recovery.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. /*
  17. * Roll forward recovery scenarios.
  18. *
  19. * [Term] F: fsync_mark, D: dentry_mark
  20. *
  21. * 1. inode(x) | CP | inode(x) | dnode(F)
  22. * -> Update the latest inode(x).
  23. *
  24. * 2. inode(x) | CP | inode(F) | dnode(F)
  25. * -> No problem.
  26. *
  27. * 3. inode(x) | CP | dnode(F) | inode(x)
  28. * -> Recover to the latest dnode(F), and drop the last inode(x)
  29. *
  30. * 4. inode(x) | CP | dnode(F) | inode(F)
  31. * -> No problem.
  32. *
  33. * 5. CP | inode(x) | dnode(F)
  34. * -> The inode(DF) was missing. Should drop this dnode(F).
  35. *
  36. * 6. CP | inode(DF) | dnode(F)
  37. * -> No problem.
  38. *
  39. * 7. CP | dnode(F) | inode(DF)
  40. * -> If f2fs_iget fails, then goto next to find inode(DF).
  41. *
  42. * 8. CP | dnode(F) | inode(x)
  43. * -> If f2fs_iget fails, then goto next to find inode(DF).
  44. * But it will fail due to no inode(DF).
  45. */
  46. static struct kmem_cache *fsync_entry_slab;
  47. bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi)
  48. {
  49. s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count);
  50. if (sbi->last_valid_block_count + nalloc > sbi->user_block_count)
  51. return false;
  52. return true;
  53. }
  54. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  55. nid_t ino)
  56. {
  57. struct fsync_inode_entry *entry;
  58. list_for_each_entry(entry, head, list)
  59. if (entry->inode->i_ino == ino)
  60. return entry;
  61. return NULL;
  62. }
  63. static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi,
  64. struct list_head *head, nid_t ino, bool quota_inode)
  65. {
  66. struct inode *inode;
  67. struct fsync_inode_entry *entry;
  68. int err;
  69. inode = f2fs_iget_retry(sbi->sb, ino);
  70. if (IS_ERR(inode))
  71. return ERR_CAST(inode);
  72. err = dquot_initialize(inode);
  73. if (err)
  74. goto err_out;
  75. if (quota_inode) {
  76. err = dquot_alloc_inode(inode);
  77. if (err)
  78. goto err_out;
  79. }
  80. entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
  81. entry->inode = inode;
  82. list_add_tail(&entry->list, head);
  83. return entry;
  84. err_out:
  85. iput(inode);
  86. return ERR_PTR(err);
  87. }
  88. static void del_fsync_inode(struct fsync_inode_entry *entry, int drop)
  89. {
  90. if (drop) {
  91. /* inode should not be recovered, drop it */
  92. f2fs_inode_synced(entry->inode);
  93. }
  94. iput(entry->inode);
  95. list_del(&entry->list);
  96. kmem_cache_free(fsync_entry_slab, entry);
  97. }
  98. static int recover_dentry(struct inode *inode, struct page *ipage,
  99. struct list_head *dir_list)
  100. {
  101. struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
  102. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  103. struct f2fs_dir_entry *de;
  104. struct fscrypt_name fname;
  105. struct page *page;
  106. struct inode *dir, *einode;
  107. struct fsync_inode_entry *entry;
  108. int err = 0;
  109. char *name;
  110. entry = get_fsync_inode(dir_list, pino);
  111. if (!entry) {
  112. entry = add_fsync_inode(F2FS_I_SB(inode), dir_list,
  113. pino, false);
  114. if (IS_ERR(entry)) {
  115. dir = ERR_CAST(entry);
  116. err = PTR_ERR(entry);
  117. goto out;
  118. }
  119. }
  120. dir = entry->inode;
  121. memset(&fname, 0, sizeof(struct fscrypt_name));
  122. fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen);
  123. fname.disk_name.name = raw_inode->i_name;
  124. if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) {
  125. WARN_ON(1);
  126. err = -ENAMETOOLONG;
  127. goto out;
  128. }
  129. retry:
  130. de = __f2fs_find_entry(dir, &fname, &page);
  131. if (de && inode->i_ino == le32_to_cpu(de->ino))
  132. goto out_put;
  133. if (de) {
  134. einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino));
  135. if (IS_ERR(einode)) {
  136. WARN_ON(1);
  137. err = PTR_ERR(einode);
  138. if (err == -ENOENT)
  139. err = -EEXIST;
  140. goto out_put;
  141. }
  142. err = dquot_initialize(einode);
  143. if (err) {
  144. iput(einode);
  145. goto out_put;
  146. }
  147. err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode));
  148. if (err) {
  149. iput(einode);
  150. goto out_put;
  151. }
  152. f2fs_delete_entry(de, page, dir, einode);
  153. iput(einode);
  154. goto retry;
  155. } else if (IS_ERR(page)) {
  156. err = PTR_ERR(page);
  157. } else {
  158. err = f2fs_add_dentry(dir, &fname, inode,
  159. inode->i_ino, inode->i_mode);
  160. }
  161. if (err == -ENOMEM)
  162. goto retry;
  163. goto out;
  164. out_put:
  165. f2fs_put_page(page, 0);
  166. out:
  167. if (file_enc_name(inode))
  168. name = "<encrypted>";
  169. else
  170. name = raw_inode->i_name;
  171. f2fs_msg(inode->i_sb, KERN_NOTICE,
  172. "%s: ino = %x, name = %s, dir = %lx, err = %d",
  173. __func__, ino_of_node(ipage), name,
  174. IS_ERR(dir) ? 0 : dir->i_ino, err);
  175. return err;
  176. }
  177. static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri)
  178. {
  179. if (ri->i_inline & F2FS_PIN_FILE)
  180. set_inode_flag(inode, FI_PIN_FILE);
  181. else
  182. clear_inode_flag(inode, FI_PIN_FILE);
  183. if (ri->i_inline & F2FS_DATA_EXIST)
  184. set_inode_flag(inode, FI_DATA_EXIST);
  185. else
  186. clear_inode_flag(inode, FI_DATA_EXIST);
  187. }
  188. static void recover_inode(struct inode *inode, struct page *page)
  189. {
  190. struct f2fs_inode *raw = F2FS_INODE(page);
  191. char *name;
  192. inode->i_mode = le16_to_cpu(raw->i_mode);
  193. i_uid_write(inode, le32_to_cpu(raw->i_uid));
  194. i_gid_write(inode, le32_to_cpu(raw->i_gid));
  195. if (raw->i_inline & F2FS_EXTRA_ATTR) {
  196. if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)->sb) &&
  197. F2FS_FITS_IN_INODE(raw, le16_to_cpu(raw->i_extra_isize),
  198. i_projid)) {
  199. projid_t i_projid;
  200. i_projid = (projid_t)le32_to_cpu(raw->i_projid);
  201. F2FS_I(inode)->i_projid =
  202. make_kprojid(&init_user_ns, i_projid);
  203. }
  204. }
  205. f2fs_i_size_write(inode, le64_to_cpu(raw->i_size));
  206. inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime);
  207. inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
  208. inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
  209. inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec);
  210. inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
  211. inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  212. F2FS_I(inode)->i_advise = raw->i_advise;
  213. F2FS_I(inode)->i_flags = le32_to_cpu(raw->i_flags);
  214. f2fs_set_inode_flags(inode);
  215. F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] =
  216. le16_to_cpu(raw->i_gc_failures);
  217. recover_inline_flags(inode, raw);
  218. f2fs_mark_inode_dirty_sync(inode, true);
  219. if (file_enc_name(inode))
  220. name = "<encrypted>";
  221. else
  222. name = F2FS_INODE(page)->i_name;
  223. f2fs_msg(inode->i_sb, KERN_NOTICE,
  224. "recover_inode: ino = %x, name = %s, inline = %x",
  225. ino_of_node(page), name, raw->i_inline);
  226. }
  227. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head,
  228. bool check_only)
  229. {
  230. struct curseg_info *curseg;
  231. struct page *page = NULL;
  232. block_t blkaddr;
  233. unsigned int loop_cnt = 0;
  234. unsigned int free_blocks = MAIN_SEGS(sbi) * sbi->blocks_per_seg -
  235. valid_user_blocks(sbi);
  236. int err = 0;
  237. /* get node pages in the current segment */
  238. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  239. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  240. while (1) {
  241. struct fsync_inode_entry *entry;
  242. if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
  243. return 0;
  244. page = f2fs_get_tmp_page(sbi, blkaddr);
  245. if (IS_ERR(page)) {
  246. err = PTR_ERR(page);
  247. break;
  248. }
  249. if (!is_recoverable_dnode(page))
  250. break;
  251. if (!is_fsync_dnode(page))
  252. goto next;
  253. entry = get_fsync_inode(head, ino_of_node(page));
  254. if (!entry) {
  255. bool quota_inode = false;
  256. if (!check_only &&
  257. IS_INODE(page) && is_dent_dnode(page)) {
  258. err = f2fs_recover_inode_page(sbi, page);
  259. if (err)
  260. break;
  261. quota_inode = true;
  262. }
  263. /*
  264. * CP | dnode(F) | inode(DF)
  265. * For this case, we should not give up now.
  266. */
  267. entry = add_fsync_inode(sbi, head, ino_of_node(page),
  268. quota_inode);
  269. if (IS_ERR(entry)) {
  270. err = PTR_ERR(entry);
  271. if (err == -ENOENT) {
  272. err = 0;
  273. goto next;
  274. }
  275. break;
  276. }
  277. }
  278. entry->blkaddr = blkaddr;
  279. if (IS_INODE(page) && is_dent_dnode(page))
  280. entry->last_dentry = blkaddr;
  281. next:
  282. /* sanity check in order to detect looped node chain */
  283. if (++loop_cnt >= free_blocks ||
  284. blkaddr == next_blkaddr_of_node(page)) {
  285. f2fs_msg(sbi->sb, KERN_NOTICE,
  286. "%s: detect looped node chain, "
  287. "blkaddr:%u, next:%u",
  288. __func__, blkaddr, next_blkaddr_of_node(page));
  289. err = -EINVAL;
  290. break;
  291. }
  292. /* check next segment */
  293. blkaddr = next_blkaddr_of_node(page);
  294. f2fs_put_page(page, 1);
  295. f2fs_ra_meta_pages_cond(sbi, blkaddr);
  296. }
  297. f2fs_put_page(page, 1);
  298. return err;
  299. }
  300. static void destroy_fsync_dnodes(struct list_head *head, int drop)
  301. {
  302. struct fsync_inode_entry *entry, *tmp;
  303. list_for_each_entry_safe(entry, tmp, head, list)
  304. del_fsync_inode(entry, drop);
  305. }
  306. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  307. block_t blkaddr, struct dnode_of_data *dn)
  308. {
  309. struct seg_entry *sentry;
  310. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  311. unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  312. struct f2fs_summary_block *sum_node;
  313. struct f2fs_summary sum;
  314. struct page *sum_page, *node_page;
  315. struct dnode_of_data tdn = *dn;
  316. nid_t ino, nid;
  317. struct inode *inode;
  318. unsigned int offset;
  319. block_t bidx;
  320. int i;
  321. sentry = get_seg_entry(sbi, segno);
  322. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  323. return 0;
  324. /* Get the previous summary */
  325. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  326. struct curseg_info *curseg = CURSEG_I(sbi, i);
  327. if (curseg->segno == segno) {
  328. sum = curseg->sum_blk->entries[blkoff];
  329. goto got_it;
  330. }
  331. }
  332. sum_page = f2fs_get_sum_page(sbi, segno);
  333. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  334. sum = sum_node->entries[blkoff];
  335. f2fs_put_page(sum_page, 1);
  336. got_it:
  337. /* Use the locked dnode page and inode */
  338. nid = le32_to_cpu(sum.nid);
  339. if (dn->inode->i_ino == nid) {
  340. tdn.nid = nid;
  341. if (!dn->inode_page_locked)
  342. lock_page(dn->inode_page);
  343. tdn.node_page = dn->inode_page;
  344. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  345. goto truncate_out;
  346. } else if (dn->nid == nid) {
  347. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  348. goto truncate_out;
  349. }
  350. /* Get the node page */
  351. node_page = f2fs_get_node_page(sbi, nid);
  352. if (IS_ERR(node_page))
  353. return PTR_ERR(node_page);
  354. offset = ofs_of_node(node_page);
  355. ino = ino_of_node(node_page);
  356. f2fs_put_page(node_page, 1);
  357. if (ino != dn->inode->i_ino) {
  358. int ret;
  359. /* Deallocate previous index in the node page */
  360. inode = f2fs_iget_retry(sbi->sb, ino);
  361. if (IS_ERR(inode))
  362. return PTR_ERR(inode);
  363. ret = dquot_initialize(inode);
  364. if (ret) {
  365. iput(inode);
  366. return ret;
  367. }
  368. } else {
  369. inode = dn->inode;
  370. }
  371. bidx = f2fs_start_bidx_of_node(offset, inode) +
  372. le16_to_cpu(sum.ofs_in_node);
  373. /*
  374. * if inode page is locked, unlock temporarily, but its reference
  375. * count keeps alive.
  376. */
  377. if (ino == dn->inode->i_ino && dn->inode_page_locked)
  378. unlock_page(dn->inode_page);
  379. set_new_dnode(&tdn, inode, NULL, NULL, 0);
  380. if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
  381. goto out;
  382. if (tdn.data_blkaddr == blkaddr)
  383. f2fs_truncate_data_blocks_range(&tdn, 1);
  384. f2fs_put_dnode(&tdn);
  385. out:
  386. if (ino != dn->inode->i_ino)
  387. iput(inode);
  388. else if (dn->inode_page_locked)
  389. lock_page(dn->inode_page);
  390. return 0;
  391. truncate_out:
  392. if (datablock_addr(tdn.inode, tdn.node_page,
  393. tdn.ofs_in_node) == blkaddr)
  394. f2fs_truncate_data_blocks_range(&tdn, 1);
  395. if (dn->inode->i_ino == nid && !dn->inode_page_locked)
  396. unlock_page(dn->inode_page);
  397. return 0;
  398. }
  399. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  400. struct page *page)
  401. {
  402. struct dnode_of_data dn;
  403. struct node_info ni;
  404. unsigned int start, end;
  405. int err = 0, recovered = 0;
  406. /* step 1: recover xattr */
  407. if (IS_INODE(page)) {
  408. err = f2fs_recover_inline_xattr(inode, page);
  409. if (err)
  410. goto out;
  411. } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
  412. err = f2fs_recover_xattr_data(inode, page);
  413. if (!err)
  414. recovered++;
  415. goto out;
  416. }
  417. /* step 2: recover inline data */
  418. err = f2fs_recover_inline_data(inode, page);
  419. if (err) {
  420. if (err == 1)
  421. err = 0;
  422. goto out;
  423. }
  424. /* step 3: recover data indices */
  425. start = f2fs_start_bidx_of_node(ofs_of_node(page), inode);
  426. end = start + ADDRS_PER_PAGE(page, inode);
  427. set_new_dnode(&dn, inode, NULL, NULL, 0);
  428. retry_dn:
  429. err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE);
  430. if (err) {
  431. if (err == -ENOMEM) {
  432. congestion_wait(BLK_RW_ASYNC, HZ/50);
  433. goto retry_dn;
  434. }
  435. goto out;
  436. }
  437. f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
  438. err = f2fs_get_node_info(sbi, dn.nid, &ni);
  439. if (err)
  440. goto err;
  441. f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
  442. if (ofs_of_node(dn.node_page) != ofs_of_node(page)) {
  443. f2fs_msg(sbi->sb, KERN_WARNING,
  444. "Inconsistent ofs_of_node, ino:%lu, ofs:%u, %u",
  445. inode->i_ino, ofs_of_node(dn.node_page),
  446. ofs_of_node(page));
  447. err = -EFSCORRUPTED;
  448. goto err;
  449. }
  450. for (; start < end; start++, dn.ofs_in_node++) {
  451. block_t src, dest;
  452. src = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
  453. dest = datablock_addr(dn.inode, page, dn.ofs_in_node);
  454. /* skip recovering if dest is the same as src */
  455. if (src == dest)
  456. continue;
  457. /* dest is invalid, just invalidate src block */
  458. if (dest == NULL_ADDR) {
  459. f2fs_truncate_data_blocks_range(&dn, 1);
  460. continue;
  461. }
  462. if (!file_keep_isize(inode) &&
  463. (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT)))
  464. f2fs_i_size_write(inode,
  465. (loff_t)(start + 1) << PAGE_SHIFT);
  466. /*
  467. * dest is reserved block, invalidate src block
  468. * and then reserve one new block in dnode page.
  469. */
  470. if (dest == NEW_ADDR) {
  471. f2fs_truncate_data_blocks_range(&dn, 1);
  472. f2fs_reserve_new_block(&dn);
  473. continue;
  474. }
  475. /* dest is valid block, try to recover from src to dest */
  476. if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) {
  477. if (src == NULL_ADDR) {
  478. err = f2fs_reserve_new_block(&dn);
  479. while (err &&
  480. IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION))
  481. err = f2fs_reserve_new_block(&dn);
  482. /* We should not get -ENOSPC */
  483. f2fs_bug_on(sbi, err);
  484. if (err)
  485. goto err;
  486. }
  487. retry_prev:
  488. /* Check the previous node page having this index */
  489. err = check_index_in_prev_nodes(sbi, dest, &dn);
  490. if (err) {
  491. if (err == -ENOMEM) {
  492. congestion_wait(BLK_RW_ASYNC, HZ/50);
  493. goto retry_prev;
  494. }
  495. goto err;
  496. }
  497. /* write dummy data page */
  498. f2fs_replace_block(sbi, &dn, src, dest,
  499. ni.version, false, false);
  500. recovered++;
  501. }
  502. }
  503. copy_node_footer(dn.node_page, page);
  504. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  505. ofs_of_node(page), false);
  506. set_page_dirty(dn.node_page);
  507. err:
  508. f2fs_put_dnode(&dn);
  509. out:
  510. f2fs_msg(sbi->sb, KERN_NOTICE,
  511. "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d",
  512. inode->i_ino,
  513. file_keep_isize(inode) ? "keep" : "recover",
  514. recovered, err);
  515. return err;
  516. }
  517. static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
  518. struct list_head *tmp_inode_list, struct list_head *dir_list)
  519. {
  520. struct curseg_info *curseg;
  521. struct page *page = NULL;
  522. int err = 0;
  523. block_t blkaddr;
  524. /* get node pages in the current segment */
  525. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  526. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  527. while (1) {
  528. struct fsync_inode_entry *entry;
  529. if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
  530. break;
  531. f2fs_ra_meta_pages_cond(sbi, blkaddr);
  532. page = f2fs_get_tmp_page(sbi, blkaddr);
  533. if (IS_ERR(page)) {
  534. err = PTR_ERR(page);
  535. break;
  536. }
  537. if (!is_recoverable_dnode(page)) {
  538. f2fs_put_page(page, 1);
  539. break;
  540. }
  541. entry = get_fsync_inode(inode_list, ino_of_node(page));
  542. if (!entry)
  543. goto next;
  544. /*
  545. * inode(x) | CP | inode(x) | dnode(F)
  546. * In this case, we can lose the latest inode(x).
  547. * So, call recover_inode for the inode update.
  548. */
  549. if (IS_INODE(page))
  550. recover_inode(entry->inode, page);
  551. if (entry->last_dentry == blkaddr) {
  552. err = recover_dentry(entry->inode, page, dir_list);
  553. if (err) {
  554. f2fs_put_page(page, 1);
  555. break;
  556. }
  557. }
  558. err = do_recover_data(sbi, entry->inode, page);
  559. if (err) {
  560. f2fs_put_page(page, 1);
  561. break;
  562. }
  563. if (entry->blkaddr == blkaddr)
  564. list_move_tail(&entry->list, tmp_inode_list);
  565. next:
  566. /* check next segment */
  567. blkaddr = next_blkaddr_of_node(page);
  568. f2fs_put_page(page, 1);
  569. }
  570. if (!err)
  571. f2fs_allocate_new_segments(sbi);
  572. return err;
  573. }
  574. int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
  575. {
  576. struct list_head inode_list, tmp_inode_list;
  577. struct list_head dir_list;
  578. int err;
  579. int ret = 0;
  580. unsigned long s_flags = sbi->sb->s_flags;
  581. bool need_writecp = false;
  582. #ifdef CONFIG_QUOTA
  583. int quota_enabled;
  584. #endif
  585. if (s_flags & SB_RDONLY) {
  586. f2fs_msg(sbi->sb, KERN_INFO,
  587. "recover fsync data on readonly fs");
  588. sbi->sb->s_flags &= ~SB_RDONLY;
  589. }
  590. #ifdef CONFIG_QUOTA
  591. /* Needed for iput() to work correctly and not trash data */
  592. sbi->sb->s_flags |= SB_ACTIVE;
  593. /* Turn on quotas so that they are updated correctly */
  594. quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
  595. #endif
  596. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  597. sizeof(struct fsync_inode_entry));
  598. if (!fsync_entry_slab) {
  599. err = -ENOMEM;
  600. goto out;
  601. }
  602. INIT_LIST_HEAD(&inode_list);
  603. INIT_LIST_HEAD(&tmp_inode_list);
  604. INIT_LIST_HEAD(&dir_list);
  605. /* prevent checkpoint */
  606. mutex_lock(&sbi->cp_mutex);
  607. /* step #1: find fsynced inode numbers */
  608. err = find_fsync_dnodes(sbi, &inode_list, check_only);
  609. if (err || list_empty(&inode_list))
  610. goto skip;
  611. if (check_only) {
  612. ret = 1;
  613. goto skip;
  614. }
  615. need_writecp = true;
  616. /* step #2: recover data */
  617. err = recover_data(sbi, &inode_list, &tmp_inode_list, &dir_list);
  618. if (!err)
  619. f2fs_bug_on(sbi, !list_empty(&inode_list));
  620. else {
  621. /* restore s_flags to let iput() trash data */
  622. sbi->sb->s_flags = s_flags;
  623. }
  624. skip:
  625. destroy_fsync_dnodes(&inode_list, err);
  626. destroy_fsync_dnodes(&tmp_inode_list, err);
  627. /* truncate meta pages to be used by the recovery */
  628. truncate_inode_pages_range(META_MAPPING(sbi),
  629. (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
  630. if (err) {
  631. truncate_inode_pages_final(NODE_MAPPING(sbi));
  632. truncate_inode_pages_final(META_MAPPING(sbi));
  633. } else {
  634. clear_sbi_flag(sbi, SBI_POR_DOING);
  635. }
  636. mutex_unlock(&sbi->cp_mutex);
  637. /* let's drop all the directory inodes for clean checkpoint */
  638. destroy_fsync_dnodes(&dir_list, err);
  639. if (need_writecp) {
  640. set_sbi_flag(sbi, SBI_IS_RECOVERED);
  641. if (!err) {
  642. struct cp_control cpc = {
  643. .reason = CP_RECOVERY,
  644. };
  645. err = f2fs_write_checkpoint(sbi, &cpc);
  646. }
  647. }
  648. kmem_cache_destroy(fsync_entry_slab);
  649. out:
  650. #ifdef CONFIG_QUOTA
  651. /* Turn quotas off */
  652. if (quota_enabled)
  653. f2fs_quota_off_umount(sbi->sb);
  654. #endif
  655. sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
  656. return ret ? ret: err;
  657. }