. static int f2fs_read_data_page(struct file *file, struct page *page)
  1353. {
  1354. struct inode *inode = page->mapping->host;
  1355. int ret = -EAGAIN;
  1356. trace_f2fs_readpage(page, DATA);
  1357. /* If the file has inline data, try to read it directly */
  1358. if (f2fs_has_inline_data(inode))
  1359. ret = f2fs_read_inline_data(inode, page);
  1360. if (ret == -EAGAIN)
  1361. ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
  1362. return ret;
  1363. }
  1364. static int f2fs_read_data_pages(struct file *file,
  1365. struct address_space *mapping,
  1366. struct list_head *pages, unsigned nr_pages)
  1367. {
  1368. struct inode *inode = mapping->host;
  1369. struct page *page = list_last_entry(pages, struct page, lru);
  1370. trace_f2fs_readpages(inode, page, nr_pages);
  1371. /* If the file has inline data, skip readpages */
  1372. if (f2fs_has_inline_data(inode))
  1373. return 0;
  1374. return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
  1375. }
  1376. static int encrypt_one_page(struct f2fs_io_info *fio)
  1377. {
  1378. struct inode *inode = fio->page->mapping->host;
  1379. struct page *mpage;
  1380. gfp_t gfp_flags = GFP_NOFS;
  1381. if (!f2fs_encrypted_file(inode))
  1382. return 0;
  1383. /* wait for GCed page writeback via META_MAPPING */
  1384. f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
  1385. retry_encrypt:
  1386. fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
  1387. PAGE_SIZE, 0, fio->page->index, gfp_flags);
  1388. if (IS_ERR(fio->encrypted_page)) {
  1389. /* flush pending IOs and wait for a while in the ENOMEM case */
  1390. if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
  1391. f2fs_flush_merged_writes(fio->sbi);
  1392. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1393. gfp_flags |= __GFP_NOFAIL;
  1394. goto retry_encrypt;
  1395. }
  1396. return PTR_ERR(fio->encrypted_page);
  1397. }
  1398. mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
  1399. if (mpage) {
  1400. if (PageUptodate(mpage))
  1401. memcpy(page_address(mpage),
  1402. page_address(fio->encrypted_page), PAGE_SIZE);
  1403. f2fs_put_page(mpage, 1);
  1404. }
  1405. return 0;
  1406. }
  1407. static inline bool check_inplace_update_policy(struct inode *inode,
  1408. struct f2fs_io_info *fio)
  1409. {
  1410. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1411. unsigned int policy = SM_I(sbi)->ipu_policy;
  1412. if (policy & (0x1 << F2FS_IPU_FORCE))
  1413. return true;
  1414. if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
  1415. return true;
  1416. if (policy & (0x1 << F2FS_IPU_UTIL) &&
  1417. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  1418. return true;
  1419. if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
  1420. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  1421. return true;
  1422. /*
  1423. * IPU for rewrite async pages
  1424. */
  1425. if (policy & (0x1 << F2FS_IPU_ASYNC) &&
  1426. fio && fio->op == REQ_OP_WRITE &&
  1427. !(fio->op_flags & REQ_SYNC) &&
  1428. !f2fs_encrypted_inode(inode))
  1429. return true;
  1430. /* this is only set during fdatasync */
  1431. if (policy & (0x1 << F2FS_IPU_FSYNC) &&
  1432. is_inode_flag_set(inode, FI_NEED_IPU))
  1433. return true;
  1434. return false;
  1435. }
  1436. bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
  1437. {
  1438. if (f2fs_is_pinned_file(inode))
  1439. return true;
  1440. /* if this is cold file, we should overwrite to avoid fragmentation */
  1441. if (file_is_cold(inode))
  1442. return true;
  1443. return check_inplace_update_policy(inode, fio);
  1444. }
  1445. bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
  1446. {
  1447. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1448. if (test_opt(sbi, LFS))
  1449. return true;
  1450. if (S_ISDIR(inode->i_mode))
  1451. return true;
  1452. if (f2fs_is_atomic_file(inode))
  1453. return true;
  1454. if (fio) {
  1455. if (is_cold_data(fio->page))
  1456. return true;
  1457. if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
  1458. return true;
  1459. }
  1460. return false;
  1461. }
  1462. static inline bool need_inplace_update(struct f2fs_io_info *fio)
  1463. {
  1464. struct inode *inode = fio->page->mapping->host;
  1465. if (f2fs_should_update_outplace(inode, fio))
  1466. return false;
  1467. return f2fs_should_update_inplace(inode, fio);
  1468. }
  1469. int f2fs_do_write_data_page(struct f2fs_io_info *fio)
  1470. {
  1471. struct page *page = fio->page;
  1472. struct inode *inode = page->mapping->host;
  1473. struct dnode_of_data dn;
  1474. struct extent_info ei = {0,0,0};
  1475. struct node_info ni;
  1476. bool ipu_force = false;
  1477. int err = 0;
  1478. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1479. if (need_inplace_update(fio) &&
  1480. f2fs_lookup_extent_cache(inode, page->index, &ei)) {
  1481. fio->old_blkaddr = ei.blk + page->index - ei.fofs;
  1482. if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
  1483. DATA_GENERIC))
  1484. return -EFSCORRUPTED;
  1485. ipu_force = true;
  1486. fio->need_lock = LOCK_DONE;
  1487. goto got_it;
  1488. }
  1489. /* Deadlock due to between page->lock and f2fs_lock_op */
  1490. if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
  1491. return -EAGAIN;
  1492. err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  1493. if (err)
  1494. goto out;
  1495. fio->old_blkaddr = dn.data_blkaddr;
  1496. /* This page is already truncated */
  1497. if (fio->old_blkaddr == NULL_ADDR) {
  1498. ClearPageUptodate(page);
  1499. clear_cold_data(page);
  1500. goto out_writepage;
  1501. }
  1502. got_it:
  1503. if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
  1504. !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
  1505. DATA_GENERIC)) {
  1506. err = -EFSCORRUPTED;
  1507. goto out_writepage;
  1508. }
  1509. /*
  1510. * If current allocation needs SSR,
  1511. * it had better in-place writes for updated data.
  1512. */
  1513. if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
  1514. need_inplace_update(fio))) {
  1515. err = encrypt_one_page(fio);
  1516. if (err)
  1517. goto out_writepage;
  1518. set_page_writeback(page);
  1519. ClearPageError(page);
  1520. f2fs_put_dnode(&dn);
  1521. if (fio->need_lock == LOCK_REQ)
  1522. f2fs_unlock_op(fio->sbi);
  1523. err = f2fs_inplace_write_data(fio);
  1524. trace_f2fs_do_write_data_page(fio->page, IPU);
  1525. set_inode_flag(inode, FI_UPDATE_WRITE);
  1526. return err;
  1527. }
  1528. if (fio->need_lock == LOCK_RETRY) {
  1529. if (!f2fs_trylock_op(fio->sbi)) {
  1530. err = -EAGAIN;
  1531. goto out_writepage;
  1532. }
  1533. fio->need_lock = LOCK_REQ;
  1534. }
  1535. err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
  1536. if (err)
  1537. goto out_writepage;
  1538. fio->version = ni.version;
  1539. err = encrypt_one_page(fio);
  1540. if (err)
  1541. goto out_writepage;
  1542. set_page_writeback(page);
  1543. ClearPageError(page);
  1544. /* LFS mode write path */
  1545. f2fs_outplace_write_data(&dn, fio);
  1546. trace_f2fs_do_write_data_page(page, OPU);
  1547. set_inode_flag(inode, FI_APPEND_WRITE);
  1548. if (page->index == 0)
  1549. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  1550. out_writepage:
  1551. f2fs_put_dnode(&dn);
  1552. out:
  1553. if (fio->need_lock == LOCK_REQ)
  1554. f2fs_unlock_op(fio->sbi);
  1555. return err;
  1556. }
  1557. static int __write_data_page(struct page *page, bool *submitted,
  1558. struct writeback_control *wbc,
  1559. enum iostat_type io_type)
  1560. {
  1561. struct inode *inode = page->mapping->host;
  1562. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1563. loff_t i_size = i_size_read(inode);
  1564. const pgoff_t end_index = ((unsigned long long) i_size)
  1565. >> PAGE_SHIFT;
  1566. loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
  1567. unsigned offset = 0;
  1568. bool need_balance_fs = false;
  1569. int err = 0;
  1570. struct f2fs_io_info fio = {
  1571. .sbi = sbi,
  1572. .ino = inode->i_ino,
  1573. .type = DATA,
  1574. .op = REQ_OP_WRITE,
  1575. .op_flags = wbc_to_write_flags(wbc),
  1576. .old_blkaddr = NULL_ADDR,
  1577. .page = page,
  1578. .encrypted_page = NULL,
  1579. .submitted = false,
  1580. .need_lock = LOCK_RETRY,
  1581. .io_type = io_type,
  1582. .io_wbc = wbc,
  1583. };
  1584. trace_f2fs_writepage(page, DATA);
  1585. /* we should bypass data pages to proceed the kworkder jobs */
  1586. if (unlikely(f2fs_cp_error(sbi))) {
  1587. mapping_set_error(page->mapping, -EIO);
  1588. /*
  1589. * don't drop any dirty dentry pages for keeping lastest
  1590. * directory structure.
  1591. */
  1592. if (S_ISDIR(inode->i_mode))
  1593. goto redirty_out;
  1594. goto out;
  1595. }
  1596. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1597. goto redirty_out;
  1598. if (page->index < end_index)
  1599. goto write;
  1600. /*
  1601. * If the offset is out-of-range of file size,
  1602. * this page does not have to be written to disk.
  1603. */
  1604. offset = i_size & (PAGE_SIZE - 1);
  1605. if ((page->index >= end_index + 1) || !offset)
  1606. goto out;
  1607. zero_user_segment(page, offset, PAGE_SIZE);
  1608. write:
  1609. if (f2fs_is_drop_cache(inode))
  1610. goto out;
  1611. /* we should not write 0'th page having journal header */
  1612. if (f2fs_is_volatile_file(inode) && (!page->index ||
  1613. (!wbc->for_reclaim &&
  1614. f2fs_available_free_memory(sbi, BASE_CHECK))))
  1615. goto redirty_out;
  1616. /* Dentry blocks are controlled by checkpoint */
  1617. if (S_ISDIR(inode->i_mode)) {
  1618. fio.need_lock = LOCK_DONE;
  1619. err = f2fs_do_write_data_page(&fio);
  1620. goto done;
  1621. }
  1622. if (!wbc->for_reclaim)
  1623. need_balance_fs = true;
  1624. else if (has_not_enough_free_secs(sbi, 0, 0))
  1625. goto redirty_out;
  1626. else
  1627. set_inode_flag(inode, FI_HOT_DATA);
  1628. err = -EAGAIN;
  1629. if (f2fs_has_inline_data(inode)) {
  1630. err = f2fs_write_inline_data(inode, page);
  1631. if (!err)
  1632. goto out;
  1633. }
  1634. if (err == -EAGAIN) {
  1635. err = f2fs_do_write_data_page(&fio);
  1636. if (err == -EAGAIN) {
  1637. fio.need_lock = LOCK_REQ;
  1638. err = f2fs_do_write_data_page(&fio);
  1639. }
  1640. }
  1641. if (err) {
  1642. file_set_keep_isize(inode);
  1643. } else {
  1644. down_write(&F2FS_I(inode)->i_sem);
  1645. if (F2FS_I(inode)->last_disk_size < psize)
  1646. F2FS_I(inode)->last_disk_size = psize;
  1647. up_write(&F2FS_I(inode)->i_sem);
  1648. }
  1649. done:
  1650. if (err && err != -ENOENT)
  1651. goto redirty_out;
  1652. out:
  1653. inode_dec_dirty_pages(inode);
  1654. if (err) {
  1655. ClearPageUptodate(page);
  1656. clear_cold_data(page);
  1657. }
  1658. if (wbc->for_reclaim) {
  1659. f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
  1660. clear_inode_flag(inode, FI_HOT_DATA);
  1661. f2fs_remove_dirty_inode(inode);
  1662. submitted = NULL;
  1663. }
  1664. unlock_page(page);
  1665. if (!S_ISDIR(inode->i_mode))
  1666. f2fs_balance_fs(sbi, need_balance_fs);
  1667. if (unlikely(f2fs_cp_error(sbi))) {
  1668. f2fs_submit_merged_write(sbi, DATA);
  1669. submitted = NULL;
  1670. }
  1671. if (submitted)
  1672. *submitted = fio.submitted;
  1673. return 0;
  1674. redirty_out:
  1675. redirty_page_for_writepage(wbc, page);
  1676. /*
  1677. * pageout() in MM traslates EAGAIN, so calls handle_write_error()
  1678. * -> mapping_set_error() -> set_bit(AS_EIO, ...).
  1679. * file_write_and_wait_range() will see EIO error, which is critical
  1680. * to return value of fsync() followed by atomic_write failure to user.
  1681. */
  1682. if (!err || wbc->for_reclaim)
  1683. return AOP_WRITEPAGE_ACTIVATE;
  1684. unlock_page(page);
  1685. return err;
  1686. }
  1687. static int f2fs_write_data_page(struct page *page,
  1688. struct writeback_control *wbc)
  1689. {
  1690. return __write_data_page(page, NULL, wbc, FS_DATA_IO);
  1691. }
  1692. /*
  1693. * This function was copied from write_cche_pages from mm/page-writeback.c.
  1694. * The major change is making write step of cold data page separately from
  1695. * warm/hot data page.
  1696. */
  1697. static int f2fs_write_cache_pages(struct address_space *mapping,
  1698. struct writeback_control *wbc,
  1699. enum iostat_type io_type)
  1700. {
  1701. int ret = 0;
  1702. int done = 0;
  1703. struct pagevec pvec;
  1704. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1705. int nr_pages;
  1706. pgoff_t uninitialized_var(writeback_index);
  1707. pgoff_t index;
  1708. pgoff_t end; /* Inclusive */
  1709. pgoff_t done_index;
  1710. pgoff_t last_idx = ULONG_MAX;
  1711. int cycled;
  1712. int range_whole = 0;
  1713. int tag;
  1714. pagevec_init(&pvec);
  1715. if (get_dirty_pages(mapping->host) <=
  1716. SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
  1717. set_inode_flag(mapping->host, FI_HOT_DATA);
  1718. else
  1719. clear_inode_flag(mapping->host, FI_HOT_DATA);
  1720. if (wbc->range_cyclic) {
  1721. writeback_index = mapping->writeback_index; /* prev offset */
  1722. index = writeback_index;
  1723. if (index == 0)
  1724. cycled = 1;
  1725. else
  1726. cycled = 0;
  1727. end = -1;
  1728. } else {
  1729. index = wbc->range_start >> PAGE_SHIFT;
  1730. end = wbc->range_end >> PAGE_SHIFT;
  1731. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1732. range_whole = 1;
  1733. cycled = 1; /* ignore range_cyclic tests */
  1734. }
  1735. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1736. tag = PAGECACHE_TAG_TOWRITE;
  1737. else
  1738. tag = PAGECACHE_TAG_DIRTY;
  1739. retry:
  1740. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1741. tag_pages_for_writeback(mapping, index, end);
  1742. done_index = index;
  1743. while (!done && (index <= end)) {
  1744. int i;
  1745. nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
  1746. tag);
  1747. if (nr_pages == 0)
  1748. break;
  1749. for (i = 0; i < nr_pages; i++) {
  1750. struct page *page = pvec.pages[i];
  1751. bool submitted = false;
  1752. /* give a priority to WB_SYNC threads */
  1753. if (atomic_read(&sbi->wb_sync_req[DATA]) &&
  1754. wbc->sync_mode == WB_SYNC_NONE) {
  1755. done = 1;
  1756. break;
  1757. }
  1758. done_index = page->index;
  1759. retry_write:
  1760. lock_page(page);
  1761. if (unlikely(page->mapping != mapping)) {
  1762. continue_unlock:
  1763. unlock_page(page);
  1764. continue;
  1765. }
  1766. if (!PageDirty(page)) {
  1767. /* someone wrote it for us */
  1768. goto continue_unlock;
  1769. }
  1770. if (PageWriteback(page)) {
  1771. if (wbc->sync_mode != WB_SYNC_NONE)
  1772. f2fs_wait_on_page_writeback(page,
  1773. DATA, true);
  1774. else
  1775. goto continue_unlock;
  1776. }
  1777. BUG_ON(PageWriteback(page));
  1778. if (!clear_page_dirty_for_io(page))
  1779. goto continue_unlock;
  1780. ret = __write_data_page(page, &submitted, wbc, io_type);
  1781. if (unlikely(ret)) {
  1782. /*
  1783. * keep nr_to_write, since vfs uses this to
  1784. * get # of written pages.
  1785. */
  1786. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1787. unlock_page(page);
  1788. ret = 0;
  1789. continue;
  1790. } else if (ret == -EAGAIN) {
  1791. ret = 0;
  1792. if (wbc->sync_mode == WB_SYNC_ALL) {
  1793. cond_resched();
  1794. congestion_wait(BLK_RW_ASYNC,
  1795. HZ/50);
  1796. goto retry_write;
  1797. }
  1798. continue;
  1799. }
  1800. done_index = page->index + 1;
  1801. done = 1;
  1802. break;
  1803. } else if (submitted) {
  1804. last_idx = page->index;
  1805. }
  1806. if (--wbc->nr_to_write <= 0 &&
  1807. wbc->sync_mode == WB_SYNC_NONE) {
  1808. done = 1;
  1809. break;
  1810. }
  1811. }
  1812. pagevec_release(&pvec);
  1813. cond_resched();
  1814. }
  1815. if (!cycled && !done) {
  1816. cycled = 1;
  1817. index = 0;
  1818. end = writeback_index - 1;
  1819. goto retry;
  1820. }
  1821. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1822. mapping->writeback_index = done_index;
  1823. if (last_idx != ULONG_MAX)
  1824. f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
  1825. 0, last_idx, DATA);
  1826. return ret;
  1827. }
  1828. static inline bool __should_serialize_io(struct inode *inode,
  1829. struct writeback_control *wbc)
  1830. {
  1831. if (!S_ISREG(inode->i_mode))
  1832. return false;
  1833. if (wbc->sync_mode != WB_SYNC_ALL)
  1834. return true;
  1835. if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
  1836. return true;
  1837. return false;
  1838. }
  1839. static int __f2fs_write_data_pages(struct address_space *mapping,
  1840. struct writeback_control *wbc,
  1841. enum iostat_type io_type)
  1842. {
  1843. struct inode *inode = mapping->host;
  1844. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1845. struct blk_plug plug;
  1846. int ret;
  1847. bool locked = false;
  1848. /* deal with chardevs and other special file */
  1849. if (!mapping->a_ops->writepage)
  1850. return 0;
  1851. /* skip writing if there is no dirty page in this inode */
  1852. if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
  1853. return 0;
  1854. /* during POR, we don't need to trigger writepage at all. */
  1855. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1856. goto skip_write;
  1857. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  1858. get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
  1859. f2fs_available_free_memory(sbi, DIRTY_DENTS))
  1860. goto skip_write;
  1861. /* skip writing during file defragment */
  1862. if (is_inode_flag_set(inode, FI_DO_DEFRAG))
  1863. goto skip_write;
  1864. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1865. /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
  1866. if (wbc->sync_mode == WB_SYNC_ALL)
  1867. atomic_inc(&sbi->wb_sync_req[DATA]);
  1868. else if (atomic_read(&sbi->wb_sync_req[DATA]))
  1869. goto skip_write;
  1870. if (__should_serialize_io(inode, wbc)) {
  1871. mutex_lock(&sbi->writepages);
  1872. locked = true;
  1873. }
  1874. blk_start_plug(&plug);
  1875. ret = f2fs_write_cache_pages(mapping, wbc, io_type);
  1876. blk_finish_plug(&plug);
  1877. if (locked)
  1878. mutex_unlock(&sbi->writepages);
  1879. if (wbc->sync_mode == WB_SYNC_ALL)
  1880. atomic_dec(&sbi->wb_sync_req[DATA]);
  1881. /*
  1882. * if some pages were truncated, we cannot guarantee its mapping->host
  1883. * to detect pending bios.
  1884. */
  1885. f2fs_remove_dirty_inode(inode);
  1886. return ret;
  1887. skip_write:
  1888. wbc->pages_skipped += get_dirty_pages(inode);
  1889. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1890. return 0;
  1891. }
  1892. static int f2fs_write_data_pages(struct address_space *mapping,
  1893. struct writeback_control *wbc)
  1894. {
  1895. struct inode *inode = mapping->host;
  1896. return __f2fs_write_data_pages(mapping, wbc,
  1897. F2FS_I(inode)->cp_task == current ?
  1898. FS_CP_DATA_IO : FS_DATA_IO);
  1899. }
  1900. static void f2fs_write_failed(struct address_space *mapping, loff_t to)
  1901. {
  1902. struct inode *inode = mapping->host;
  1903. loff_t i_size = i_size_read(inode);
  1904. if (to > i_size) {
  1905. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1906. down_write(&F2FS_I(inode)->i_mmap_sem);
  1907. truncate_pagecache(inode, i_size);
  1908. f2fs_truncate_blocks(inode, i_size, true);
  1909. up_write(&F2FS_I(inode)->i_mmap_sem);
  1910. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1911. }
  1912. }
  1913. static int prepare_write_begin(struct f2fs_sb_info *sbi,
  1914. struct page *page, loff_t pos, unsigned len,
  1915. block_t *blk_addr, bool *node_changed)
  1916. {
  1917. struct inode *inode = page->mapping->host;
  1918. pgoff_t index = page->index;
  1919. struct dnode_of_data dn;
  1920. struct page *ipage;
  1921. bool locked = false;
  1922. struct extent_info ei = {0,0,0};
  1923. int err = 0;
  1924. int flag;
  1925. /*
  1926. * we already allocated all the blocks, so we don't need to get
  1927. * the block addresses when there is no need to fill the page.
  1928. */
  1929. if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
  1930. !is_inode_flag_set(inode, FI_NO_PREALLOC))
  1931. return 0;
  1932. /* f2fs_lock_op avoids race between write CP and convert_inline_page */
  1933. if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
  1934. flag = F2FS_GET_BLOCK_DEFAULT;
  1935. else
  1936. flag = F2FS_GET_BLOCK_PRE_AIO;
  1937. if (f2fs_has_inline_data(inode) ||
  1938. (pos & PAGE_MASK) >= i_size_read(inode)) {
  1939. __do_map_lock(sbi, flag, true);
  1940. locked = true;
  1941. }
  1942. restart:
  1943. /* check inline_data */
  1944. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  1945. if (IS_ERR(ipage)) {
  1946. err = PTR_ERR(ipage);
  1947. goto unlock_out;
  1948. }
  1949. set_new_dnode(&dn, inode, ipage, ipage, 0);
  1950. if (f2fs_has_inline_data(inode)) {
  1951. if (pos + len <= MAX_INLINE_DATA(inode)) {
  1952. f2fs_do_read_inline_data(page, ipage);
  1953. set_inode_flag(inode, FI_DATA_EXIST);
  1954. if (inode->i_nlink)
  1955. set_inline_node(ipage);
  1956. } else {
  1957. err = f2fs_convert_inline_page(&dn, page);
  1958. if (err)
  1959. goto out;
  1960. if (dn.data_blkaddr == NULL_ADDR)
  1961. err = f2fs_get_block(&dn, index);
  1962. }
  1963. } else if (locked) {
  1964. err = f2fs_get_block(&dn, index);
  1965. } else {
  1966. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  1967. dn.data_blkaddr = ei.blk + index - ei.fofs;
  1968. } else {
  1969. /* hole case */
  1970. err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
  1971. if (err || dn.data_blkaddr == NULL_ADDR) {
  1972. f2fs_put_dnode(&dn);
  1973. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
  1974. true);
  1975. WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
  1976. locked = true;
  1977. goto restart;
  1978. }
  1979. }
  1980. }
  1981. /* convert_inline_page can make node_changed */
  1982. *blk_addr = dn.data_blkaddr;
  1983. *node_changed = dn.node_changed;
  1984. out:
  1985. f2fs_put_dnode(&dn);
  1986. unlock_out:
  1987. if (locked)
  1988. __do_map_lock(sbi, flag, false);
  1989. return err;
  1990. }
  1991. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  1992. loff_t pos, unsigned len, unsigned flags,
  1993. struct page **pagep, void **fsdata)
  1994. {
  1995. struct inode *inode = mapping->host;
  1996. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1997. struct page *page = NULL;
  1998. pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
  1999. bool need_balance = false, drop_atomic = false;
  2000. block_t blkaddr = NULL_ADDR;
  2001. int err = 0;
  2002. trace_f2fs_write_begin(inode, pos, len, flags);
  2003. if ((f2fs_is_atomic_file(inode) &&
  2004. !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
  2005. is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
  2006. err = -ENOMEM;
  2007. drop_atomic = true;
  2008. goto fail;
  2009. }
  2010. /*
  2011. * We should check this at this moment to avoid deadlock on inode page
  2012. * and #0 page. The locking rule for inline_data conversion should be:
  2013. * lock_page(page #0) -> lock_page(inode_page)
  2014. */
  2015. if (index != 0) {
  2016. err = f2fs_convert_inline_inode(inode);
  2017. if (err)
  2018. goto fail;
  2019. }
  2020. repeat:
  2021. /*
  2022. * Do not use grab_cache_page_write_begin() to avoid deadlock due to
  2023. * wait_for_stable_page. Will wait that below with our IO control.
  2024. */
  2025. page = f2fs_pagecache_get_page(mapping, index,
  2026. FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
  2027. if (!page) {
  2028. err = -ENOMEM;
  2029. goto fail;
  2030. }
  2031. *pagep = page;
  2032. err = prepare_write_begin(sbi, page, pos, len,
  2033. &blkaddr, &need_balance);
  2034. if (err)
  2035. goto fail;
  2036. if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
  2037. unlock_page(page);
  2038. f2fs_balance_fs(sbi, true);
  2039. lock_page(page);
  2040. if (page->mapping != mapping) {
  2041. /* The page got truncated from under us */
  2042. f2fs_put_page(page, 1);
  2043. goto repeat;
  2044. }
  2045. }
  2046. f2fs_wait_on_page_writeback(page, DATA, false);
  2047. if (len == PAGE_SIZE || PageUptodate(page))
  2048. return 0;
  2049. if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
  2050. zero_user_segment(page, len, PAGE_SIZE);
  2051. return 0;
  2052. }
  2053. if (blkaddr == NEW_ADDR) {
  2054. zero_user_segment(page, 0, PAGE_SIZE);
  2055. SetPageUptodate(page);
  2056. } else {
  2057. err = f2fs_submit_page_read(inode, page, blkaddr);
  2058. if (err)
  2059. goto fail;
  2060. lock_page(page);
  2061. if (unlikely(page->mapping != mapping)) {
  2062. f2fs_put_page(page, 1);
  2063. goto repeat;
  2064. }
  2065. if (unlikely(!PageUptodate(page))) {
  2066. err = -EIO;
  2067. goto fail;
  2068. }
  2069. }
  2070. return 0;
  2071. fail:
  2072. f2fs_put_page(page, 1);
  2073. f2fs_write_failed(mapping, pos + len);
  2074. if (drop_atomic)
  2075. f2fs_drop_inmem_pages_all(sbi, false);
  2076. return err;
  2077. }
  2078. static int f2fs_write_end(struct file *file,
  2079. struct address_space *mapping,
  2080. loff_t pos, unsigned len, unsigned copied,
  2081. struct page *page, void *fsdata)
  2082. {
  2083. struct inode *inode = page->mapping->host;
  2084. trace_f2fs_write_end(inode, pos, len, copied);
  2085. /*
  2086. * This should be come from len == PAGE_SIZE, and we expect copied
  2087. * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
  2088. * let generic_perform_write() try to copy data again through copied=0.
  2089. */
  2090. if (!PageUptodate(page)) {
  2091. if (unlikely(copied != len))
  2092. copied = 0;
  2093. else
  2094. SetPageUptodate(page);
  2095. }
  2096. if (!copied)
  2097. goto unlock_out;
  2098. set_page_dirty(page);
  2099. if (pos + copied > i_size_read(inode))
  2100. f2fs_i_size_write(inode, pos + copied);
  2101. unlock_out:
  2102. f2fs_put_page(page, 1);
  2103. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  2104. return copied;
  2105. }
  2106. static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
  2107. loff_t offset)
  2108. {
  2109. unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
  2110. unsigned blkbits = i_blkbits;
  2111. unsigned blocksize_mask = (1 << blkbits) - 1;
  2112. unsigned long align = offset | iov_iter_alignment(iter);
  2113. struct block_device *bdev = inode->i_sb->s_bdev;
  2114. if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
  2115. return 1;
  2116. if (align & blocksize_mask) {
  2117. if (bdev)
  2118. blkbits = blksize_bits(bdev_logical_block_size(bdev));
  2119. blocksize_mask = (1 << blkbits) - 1;
  2120. if (align & blocksize_mask)
  2121. return -EINVAL;
  2122. return 1;
  2123. }
  2124. return 0;
  2125. }
  2126. static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
  2127. {
  2128. struct address_space *mapping = iocb->ki_filp->f_mapping;
  2129. struct inode *inode = mapping->host;
  2130. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2131. size_t count = iov_iter_count(iter);
  2132. loff_t offset = iocb->ki_pos;
  2133. int rw = iov_iter_rw(iter);
  2134. int err;
  2135. enum rw_hint hint = iocb->ki_hint;
  2136. int whint_mode = F2FS_OPTION(sbi).whint_mode;
  2137. err = check_direct_IO(inode, iter, offset);
  2138. if (err)
  2139. return err < 0 ? err : 0;
  2140. if (f2fs_force_buffered_io(inode, rw))
  2141. return 0;
  2142. trace_f2fs_direct_IO_enter(inode, offset, count, rw);
  2143. if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
  2144. iocb->ki_hint = WRITE_LIFE_NOT_SET;
  2145. if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
  2146. if (iocb->ki_flags & IOCB_NOWAIT) {
  2147. iocb->ki_hint = hint;
  2148. err = -EAGAIN;
  2149. goto out;
  2150. }
  2151. down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
  2152. }
  2153. err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
  2154. up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
  2155. if (rw == WRITE) {
  2156. if (whint_mode == WHINT_MODE_OFF)
  2157. iocb->ki_hint = hint;
  2158. if (err > 0) {
  2159. f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
  2160. err);
  2161. set_inode_flag(inode, FI_UPDATE_WRITE);
  2162. } else if (err < 0) {
  2163. f2fs_write_failed(mapping, offset + count);
  2164. }
  2165. }
  2166. out:
  2167. trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
  2168. return err;
  2169. }
  2170. void f2fs_invalidate_page(struct page *page, unsigned int offset,
  2171. unsigned int length)
  2172. {
  2173. struct inode *inode = page->mapping->host;
  2174. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2175. if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
  2176. (offset % PAGE_SIZE || length != PAGE_SIZE))
  2177. return;
  2178. if (PageDirty(page)) {
  2179. if (inode->i_ino == F2FS_META_INO(sbi)) {
  2180. dec_page_count(sbi, F2FS_DIRTY_META);
  2181. } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
  2182. dec_page_count(sbi, F2FS_DIRTY_NODES);
  2183. } else {
  2184. inode_dec_dirty_pages(inode);
  2185. f2fs_remove_dirty_inode(inode);
  2186. }
  2187. }
  2188. clear_cold_data(page);
  2189. /* This is atomic written page, keep Private */
  2190. if (IS_ATOMIC_WRITTEN_PAGE(page))
  2191. return f2fs_drop_inmem_page(inode, page);
  2192. set_page_private(page, 0);
  2193. ClearPagePrivate(page);
  2194. }
  2195. int f2fs_release_page(struct page *page, gfp_t wait)
  2196. {
  2197. /* If this is dirty page, keep PagePrivate */
  2198. if (PageDirty(page))
  2199. return 0;
  2200. /* This is atomic written page, keep Private */
  2201. if (IS_ATOMIC_WRITTEN_PAGE(page))
  2202. return 0;
  2203. clear_cold_data(page);
  2204. set_page_private(page, 0);
  2205. ClearPagePrivate(page);
  2206. return 1;
  2207. }
  2208. static int f2fs_set_data_page_dirty(struct page *page)
  2209. {
  2210. struct address_space *mapping = page->mapping;
  2211. struct inode *inode = mapping->host;
  2212. trace_f2fs_set_page_dirty(page, DATA);
  2213. if (!PageUptodate(page))
  2214. SetPageUptodate(page);
  2215. if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
  2216. if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
  2217. f2fs_register_inmem_page(inode, page);
  2218. return 1;
  2219. }
  2220. /*
  2221. * Previously, this page has been registered, we just
  2222. * return here.
  2223. */
  2224. return 0;
  2225. }
  2226. if (!PageDirty(page)) {
  2227. __set_page_dirty_nobuffers(page);
  2228. f2fs_update_dirty_page(inode, page);
  2229. return 1;
  2230. }
  2231. return 0;
  2232. }
  2233. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  2234. {
  2235. struct inode *inode = mapping->host;
  2236. if (f2fs_has_inline_data(inode))
  2237. return 0;
  2238. /* make sure allocating whole blocks */
  2239. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2240. filemap_write_and_wait(mapping);
  2241. return generic_block_bmap(mapping, block, get_data_block_bmap);
  2242. }
  2243. #ifdef CONFIG_MIGRATION
  2244. #include <linux/migrate.h>
  2245. int f2fs_migrate_page(struct address_space *mapping,
  2246. struct page *newpage, struct page *page, enum migrate_mode mode)
  2247. {
  2248. int rc, extra_count;
  2249. struct f2fs_inode_info *fi = F2FS_I(mapping->host);
  2250. bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
  2251. BUG_ON(PageWriteback(page));
  2252. /* migrating an atomic written page is safe with the inmem_lock hold */
  2253. if (atomic_written) {
  2254. if (mode != MIGRATE_SYNC)
  2255. return -EBUSY;
  2256. if (!mutex_trylock(&fi->inmem_lock))
  2257. return -EAGAIN;
  2258. }
  2259. /*
  2260. * A reference is expected if PagePrivate set when move mapping,
  2261. * however F2FS breaks this for maintaining dirty page counts when
  2262. * truncating pages. So here adjusting the 'extra_count' make it work.
  2263. */
  2264. extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
  2265. rc = migrate_page_move_mapping(mapping, newpage,
  2266. page, NULL, mode, extra_count);
  2267. if (rc != MIGRATEPAGE_SUCCESS) {
  2268. if (atomic_written)
  2269. mutex_unlock(&fi->inmem_lock);
  2270. return rc;
  2271. }
  2272. if (atomic_written) {
  2273. struct inmem_pages *cur;
  2274. list_for_each_entry(cur, &fi->inmem_pages, list)
  2275. if (cur->page == page) {
  2276. cur->page = newpage;
  2277. break;
  2278. }
  2279. mutex_unlock(&fi->inmem_lock);
  2280. put_page(page);
  2281. get_page(newpage);
  2282. }
  2283. if (PagePrivate(page))
  2284. SetPagePrivate(newpage);
  2285. set_page_private(newpage, page_private(page));
  2286. if (mode != MIGRATE_SYNC_NO_COPY)
  2287. migrate_page_copy(newpage, page);
  2288. else
  2289. migrate_page_states(newpage, page);
  2290. return MIGRATEPAGE_SUCCESS;
  2291. }
  2292. #endif
  2293. const struct address_space_operations f2fs_dblock_aops = {
  2294. .readpage = f2fs_read_data_page,
  2295. .readpages = f2fs_read_data_pages,
  2296. .writepage = f2fs_write_data_page,
  2297. .writepages = f2fs_write_data_pages,
  2298. .write_begin = f2fs_write_begin,
  2299. .write_end = f2fs_write_end,
  2300. .set_page_dirty = f2fs_set_data_page_dirty,
  2301. .invalidatepage = f2fs_invalidate_page,
  2302. .releasepage = f2fs_release_page,
  2303. .direct_IO = f2fs_direct_IO,
  2304. .bmap = f2fs_bmap,
  2305. #ifdef CONFIG_MIGRATION
  2306. .migratepage = f2fs_migrate_page,
  2307. #endif
  2308. };
  2309. void f2fs_clear_radix_tree_dirty_tag(struct page *page)
  2310. {
  2311. struct address_space *mapping = page_mapping(page);
  2312. unsigned long flags;
  2313. xa_lock_irqsave(&mapping->i_pages, flags);
  2314. radix_tree_tag_clear(&mapping->i_pages, page_index(page),
  2315. PAGECACHE_TAG_DIRTY);
  2316. xa_unlock_irqrestore(&mapping->i_pages, flags);
  2317. }
  2318. int __init f2fs_init_post_read_processing(void)
  2319. {
  2320. bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
  2321. if (!bio_post_read_ctx_cache)
  2322. goto fail;
  2323. bio_post_read_ctx_pool =
  2324. mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
  2325. bio_post_read_ctx_cache);
  2326. if (!bio_post_read_ctx_pool)
  2327. goto fail_free_cache;
  2328. return 0;
  2329. fail_free_cache:
  2330. kmem_cache_destroy(bio_post_read_ctx_cache);
  2331. fail:
  2332. return -ENOMEM;
  2333. }
  2334. void __exit f2fs_destroy_post_read_processing(void)
  2335. {
  2336. mempool_destroy(bio_post_read_ctx_pool);
  2337. kmem_cache_destroy(bio_post_read_ctx_cache);
  2338. }