dir.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. /*
  2. * fs/f2fs/dir.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/sched/signal.h>
  14. #include "f2fs.h"
  15. #include "node.h"
  16. #include "acl.h"
  17. #include "xattr.h"
  18. #include <trace/events/f2fs.h>
  19. static unsigned long dir_blocks(struct inode *inode)
  20. {
  21. return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
  22. >> PAGE_SHIFT;
  23. }
  24. static unsigned int dir_buckets(unsigned int level, int dir_level)
  25. {
  26. if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
  27. return 1 << (level + dir_level);
  28. else
  29. return MAX_DIR_BUCKETS;
  30. }
  31. static unsigned int bucket_blocks(unsigned int level)
  32. {
  33. if (level < MAX_DIR_HASH_DEPTH / 2)
  34. return 2;
  35. else
  36. return 4;
  37. }
  38. static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  39. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  40. [F2FS_FT_REG_FILE] = DT_REG,
  41. [F2FS_FT_DIR] = DT_DIR,
  42. [F2FS_FT_CHRDEV] = DT_CHR,
  43. [F2FS_FT_BLKDEV] = DT_BLK,
  44. [F2FS_FT_FIFO] = DT_FIFO,
  45. [F2FS_FT_SOCK] = DT_SOCK,
  46. [F2FS_FT_SYMLINK] = DT_LNK,
  47. };
  48. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  49. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  50. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  51. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  52. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  53. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  54. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  55. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  56. };
  57. static void set_de_type(struct f2fs_dir_entry *de, umode_t mode)
  58. {
  59. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  60. }
  61. unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de)
  62. {
  63. if (de->file_type < F2FS_FT_MAX)
  64. return f2fs_filetype_table[de->file_type];
  65. return DT_UNKNOWN;
  66. }
  67. static unsigned long dir_block_index(unsigned int level,
  68. int dir_level, unsigned int idx)
  69. {
  70. unsigned long i;
  71. unsigned long bidx = 0;
  72. for (i = 0; i < level; i++)
  73. bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
  74. bidx += idx * bucket_blocks(level);
  75. return bidx;
  76. }
  77. static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
  78. struct fscrypt_name *fname,
  79. f2fs_hash_t namehash,
  80. int *max_slots,
  81. struct page **res_page)
  82. {
  83. struct f2fs_dentry_block *dentry_blk;
  84. struct f2fs_dir_entry *de;
  85. struct f2fs_dentry_ptr d;
  86. dentry_blk = (struct f2fs_dentry_block *)page_address(dentry_page);
  87. make_dentry_ptr_block(NULL, &d, dentry_blk);
  88. de = f2fs_find_target_dentry(fname, namehash, max_slots, &d);
  89. if (de)
  90. *res_page = dentry_page;
  91. return de;
  92. }
  93. struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
  94. f2fs_hash_t namehash, int *max_slots,
  95. struct f2fs_dentry_ptr *d)
  96. {
  97. struct f2fs_dir_entry *de;
  98. unsigned long bit_pos = 0;
  99. int max_len = 0;
  100. if (max_slots)
  101. *max_slots = 0;
  102. while (bit_pos < d->max) {
  103. if (!test_bit_le(bit_pos, d->bitmap)) {
  104. bit_pos++;
  105. max_len++;
  106. continue;
  107. }
  108. de = &d->dentry[bit_pos];
  109. if (unlikely(!de->name_len)) {
  110. bit_pos++;
  111. continue;
  112. }
  113. if (de->hash_code == namehash &&
  114. fscrypt_match_name(fname, d->filename[bit_pos],
  115. le16_to_cpu(de->name_len)))
  116. goto found;
  117. if (max_slots && max_len > *max_slots)
  118. *max_slots = max_len;
  119. max_len = 0;
  120. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  121. }
  122. de = NULL;
  123. found:
  124. if (max_slots && max_len > *max_slots)
  125. *max_slots = max_len;
  126. return de;
  127. }
  128. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  129. unsigned int level,
  130. struct fscrypt_name *fname,
  131. struct page **res_page)
  132. {
  133. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  134. int s = GET_DENTRY_SLOTS(name.len);
  135. unsigned int nbucket, nblock;
  136. unsigned int bidx, end_block;
  137. struct page *dentry_page;
  138. struct f2fs_dir_entry *de = NULL;
  139. bool room = false;
  140. int max_slots;
  141. f2fs_hash_t namehash = f2fs_dentry_hash(&name, fname);
  142. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  143. nblock = bucket_blocks(level);
  144. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  145. le32_to_cpu(namehash) % nbucket);
  146. end_block = bidx + nblock;
  147. for (; bidx < end_block; bidx++) {
  148. /* no need to allocate new dentry pages to all the indices */
  149. dentry_page = f2fs_find_data_page(dir, bidx);
  150. if (IS_ERR(dentry_page)) {
  151. if (PTR_ERR(dentry_page) == -ENOENT) {
  152. room = true;
  153. continue;
  154. } else {
  155. *res_page = dentry_page;
  156. break;
  157. }
  158. }
  159. de = find_in_block(dentry_page, fname, namehash, &max_slots,
  160. res_page);
  161. if (de)
  162. break;
  163. if (max_slots >= s)
  164. room = true;
  165. f2fs_put_page(dentry_page, 0);
  166. }
  167. if (!de && room && F2FS_I(dir)->chash != namehash) {
  168. F2FS_I(dir)->chash = namehash;
  169. F2FS_I(dir)->clevel = level;
  170. }
  171. return de;
  172. }
  173. struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
  174. struct fscrypt_name *fname, struct page **res_page)
  175. {
  176. unsigned long npages = dir_blocks(dir);
  177. struct f2fs_dir_entry *de = NULL;
  178. unsigned int max_depth;
  179. unsigned int level;
  180. *res_page = NULL;
  181. if (f2fs_has_inline_dentry(dir)) {
  182. de = f2fs_find_in_inline_dir(dir, fname, res_page);
  183. goto out;
  184. }
  185. if (npages == 0)
  186. goto out;
  187. max_depth = F2FS_I(dir)->i_current_depth;
  188. if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
  189. f2fs_msg(F2FS_I_SB(dir)->sb, KERN_WARNING,
  190. "Corrupted max_depth of %lu: %u",
  191. dir->i_ino, max_depth);
  192. max_depth = MAX_DIR_HASH_DEPTH;
  193. f2fs_i_depth_write(dir, max_depth);
  194. }
  195. for (level = 0; level < max_depth; level++) {
  196. de = find_in_level(dir, level, fname, res_page);
  197. if (de || IS_ERR(*res_page))
  198. break;
  199. }
  200. out:
  201. /* This is to increase the speed of f2fs_create */
  202. if (!de)
  203. F2FS_I(dir)->task = current;
  204. return de;
  205. }
  206. /*
  207. * Find an entry in the specified directory with the wanted name.
  208. * It returns the page where the entry was found (as a parameter - res_page),
  209. * and the entry itself. Page is returned mapped and unlocked.
  210. * Entry is guaranteed to be valid.
  211. */
  212. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  213. const struct qstr *child, struct page **res_page)
  214. {
  215. struct f2fs_dir_entry *de = NULL;
  216. struct fscrypt_name fname;
  217. int err;
  218. err = fscrypt_setup_filename(dir, child, 1, &fname);
  219. if (err) {
  220. if (err == -ENOENT)
  221. *res_page = NULL;
  222. else
  223. *res_page = ERR_PTR(err);
  224. return NULL;
  225. }
  226. de = __f2fs_find_entry(dir, &fname, res_page);
  227. fscrypt_free_filename(&fname);
  228. return de;
  229. }
  230. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  231. {
  232. struct qstr dotdot = QSTR_INIT("..", 2);
  233. return f2fs_find_entry(dir, &dotdot, p);
  234. }
  235. ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
  236. struct page **page)
  237. {
  238. ino_t res = 0;
  239. struct f2fs_dir_entry *de;
  240. de = f2fs_find_entry(dir, qstr, page);
  241. if (de) {
  242. res = le32_to_cpu(de->ino);
  243. f2fs_put_page(*page, 0);
  244. }
  245. return res;
  246. }
  247. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  248. struct page *page, struct inode *inode)
  249. {
  250. enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
  251. lock_page(page);
  252. f2fs_wait_on_page_writeback(page, type, true);
  253. de->ino = cpu_to_le32(inode->i_ino);
  254. set_de_type(de, inode->i_mode);
  255. set_page_dirty(page);
  256. dir->i_mtime = dir->i_ctime = current_time(dir);
  257. f2fs_mark_inode_dirty_sync(dir, false);
  258. f2fs_put_page(page, 1);
  259. }
  260. static void init_dent_inode(const struct qstr *name, struct page *ipage)
  261. {
  262. struct f2fs_inode *ri;
  263. f2fs_wait_on_page_writeback(ipage, NODE, true);
  264. /* copy name info. to this inode page */
  265. ri = F2FS_INODE(ipage);
  266. ri->i_namelen = cpu_to_le32(name->len);
  267. memcpy(ri->i_name, name->name, name->len);
  268. set_page_dirty(ipage);
  269. }
  270. void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
  271. struct f2fs_dentry_ptr *d)
  272. {
  273. struct qstr dot = QSTR_INIT(".", 1);
  274. struct qstr dotdot = QSTR_INIT("..", 2);
  275. /* update dirent of "." */
  276. f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
  277. /* update dirent of ".." */
  278. f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
  279. }
  280. static int make_empty_dir(struct inode *inode,
  281. struct inode *parent, struct page *page)
  282. {
  283. struct page *dentry_page;
  284. struct f2fs_dentry_block *dentry_blk;
  285. struct f2fs_dentry_ptr d;
  286. if (f2fs_has_inline_dentry(inode))
  287. return f2fs_make_empty_inline_dir(inode, parent, page);
  288. dentry_page = f2fs_get_new_data_page(inode, page, 0, true);
  289. if (IS_ERR(dentry_page))
  290. return PTR_ERR(dentry_page);
  291. dentry_blk = page_address(dentry_page);
  292. make_dentry_ptr_block(NULL, &d, dentry_blk);
  293. f2fs_do_make_empty_dir(inode, parent, &d);
  294. set_page_dirty(dentry_page);
  295. f2fs_put_page(dentry_page, 1);
  296. return 0;
  297. }
  298. struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
  299. const struct qstr *new_name, const struct qstr *orig_name,
  300. struct page *dpage)
  301. {
  302. struct page *page;
  303. int dummy_encrypt = DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(dir));
  304. int err;
  305. if (is_inode_flag_set(inode, FI_NEW_INODE)) {
  306. page = f2fs_new_inode_page(inode);
  307. if (IS_ERR(page))
  308. return page;
  309. if (S_ISDIR(inode->i_mode)) {
  310. /* in order to handle error case */
  311. get_page(page);
  312. err = make_empty_dir(inode, dir, page);
  313. if (err) {
  314. lock_page(page);
  315. goto put_error;
  316. }
  317. put_page(page);
  318. }
  319. err = f2fs_init_acl(inode, dir, page, dpage);
  320. if (err)
  321. goto put_error;
  322. err = f2fs_init_security(inode, dir, orig_name, page);
  323. if (err)
  324. goto put_error;
  325. if ((f2fs_encrypted_inode(dir) || dummy_encrypt) &&
  326. f2fs_may_encrypt(inode)) {
  327. err = fscrypt_inherit_context(dir, inode, page, false);
  328. if (err)
  329. goto put_error;
  330. }
  331. } else {
  332. page = f2fs_get_node_page(F2FS_I_SB(dir), inode->i_ino);
  333. if (IS_ERR(page))
  334. return page;
  335. }
  336. if (new_name) {
  337. init_dent_inode(new_name, page);
  338. if (f2fs_encrypted_inode(dir))
  339. file_set_enc_name(inode);
  340. }
  341. /*
  342. * This file should be checkpointed during fsync.
  343. * We lost i_pino from now on.
  344. */
  345. if (is_inode_flag_set(inode, FI_INC_LINK)) {
  346. if (!S_ISDIR(inode->i_mode))
  347. file_lost_pino(inode);
  348. /*
  349. * If link the tmpfile to alias through linkat path,
  350. * we should remove this inode from orphan list.
  351. */
  352. if (inode->i_nlink == 0)
  353. f2fs_remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
  354. f2fs_i_links_write(inode, true);
  355. }
  356. return page;
  357. put_error:
  358. clear_nlink(inode);
  359. f2fs_update_inode(inode, page);
  360. f2fs_put_page(page, 1);
  361. return ERR_PTR(err);
  362. }
  363. void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
  364. unsigned int current_depth)
  365. {
  366. if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
  367. if (S_ISDIR(inode->i_mode))
  368. f2fs_i_links_write(dir, true);
  369. clear_inode_flag(inode, FI_NEW_INODE);
  370. }
  371. dir->i_mtime = dir->i_ctime = current_time(dir);
  372. f2fs_mark_inode_dirty_sync(dir, false);
  373. if (F2FS_I(dir)->i_current_depth != current_depth)
  374. f2fs_i_depth_write(dir, current_depth);
  375. if (inode && is_inode_flag_set(inode, FI_INC_LINK))
  376. clear_inode_flag(inode, FI_INC_LINK);
  377. }
  378. int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots)
  379. {
  380. int bit_start = 0;
  381. int zero_start, zero_end;
  382. next:
  383. zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
  384. if (zero_start >= max_slots)
  385. return max_slots;
  386. zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
  387. if (zero_end - zero_start >= slots)
  388. return zero_start;
  389. bit_start = zero_end + 1;
  390. if (zero_end + 1 >= max_slots)
  391. return max_slots;
  392. goto next;
  393. }
  394. void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
  395. const struct qstr *name, f2fs_hash_t name_hash,
  396. unsigned int bit_pos)
  397. {
  398. struct f2fs_dir_entry *de;
  399. int slots = GET_DENTRY_SLOTS(name->len);
  400. int i;
  401. de = &d->dentry[bit_pos];
  402. de->hash_code = name_hash;
  403. de->name_len = cpu_to_le16(name->len);
  404. memcpy(d->filename[bit_pos], name->name, name->len);
  405. de->ino = cpu_to_le32(ino);
  406. set_de_type(de, mode);
  407. for (i = 0; i < slots; i++) {
  408. __set_bit_le(bit_pos + i, (void *)d->bitmap);
  409. /* avoid wrong garbage data for readdir */
  410. if (i)
  411. (de + i)->name_len = 0;
  412. }
  413. }
  414. int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
  415. const struct qstr *orig_name,
  416. struct inode *inode, nid_t ino, umode_t mode)
  417. {
  418. unsigned int bit_pos;
  419. unsigned int level;
  420. unsigned int current_depth;
  421. unsigned long bidx, block;
  422. f2fs_hash_t dentry_hash;
  423. unsigned int nbucket, nblock;
  424. struct page *dentry_page = NULL;
  425. struct f2fs_dentry_block *dentry_blk = NULL;
  426. struct f2fs_dentry_ptr d;
  427. struct page *page = NULL;
  428. int slots, err = 0;
  429. level = 0;
  430. slots = GET_DENTRY_SLOTS(new_name->len);
  431. dentry_hash = f2fs_dentry_hash(new_name, NULL);
  432. current_depth = F2FS_I(dir)->i_current_depth;
  433. if (F2FS_I(dir)->chash == dentry_hash) {
  434. level = F2FS_I(dir)->clevel;
  435. F2FS_I(dir)->chash = 0;
  436. }
  437. start:
  438. if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH)) {
  439. f2fs_show_injection_info(FAULT_DIR_DEPTH);
  440. return -ENOSPC;
  441. }
  442. if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
  443. return -ENOSPC;
  444. /* Increase the depth, if required */
  445. if (level == current_depth)
  446. ++current_depth;
  447. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  448. nblock = bucket_blocks(level);
  449. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  450. (le32_to_cpu(dentry_hash) % nbucket));
  451. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  452. dentry_page = f2fs_get_new_data_page(dir, NULL, block, true);
  453. if (IS_ERR(dentry_page))
  454. return PTR_ERR(dentry_page);
  455. dentry_blk = page_address(dentry_page);
  456. bit_pos = f2fs_room_for_filename(&dentry_blk->dentry_bitmap,
  457. slots, NR_DENTRY_IN_BLOCK);
  458. if (bit_pos < NR_DENTRY_IN_BLOCK)
  459. goto add_dentry;
  460. f2fs_put_page(dentry_page, 1);
  461. }
  462. /* Move to next level to find the empty slot for new dentry */
  463. ++level;
  464. goto start;
  465. add_dentry:
  466. f2fs_wait_on_page_writeback(dentry_page, DATA, true);
  467. if (inode) {
  468. down_write(&F2FS_I(inode)->i_sem);
  469. page = f2fs_init_inode_metadata(inode, dir, new_name,
  470. orig_name, NULL);
  471. if (IS_ERR(page)) {
  472. err = PTR_ERR(page);
  473. goto fail;
  474. }
  475. }
  476. make_dentry_ptr_block(NULL, &d, dentry_blk);
  477. f2fs_update_dentry(ino, mode, &d, new_name, dentry_hash, bit_pos);
  478. set_page_dirty(dentry_page);
  479. if (inode) {
  480. f2fs_i_pino_write(inode, dir->i_ino);
  481. /* synchronize inode page's data from inode cache */
  482. if (is_inode_flag_set(inode, FI_NEW_INODE))
  483. f2fs_update_inode(inode, page);
  484. f2fs_put_page(page, 1);
  485. }
  486. f2fs_update_parent_metadata(dir, inode, current_depth);
  487. fail:
  488. if (inode)
  489. up_write(&F2FS_I(inode)->i_sem);
  490. f2fs_put_page(dentry_page, 1);
  491. return err;
  492. }
  493. int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
  494. struct inode *inode, nid_t ino, umode_t mode)
  495. {
  496. struct qstr new_name;
  497. int err = -EAGAIN;
  498. new_name.name = fname_name(fname);
  499. new_name.len = fname_len(fname);
  500. if (f2fs_has_inline_dentry(dir))
  501. err = f2fs_add_inline_entry(dir, &new_name, fname->usr_fname,
  502. inode, ino, mode);
  503. if (err == -EAGAIN)
  504. err = f2fs_add_regular_entry(dir, &new_name, fname->usr_fname,
  505. inode, ino, mode);
  506. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  507. return err;
  508. }
  509. /*
  510. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  511. * f2fs_unlock_op().
  512. */
  513. int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
  514. struct inode *inode, nid_t ino, umode_t mode)
  515. {
  516. struct fscrypt_name fname;
  517. struct page *page = NULL;
  518. struct f2fs_dir_entry *de = NULL;
  519. int err;
  520. err = fscrypt_setup_filename(dir, name, 0, &fname);
  521. if (err)
  522. return err;
  523. /*
  524. * An immature stakable filesystem shows a race condition between lookup
  525. * and create. If we have same task when doing lookup and create, it's
  526. * definitely fine as expected by VFS normally. Otherwise, let's just
  527. * verify on-disk dentry one more time, which guarantees filesystem
  528. * consistency more.
  529. */
  530. if (current != F2FS_I(dir)->task) {
  531. de = __f2fs_find_entry(dir, &fname, &page);
  532. F2FS_I(dir)->task = NULL;
  533. }
  534. if (de) {
  535. f2fs_put_page(page, 0);
  536. err = -EEXIST;
  537. } else if (IS_ERR(page)) {
  538. err = PTR_ERR(page);
  539. } else {
  540. err = f2fs_add_dentry(dir, &fname, inode, ino, mode);
  541. }
  542. fscrypt_free_filename(&fname);
  543. return err;
  544. }
  545. int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
  546. {
  547. struct page *page;
  548. int err = 0;
  549. down_write(&F2FS_I(inode)->i_sem);
  550. page = f2fs_init_inode_metadata(inode, dir, NULL, NULL, NULL);
  551. if (IS_ERR(page)) {
  552. err = PTR_ERR(page);
  553. goto fail;
  554. }
  555. f2fs_put_page(page, 1);
  556. clear_inode_flag(inode, FI_NEW_INODE);
  557. fail:
  558. up_write(&F2FS_I(inode)->i_sem);
  559. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  560. return err;
  561. }
  562. void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
  563. {
  564. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  565. down_write(&F2FS_I(inode)->i_sem);
  566. if (S_ISDIR(inode->i_mode))
  567. f2fs_i_links_write(dir, false);
  568. inode->i_ctime = current_time(inode);
  569. f2fs_i_links_write(inode, false);
  570. if (S_ISDIR(inode->i_mode)) {
  571. f2fs_i_links_write(inode, false);
  572. f2fs_i_size_write(inode, 0);
  573. }
  574. up_write(&F2FS_I(inode)->i_sem);
  575. if (inode->i_nlink == 0)
  576. f2fs_add_orphan_inode(inode);
  577. else
  578. f2fs_release_orphan_inode(sbi);
  579. }
  580. /*
  581. * It only removes the dentry from the dentry page, corresponding name
  582. * entry in name page does not need to be touched during deletion.
  583. */
  584. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  585. struct inode *dir, struct inode *inode)
  586. {
  587. struct f2fs_dentry_block *dentry_blk;
  588. unsigned int bit_pos;
  589. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  590. int i;
  591. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  592. if (F2FS_OPTION(F2FS_I_SB(dir)).fsync_mode == FSYNC_MODE_STRICT)
  593. f2fs_add_ino_entry(F2FS_I_SB(dir), dir->i_ino, TRANS_DIR_INO);
  594. if (f2fs_has_inline_dentry(dir))
  595. return f2fs_delete_inline_entry(dentry, page, dir, inode);
  596. lock_page(page);
  597. f2fs_wait_on_page_writeback(page, DATA, true);
  598. dentry_blk = page_address(page);
  599. bit_pos = dentry - dentry_blk->dentry;
  600. for (i = 0; i < slots; i++)
  601. __clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  602. /* Let's check and deallocate this dentry page */
  603. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  604. NR_DENTRY_IN_BLOCK,
  605. 0);
  606. set_page_dirty(page);
  607. dir->i_ctime = dir->i_mtime = current_time(dir);
  608. f2fs_mark_inode_dirty_sync(dir, false);
  609. if (inode)
  610. f2fs_drop_nlink(dir, inode);
  611. if (bit_pos == NR_DENTRY_IN_BLOCK &&
  612. !f2fs_truncate_hole(dir, page->index, page->index + 1)) {
  613. f2fs_clear_radix_tree_dirty_tag(page);
  614. clear_page_dirty_for_io(page);
  615. ClearPagePrivate(page);
  616. ClearPageUptodate(page);
  617. clear_cold_data(page);
  618. inode_dec_dirty_pages(dir);
  619. f2fs_remove_dirty_inode(dir);
  620. }
  621. f2fs_put_page(page, 1);
  622. }
  623. bool f2fs_empty_dir(struct inode *dir)
  624. {
  625. unsigned long bidx;
  626. struct page *dentry_page;
  627. unsigned int bit_pos;
  628. struct f2fs_dentry_block *dentry_blk;
  629. unsigned long nblock = dir_blocks(dir);
  630. if (f2fs_has_inline_dentry(dir))
  631. return f2fs_empty_inline_dir(dir);
  632. for (bidx = 0; bidx < nblock; bidx++) {
  633. dentry_page = f2fs_get_lock_data_page(dir, bidx, false);
  634. if (IS_ERR(dentry_page)) {
  635. if (PTR_ERR(dentry_page) == -ENOENT)
  636. continue;
  637. else
  638. return false;
  639. }
  640. dentry_blk = page_address(dentry_page);
  641. if (bidx == 0)
  642. bit_pos = 2;
  643. else
  644. bit_pos = 0;
  645. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  646. NR_DENTRY_IN_BLOCK,
  647. bit_pos);
  648. f2fs_put_page(dentry_page, 1);
  649. if (bit_pos < NR_DENTRY_IN_BLOCK)
  650. return false;
  651. }
  652. return true;
  653. }
  654. int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
  655. unsigned int start_pos, struct fscrypt_str *fstr)
  656. {
  657. unsigned char d_type = DT_UNKNOWN;
  658. unsigned int bit_pos;
  659. struct f2fs_dir_entry *de = NULL;
  660. struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
  661. struct f2fs_sb_info *sbi = F2FS_I_SB(d->inode);
  662. int err = 0;
  663. bit_pos = ((unsigned long)ctx->pos % d->max);
  664. while (bit_pos < d->max) {
  665. bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
  666. if (bit_pos >= d->max)
  667. break;
  668. de = &d->dentry[bit_pos];
  669. if (de->name_len == 0) {
  670. bit_pos++;
  671. ctx->pos = start_pos + bit_pos;
  672. continue;
  673. }
  674. d_type = f2fs_get_de_type(de);
  675. de_name.name = d->filename[bit_pos];
  676. de_name.len = le16_to_cpu(de->name_len);
  677. /* check memory boundary before moving forward */
  678. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  679. if (unlikely(bit_pos > d->max ||
  680. le16_to_cpu(de->name_len) > F2FS_NAME_LEN)) {
  681. f2fs_msg(sbi->sb, KERN_WARNING,
  682. "%s: corrupted namelen=%d, run fsck to fix.",
  683. __func__, le16_to_cpu(de->name_len));
  684. set_sbi_flag(sbi, SBI_NEED_FSCK);
  685. err = -EINVAL;
  686. goto out;
  687. }
  688. if (f2fs_encrypted_inode(d->inode)) {
  689. int save_len = fstr->len;
  690. err = fscrypt_fname_disk_to_usr(d->inode,
  691. (u32)de->hash_code, 0,
  692. &de_name, fstr);
  693. if (err)
  694. return err;
  695. de_name = *fstr;
  696. fstr->len = save_len;
  697. }
  698. if (!dir_emit(ctx, de_name.name, de_name.len,
  699. le32_to_cpu(de->ino), d_type))
  700. return 1;
  701. if (sbi->readdir_ra == 1)
  702. f2fs_ra_node_page(sbi, le32_to_cpu(de->ino));
  703. ctx->pos = start_pos + bit_pos;
  704. }
  705. out:
  706. return err;
  707. }
  708. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  709. {
  710. struct inode *inode = file_inode(file);
  711. unsigned long npages = dir_blocks(inode);
  712. struct f2fs_dentry_block *dentry_blk = NULL;
  713. struct page *dentry_page = NULL;
  714. struct file_ra_state *ra = &file->f_ra;
  715. loff_t start_pos = ctx->pos;
  716. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  717. struct f2fs_dentry_ptr d;
  718. struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
  719. int err = 0;
  720. if (f2fs_encrypted_inode(inode)) {
  721. err = fscrypt_get_encryption_info(inode);
  722. if (err && err != -ENOKEY)
  723. goto out;
  724. err = fscrypt_fname_alloc_buffer(inode, F2FS_NAME_LEN, &fstr);
  725. if (err < 0)
  726. goto out;
  727. }
  728. if (f2fs_has_inline_dentry(inode)) {
  729. err = f2fs_read_inline_dir(file, ctx, &fstr);
  730. goto out_free;
  731. }
  732. for (; n < npages; n++, ctx->pos = n * NR_DENTRY_IN_BLOCK) {
  733. /* allow readdir() to be interrupted */
  734. if (fatal_signal_pending(current)) {
  735. err = -ERESTARTSYS;
  736. goto out_free;
  737. }
  738. cond_resched();
  739. /* readahead for multi pages of dir */
  740. if (npages - n > 1 && !ra_has_index(ra, n))
  741. page_cache_sync_readahead(inode->i_mapping, ra, file, n,
  742. min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
  743. dentry_page = f2fs_get_lock_data_page(inode, n, false);
  744. if (IS_ERR(dentry_page)) {
  745. err = PTR_ERR(dentry_page);
  746. if (err == -ENOENT) {
  747. err = 0;
  748. continue;
  749. } else {
  750. goto out_free;
  751. }
  752. }
  753. dentry_blk = page_address(dentry_page);
  754. make_dentry_ptr_block(inode, &d, dentry_blk);
  755. err = f2fs_fill_dentries(ctx, &d,
  756. n * NR_DENTRY_IN_BLOCK, &fstr);
  757. if (err) {
  758. f2fs_put_page(dentry_page, 1);
  759. break;
  760. }
  761. f2fs_put_page(dentry_page, 1);
  762. }
  763. out_free:
  764. fscrypt_fname_free_buffer(&fstr);
  765. out:
  766. trace_f2fs_readdir(inode, start_pos, ctx->pos, err);
  767. return err < 0 ? err : 0;
  768. }
  769. static int f2fs_dir_open(struct inode *inode, struct file *filp)
  770. {
  771. if (f2fs_encrypted_inode(inode))
  772. return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
  773. return 0;
  774. }
  775. const struct file_operations f2fs_dir_operations = {
  776. .llseek = generic_file_llseek,
  777. .read = generic_read_dir,
  778. .iterate_shared = f2fs_readdir,
  779. .fsync = f2fs_sync_file,
  780. .open = f2fs_dir_open,
  781. .unlocked_ioctl = f2fs_ioctl,
  782. #ifdef CONFIG_COMPAT
  783. .compat_ioctl = f2fs_compat_ioctl,
  784. #endif
  785. };