khugepaged.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991
  1. // SPDX-License-Identifier: GPL-2.0
  2. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3. #include <linux/mm.h>
  4. #include <linux/sched.h>
  5. #include <linux/sched/mm.h>
  6. #include <linux/sched/coredump.h>
  7. #include <linux/mmu_notifier.h>
  8. #include <linux/rmap.h>
  9. #include <linux/swap.h>
  10. #include <linux/mm_inline.h>
  11. #include <linux/kthread.h>
  12. #include <linux/khugepaged.h>
  13. #include <linux/freezer.h>
  14. #include <linux/mman.h>
  15. #include <linux/hashtable.h>
  16. #include <linux/userfaultfd_k.h>
  17. #include <linux/page_idle.h>
  18. #include <linux/swapops.h>
  19. #include <linux/shmem_fs.h>
  20. #include <asm/tlb.h>
  21. #include <asm/pgalloc.h>
  22. #include "internal.h"
  23. enum scan_result {
  24. SCAN_FAIL,
  25. SCAN_SUCCEED,
  26. SCAN_PMD_NULL,
  27. SCAN_EXCEED_NONE_PTE,
  28. SCAN_PTE_NON_PRESENT,
  29. SCAN_PAGE_RO,
  30. SCAN_LACK_REFERENCED_PAGE,
  31. SCAN_PAGE_NULL,
  32. SCAN_SCAN_ABORT,
  33. SCAN_PAGE_COUNT,
  34. SCAN_PAGE_LRU,
  35. SCAN_PAGE_LOCK,
  36. SCAN_PAGE_ANON,
  37. SCAN_PAGE_COMPOUND,
  38. SCAN_ANY_PROCESS,
  39. SCAN_VMA_NULL,
  40. SCAN_VMA_CHECK,
  41. SCAN_ADDRESS_RANGE,
  42. SCAN_SWAP_CACHE_PAGE,
  43. SCAN_DEL_PAGE_LRU,
  44. SCAN_ALLOC_HUGE_PAGE_FAIL,
  45. SCAN_CGROUP_CHARGE_FAIL,
  46. SCAN_EXCEED_SWAP_PTE,
  47. SCAN_TRUNCATED,
  48. };
  49. #define CREATE_TRACE_POINTS
  50. #include <trace/events/huge_memory.h>
  51. static struct task_struct *khugepaged_thread __read_mostly;
  52. static DEFINE_MUTEX(khugepaged_mutex);
  53. /* default scan 8*512 pte (or vmas) every 30 second */
  54. static unsigned int khugepaged_pages_to_scan __read_mostly;
  55. static unsigned int khugepaged_pages_collapsed;
  56. static unsigned int khugepaged_full_scans;
  57. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  58. /* during fragmentation poll the hugepage allocator once every minute */
  59. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  60. static unsigned long khugepaged_sleep_expire;
  61. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  62. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  63. /*
  64. * default collapse hugepages if there is at least one pte mapped like
  65. * it would have happened if the vma was large enough during page
  66. * fault.
  67. */
  68. static unsigned int khugepaged_max_ptes_none __read_mostly;
  69. static unsigned int khugepaged_max_ptes_swap __read_mostly;
  70. #define MM_SLOTS_HASH_BITS 10
  71. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  72. static struct kmem_cache *mm_slot_cache __read_mostly;
  73. /**
  74. * struct mm_slot - hash lookup from mm to mm_slot
  75. * @hash: hash collision list
  76. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  77. * @mm: the mm that this information is valid for
  78. */
  79. struct mm_slot {
  80. struct hlist_node hash;
  81. struct list_head mm_node;
  82. struct mm_struct *mm;
  83. };
  84. /**
  85. * struct khugepaged_scan - cursor for scanning
  86. * @mm_head: the head of the mm list to scan
  87. * @mm_slot: the current mm_slot we are scanning
  88. * @address: the next address inside that to be scanned
  89. *
  90. * There is only the one khugepaged_scan instance of this cursor structure.
  91. */
  92. struct khugepaged_scan {
  93. struct list_head mm_head;
  94. struct mm_slot *mm_slot;
  95. unsigned long address;
  96. };
  97. static struct khugepaged_scan khugepaged_scan = {
  98. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  99. };
  100. #ifdef CONFIG_SYSFS
  101. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  102. struct kobj_attribute *attr,
  103. char *buf)
  104. {
  105. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  106. }
  107. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  108. struct kobj_attribute *attr,
  109. const char *buf, size_t count)
  110. {
  111. unsigned long msecs;
  112. int err;
  113. err = kstrtoul(buf, 10, &msecs);
  114. if (err || msecs > UINT_MAX)
  115. return -EINVAL;
  116. khugepaged_scan_sleep_millisecs = msecs;
  117. khugepaged_sleep_expire = 0;
  118. wake_up_interruptible(&khugepaged_wait);
  119. return count;
  120. }
  121. static struct kobj_attribute scan_sleep_millisecs_attr =
  122. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  123. scan_sleep_millisecs_store);
  124. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  125. struct kobj_attribute *attr,
  126. char *buf)
  127. {
  128. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  129. }
  130. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  131. struct kobj_attribute *attr,
  132. const char *buf, size_t count)
  133. {
  134. unsigned long msecs;
  135. int err;
  136. err = kstrtoul(buf, 10, &msecs);
  137. if (err || msecs > UINT_MAX)
  138. return -EINVAL;
  139. khugepaged_alloc_sleep_millisecs = msecs;
  140. khugepaged_sleep_expire = 0;
  141. wake_up_interruptible(&khugepaged_wait);
  142. return count;
  143. }
  144. static struct kobj_attribute alloc_sleep_millisecs_attr =
  145. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  146. alloc_sleep_millisecs_store);
  147. static ssize_t pages_to_scan_show(struct kobject *kobj,
  148. struct kobj_attribute *attr,
  149. char *buf)
  150. {
  151. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  152. }
  153. static ssize_t pages_to_scan_store(struct kobject *kobj,
  154. struct kobj_attribute *attr,
  155. const char *buf, size_t count)
  156. {
  157. int err;
  158. unsigned long pages;
  159. err = kstrtoul(buf, 10, &pages);
  160. if (err || !pages || pages > UINT_MAX)
  161. return -EINVAL;
  162. khugepaged_pages_to_scan = pages;
  163. return count;
  164. }
  165. static struct kobj_attribute pages_to_scan_attr =
  166. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  167. pages_to_scan_store);
  168. static ssize_t pages_collapsed_show(struct kobject *kobj,
  169. struct kobj_attribute *attr,
  170. char *buf)
  171. {
  172. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  173. }
  174. static struct kobj_attribute pages_collapsed_attr =
  175. __ATTR_RO(pages_collapsed);
  176. static ssize_t full_scans_show(struct kobject *kobj,
  177. struct kobj_attribute *attr,
  178. char *buf)
  179. {
  180. return sprintf(buf, "%u\n", khugepaged_full_scans);
  181. }
  182. static struct kobj_attribute full_scans_attr =
  183. __ATTR_RO(full_scans);
  184. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  185. struct kobj_attribute *attr, char *buf)
  186. {
  187. return single_hugepage_flag_show(kobj, attr, buf,
  188. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  189. }
  190. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  191. struct kobj_attribute *attr,
  192. const char *buf, size_t count)
  193. {
  194. return single_hugepage_flag_store(kobj, attr, buf, count,
  195. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  196. }
  197. static struct kobj_attribute khugepaged_defrag_attr =
  198. __ATTR(defrag, 0644, khugepaged_defrag_show,
  199. khugepaged_defrag_store);
  200. /*
  201. * max_ptes_none controls if khugepaged should collapse hugepages over
  202. * any unmapped ptes in turn potentially increasing the memory
  203. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  204. * reduce the available free memory in the system as it
  205. * runs. Increasing max_ptes_none will instead potentially reduce the
  206. * free memory in the system during the khugepaged scan.
  207. */
  208. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  209. struct kobj_attribute *attr,
  210. char *buf)
  211. {
  212. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  213. }
  214. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  215. struct kobj_attribute *attr,
  216. const char *buf, size_t count)
  217. {
  218. int err;
  219. unsigned long max_ptes_none;
  220. err = kstrtoul(buf, 10, &max_ptes_none);
  221. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  222. return -EINVAL;
  223. khugepaged_max_ptes_none = max_ptes_none;
  224. return count;
  225. }
  226. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  227. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  228. khugepaged_max_ptes_none_store);
  229. static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
  230. struct kobj_attribute *attr,
  231. char *buf)
  232. {
  233. return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
  234. }
  235. static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
  236. struct kobj_attribute *attr,
  237. const char *buf, size_t count)
  238. {
  239. int err;
  240. unsigned long max_ptes_swap;
  241. err = kstrtoul(buf, 10, &max_ptes_swap);
  242. if (err || max_ptes_swap > HPAGE_PMD_NR-1)
  243. return -EINVAL;
  244. khugepaged_max_ptes_swap = max_ptes_swap;
  245. return count;
  246. }
  247. static struct kobj_attribute khugepaged_max_ptes_swap_attr =
  248. __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
  249. khugepaged_max_ptes_swap_store);
  250. static struct attribute *khugepaged_attr[] = {
  251. &khugepaged_defrag_attr.attr,
  252. &khugepaged_max_ptes_none_attr.attr,
  253. &pages_to_scan_attr.attr,
  254. &pages_collapsed_attr.attr,
  255. &full_scans_attr.attr,
  256. &scan_sleep_millisecs_attr.attr,
  257. &alloc_sleep_millisecs_attr.attr,
  258. &khugepaged_max_ptes_swap_attr.attr,
  259. NULL,
  260. };
  261. struct attribute_group khugepaged_attr_group = {
  262. .attrs = khugepaged_attr,
  263. .name = "khugepaged",
  264. };
  265. #endif /* CONFIG_SYSFS */
  266. #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
  267. int hugepage_madvise(struct vm_area_struct *vma,
  268. unsigned long *vm_flags, int advice)
  269. {
  270. switch (advice) {
  271. case MADV_HUGEPAGE:
  272. #ifdef CONFIG_S390
  273. /*
  274. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  275. * can't handle this properly after s390_enable_sie, so we simply
  276. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  277. */
  278. if (mm_has_pgste(vma->vm_mm))
  279. return 0;
  280. #endif
  281. *vm_flags &= ~VM_NOHUGEPAGE;
  282. *vm_flags |= VM_HUGEPAGE;
  283. /*
  284. * If the vma become good for khugepaged to scan,
  285. * register it here without waiting a page fault that
  286. * may not happen any time soon.
  287. */
  288. if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
  289. khugepaged_enter_vma_merge(vma, *vm_flags))
  290. return -ENOMEM;
  291. break;
  292. case MADV_NOHUGEPAGE:
  293. *vm_flags &= ~VM_HUGEPAGE;
  294. *vm_flags |= VM_NOHUGEPAGE;
  295. /*
  296. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  297. * this vma even if we leave the mm registered in khugepaged if
  298. * it got registered before VM_NOHUGEPAGE was set.
  299. */
  300. break;
  301. }
  302. return 0;
  303. }
  304. int __init khugepaged_init(void)
  305. {
  306. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  307. sizeof(struct mm_slot),
  308. __alignof__(struct mm_slot), 0, NULL);
  309. if (!mm_slot_cache)
  310. return -ENOMEM;
  311. khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
  312. khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
  313. khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
  314. return 0;
  315. }
  316. void __init khugepaged_destroy(void)
  317. {
  318. kmem_cache_destroy(mm_slot_cache);
  319. }
  320. static inline struct mm_slot *alloc_mm_slot(void)
  321. {
  322. if (!mm_slot_cache) /* initialization failed */
  323. return NULL;
  324. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  325. }
  326. static inline void free_mm_slot(struct mm_slot *mm_slot)
  327. {
  328. kmem_cache_free(mm_slot_cache, mm_slot);
  329. }
  330. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  331. {
  332. struct mm_slot *mm_slot;
  333. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  334. if (mm == mm_slot->mm)
  335. return mm_slot;
  336. return NULL;
  337. }
  338. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  339. struct mm_slot *mm_slot)
  340. {
  341. mm_slot->mm = mm;
  342. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  343. }
  344. static inline int khugepaged_test_exit(struct mm_struct *mm)
  345. {
  346. return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm);
  347. }
  348. static bool hugepage_vma_check(struct vm_area_struct *vma,
  349. unsigned long vm_flags)
  350. {
  351. if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  352. (vm_flags & VM_NOHUGEPAGE) ||
  353. test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
  354. return false;
  355. if (shmem_file(vma->vm_file)) {
  356. if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
  357. return false;
  358. return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
  359. HPAGE_PMD_NR);
  360. }
  361. if (!vma->anon_vma || vma->vm_ops)
  362. return false;
  363. if (is_vma_temporary_stack(vma))
  364. return false;
  365. return !(vm_flags & VM_NO_KHUGEPAGED);
  366. }
  367. int __khugepaged_enter(struct mm_struct *mm)
  368. {
  369. struct mm_slot *mm_slot;
  370. int wakeup;
  371. mm_slot = alloc_mm_slot();
  372. if (!mm_slot)
  373. return -ENOMEM;
  374. /* __khugepaged_exit() must not run from under us */
  375. VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
  376. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  377. free_mm_slot(mm_slot);
  378. return 0;
  379. }
  380. spin_lock(&khugepaged_mm_lock);
  381. insert_to_mm_slots_hash(mm, mm_slot);
  382. /*
  383. * Insert just behind the scanning cursor, to let the area settle
  384. * down a little.
  385. */
  386. wakeup = list_empty(&khugepaged_scan.mm_head);
  387. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  388. spin_unlock(&khugepaged_mm_lock);
  389. mmgrab(mm);
  390. if (wakeup)
  391. wake_up_interruptible(&khugepaged_wait);
  392. return 0;
  393. }
  394. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  395. unsigned long vm_flags)
  396. {
  397. unsigned long hstart, hend;
  398. /*
  399. * khugepaged does not yet work on non-shmem files or special
  400. * mappings. And file-private shmem THP is not supported.
  401. */
  402. if (!hugepage_vma_check(vma, vm_flags))
  403. return 0;
  404. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  405. hend = vma->vm_end & HPAGE_PMD_MASK;
  406. if (hstart < hend)
  407. return khugepaged_enter(vma, vm_flags);
  408. return 0;
  409. }
  410. void __khugepaged_exit(struct mm_struct *mm)
  411. {
  412. struct mm_slot *mm_slot;
  413. int free = 0;
  414. spin_lock(&khugepaged_mm_lock);
  415. mm_slot = get_mm_slot(mm);
  416. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  417. hash_del(&mm_slot->hash);
  418. list_del(&mm_slot->mm_node);
  419. free = 1;
  420. }
  421. spin_unlock(&khugepaged_mm_lock);
  422. if (free) {
  423. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  424. free_mm_slot(mm_slot);
  425. mmdrop(mm);
  426. } else if (mm_slot) {
  427. /*
  428. * This is required to serialize against
  429. * khugepaged_test_exit() (which is guaranteed to run
  430. * under mmap sem read mode). Stop here (after we
  431. * return all pagetables will be destroyed) until
  432. * khugepaged has finished working on the pagetables
  433. * under the mmap_sem.
  434. */
  435. down_write(&mm->mmap_sem);
  436. up_write(&mm->mmap_sem);
  437. }
  438. }
  439. static void release_pte_page(struct page *page)
  440. {
  441. dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
  442. unlock_page(page);
  443. putback_lru_page(page);
  444. }
  445. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  446. {
  447. while (--_pte >= pte) {
  448. pte_t pteval = *_pte;
  449. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  450. release_pte_page(pte_page(pteval));
  451. }
  452. }
  453. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  454. unsigned long address,
  455. pte_t *pte)
  456. {
  457. struct page *page = NULL;
  458. pte_t *_pte;
  459. int none_or_zero = 0, result = 0, referenced = 0;
  460. bool writable = false;
  461. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  462. _pte++, address += PAGE_SIZE) {
  463. pte_t pteval = *_pte;
  464. if (pte_none(pteval) || (pte_present(pteval) &&
  465. is_zero_pfn(pte_pfn(pteval)))) {
  466. if (!userfaultfd_armed(vma) &&
  467. ++none_or_zero <= khugepaged_max_ptes_none) {
  468. continue;
  469. } else {
  470. result = SCAN_EXCEED_NONE_PTE;
  471. goto out;
  472. }
  473. }
  474. if (!pte_present(pteval)) {
  475. result = SCAN_PTE_NON_PRESENT;
  476. goto out;
  477. }
  478. page = vm_normal_page(vma, address, pteval);
  479. if (unlikely(!page)) {
  480. result = SCAN_PAGE_NULL;
  481. goto out;
  482. }
  483. /* TODO: teach khugepaged to collapse THP mapped with pte */
  484. if (PageCompound(page)) {
  485. result = SCAN_PAGE_COMPOUND;
  486. goto out;
  487. }
  488. VM_BUG_ON_PAGE(!PageAnon(page), page);
  489. /*
  490. * We can do it before isolate_lru_page because the
  491. * page can't be freed from under us. NOTE: PG_lock
  492. * is needed to serialize against split_huge_page
  493. * when invoked from the VM.
  494. */
  495. if (!trylock_page(page)) {
  496. result = SCAN_PAGE_LOCK;
  497. goto out;
  498. }
  499. /*
  500. * cannot use mapcount: can't collapse if there's a gup pin.
  501. * The page must only be referenced by the scanned process
  502. * and page swap cache.
  503. */
  504. if (page_count(page) != 1 + PageSwapCache(page)) {
  505. unlock_page(page);
  506. result = SCAN_PAGE_COUNT;
  507. goto out;
  508. }
  509. if (pte_write(pteval)) {
  510. writable = true;
  511. } else {
  512. if (PageSwapCache(page) &&
  513. !reuse_swap_page(page, NULL)) {
  514. unlock_page(page);
  515. result = SCAN_SWAP_CACHE_PAGE;
  516. goto out;
  517. }
  518. /*
  519. * Page is not in the swap cache. It can be collapsed
  520. * into a THP.
  521. */
  522. }
  523. /*
  524. * Isolate the page to avoid collapsing an hugepage
  525. * currently in use by the VM.
  526. */
  527. if (isolate_lru_page(page)) {
  528. unlock_page(page);
  529. result = SCAN_DEL_PAGE_LRU;
  530. goto out;
  531. }
  532. inc_node_page_state(page,
  533. NR_ISOLATED_ANON + page_is_file_cache(page));
  534. VM_BUG_ON_PAGE(!PageLocked(page), page);
  535. VM_BUG_ON_PAGE(PageLRU(page), page);
  536. /* There should be enough young pte to collapse the page */
  537. if (pte_young(pteval) ||
  538. page_is_young(page) || PageReferenced(page) ||
  539. mmu_notifier_test_young(vma->vm_mm, address))
  540. referenced++;
  541. }
  542. if (unlikely(!writable)) {
  543. result = SCAN_PAGE_RO;
  544. } else if (unlikely(!referenced)) {
  545. result = SCAN_LACK_REFERENCED_PAGE;
  546. } else {
  547. result = SCAN_SUCCEED;
  548. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  549. referenced, writable, result);
  550. return 1;
  551. }
  552. out:
  553. release_pte_pages(pte, _pte);
  554. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  555. referenced, writable, result);
  556. return 0;
  557. }
  558. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  559. struct vm_area_struct *vma,
  560. unsigned long address,
  561. spinlock_t *ptl)
  562. {
  563. pte_t *_pte;
  564. for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
  565. _pte++, page++, address += PAGE_SIZE) {
  566. pte_t pteval = *_pte;
  567. struct page *src_page;
  568. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  569. clear_user_highpage(page, address);
  570. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  571. if (is_zero_pfn(pte_pfn(pteval))) {
  572. /*
  573. * ptl mostly unnecessary.
  574. */
  575. spin_lock(ptl);
  576. /*
  577. * paravirt calls inside pte_clear here are
  578. * superfluous.
  579. */
  580. pte_clear(vma->vm_mm, address, _pte);
  581. spin_unlock(ptl);
  582. }
  583. } else {
  584. src_page = pte_page(pteval);
  585. copy_user_highpage(page, src_page, address, vma);
  586. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  587. release_pte_page(src_page);
  588. /*
  589. * ptl mostly unnecessary, but preempt has to
  590. * be disabled to update the per-cpu stats
  591. * inside page_remove_rmap().
  592. */
  593. spin_lock(ptl);
  594. /*
  595. * paravirt calls inside pte_clear here are
  596. * superfluous.
  597. */
  598. pte_clear(vma->vm_mm, address, _pte);
  599. page_remove_rmap(src_page, false);
  600. spin_unlock(ptl);
  601. free_page_and_swap_cache(src_page);
  602. }
  603. }
  604. }
  605. static void khugepaged_alloc_sleep(void)
  606. {
  607. DEFINE_WAIT(wait);
  608. add_wait_queue(&khugepaged_wait, &wait);
  609. freezable_schedule_timeout_interruptible(
  610. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  611. remove_wait_queue(&khugepaged_wait, &wait);
  612. }
  613. static int khugepaged_node_load[MAX_NUMNODES];
  614. static bool khugepaged_scan_abort(int nid)
  615. {
  616. int i;
  617. /*
  618. * If node_reclaim_mode is disabled, then no extra effort is made to
  619. * allocate memory locally.
  620. */
  621. if (!node_reclaim_mode)
  622. return false;
  623. /* If there is a count for this node already, it must be acceptable */
  624. if (khugepaged_node_load[nid])
  625. return false;
  626. for (i = 0; i < MAX_NUMNODES; i++) {
  627. if (!khugepaged_node_load[i])
  628. continue;
  629. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  630. return true;
  631. }
  632. return false;
  633. }
  634. /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
  635. static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
  636. {
  637. return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
  638. }
  639. #ifdef CONFIG_NUMA
  640. static int khugepaged_find_target_node(void)
  641. {
  642. static int last_khugepaged_target_node = NUMA_NO_NODE;
  643. int nid, target_node = 0, max_value = 0;
  644. /* find first node with max normal pages hit */
  645. for (nid = 0; nid < MAX_NUMNODES; nid++)
  646. if (khugepaged_node_load[nid] > max_value) {
  647. max_value = khugepaged_node_load[nid];
  648. target_node = nid;
  649. }
  650. /* do some balance if several nodes have the same hit record */
  651. if (target_node <= last_khugepaged_target_node)
  652. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  653. nid++)
  654. if (max_value == khugepaged_node_load[nid]) {
  655. target_node = nid;
  656. break;
  657. }
  658. last_khugepaged_target_node = target_node;
  659. return target_node;
  660. }
  661. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  662. {
  663. if (IS_ERR(*hpage)) {
  664. if (!*wait)
  665. return false;
  666. *wait = false;
  667. *hpage = NULL;
  668. khugepaged_alloc_sleep();
  669. } else if (*hpage) {
  670. put_page(*hpage);
  671. *hpage = NULL;
  672. }
  673. return true;
  674. }
  675. static struct page *
  676. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
  677. {
  678. VM_BUG_ON_PAGE(*hpage, *hpage);
  679. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  680. if (unlikely(!*hpage)) {
  681. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  682. *hpage = ERR_PTR(-ENOMEM);
  683. return NULL;
  684. }
  685. prep_transhuge_page(*hpage);
  686. count_vm_event(THP_COLLAPSE_ALLOC);
  687. return *hpage;
  688. }
  689. #else
  690. static int khugepaged_find_target_node(void)
  691. {
  692. return 0;
  693. }
  694. static inline struct page *alloc_khugepaged_hugepage(void)
  695. {
  696. struct page *page;
  697. page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
  698. HPAGE_PMD_ORDER);
  699. if (page)
  700. prep_transhuge_page(page);
  701. return page;
  702. }
  703. static struct page *khugepaged_alloc_hugepage(bool *wait)
  704. {
  705. struct page *hpage;
  706. do {
  707. hpage = alloc_khugepaged_hugepage();
  708. if (!hpage) {
  709. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  710. if (!*wait)
  711. return NULL;
  712. *wait = false;
  713. khugepaged_alloc_sleep();
  714. } else
  715. count_vm_event(THP_COLLAPSE_ALLOC);
  716. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  717. return hpage;
  718. }
  719. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  720. {
  721. /*
  722. * If the hpage allocated earlier was briefly exposed in page cache
  723. * before collapse_file() failed, it is possible that racing lookups
  724. * have not yet completed, and would then be unpleasantly surprised by
  725. * finding the hpage reused for the same mapping at a different offset.
  726. * Just release the previous allocation if there is any danger of that.
  727. */
  728. if (*hpage && page_count(*hpage) > 1) {
  729. put_page(*hpage);
  730. *hpage = NULL;
  731. }
  732. if (!*hpage)
  733. *hpage = khugepaged_alloc_hugepage(wait);
  734. if (unlikely(!*hpage))
  735. return false;
  736. return true;
  737. }
  738. static struct page *
  739. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
  740. {
  741. VM_BUG_ON(!*hpage);
  742. return *hpage;
  743. }
  744. #endif
  745. /*
  746. * If mmap_sem temporarily dropped, revalidate vma
  747. * before taking mmap_sem.
  748. * Return 0 if succeeds, otherwise return none-zero
  749. * value (scan code).
  750. */
  751. static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
  752. struct vm_area_struct **vmap)
  753. {
  754. struct vm_area_struct *vma;
  755. unsigned long hstart, hend;
  756. if (unlikely(khugepaged_test_exit(mm)))
  757. return SCAN_ANY_PROCESS;
  758. *vmap = vma = find_vma(mm, address);
  759. if (!vma)
  760. return SCAN_VMA_NULL;
  761. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  762. hend = vma->vm_end & HPAGE_PMD_MASK;
  763. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  764. return SCAN_ADDRESS_RANGE;
  765. if (!hugepage_vma_check(vma, vma->vm_flags))
  766. return SCAN_VMA_CHECK;
  767. return 0;
  768. }
  769. /*
  770. * Bring missing pages in from swap, to complete THP collapse.
  771. * Only done if khugepaged_scan_pmd believes it is worthwhile.
  772. *
  773. * Called and returns without pte mapped or spinlocks held,
  774. * but with mmap_sem held to protect against vma changes.
  775. */
  776. static bool __collapse_huge_page_swapin(struct mm_struct *mm,
  777. struct vm_area_struct *vma,
  778. unsigned long address, pmd_t *pmd,
  779. int referenced)
  780. {
  781. int swapped_in = 0;
  782. vm_fault_t ret = 0;
  783. struct vm_fault vmf = {
  784. .vma = vma,
  785. .address = address,
  786. .flags = FAULT_FLAG_ALLOW_RETRY,
  787. .pmd = pmd,
  788. .pgoff = linear_page_index(vma, address),
  789. };
  790. /* we only decide to swapin, if there is enough young ptes */
  791. if (referenced < HPAGE_PMD_NR/2) {
  792. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  793. return false;
  794. }
  795. vmf.pte = pte_offset_map(pmd, address);
  796. for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
  797. vmf.pte++, vmf.address += PAGE_SIZE) {
  798. vmf.orig_pte = *vmf.pte;
  799. if (!is_swap_pte(vmf.orig_pte))
  800. continue;
  801. swapped_in++;
  802. ret = do_swap_page(&vmf);
  803. /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
  804. if (ret & VM_FAULT_RETRY) {
  805. down_read(&mm->mmap_sem);
  806. if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
  807. /* vma is no longer available, don't continue to swapin */
  808. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  809. return false;
  810. }
  811. /* check if the pmd is still valid */
  812. if (mm_find_pmd(mm, address) != pmd) {
  813. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  814. return false;
  815. }
  816. }
  817. if (ret & VM_FAULT_ERROR) {
  818. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  819. return false;
  820. }
  821. /* pte is unmapped now, we need to map it */
  822. vmf.pte = pte_offset_map(pmd, vmf.address);
  823. }
  824. vmf.pte--;
  825. pte_unmap(vmf.pte);
  826. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
  827. return true;
  828. }
  829. static void collapse_huge_page(struct mm_struct *mm,
  830. unsigned long address,
  831. struct page **hpage,
  832. int node, int referenced)
  833. {
  834. pmd_t *pmd, _pmd;
  835. pte_t *pte;
  836. pgtable_t pgtable;
  837. struct page *new_page;
  838. spinlock_t *pmd_ptl, *pte_ptl;
  839. int isolated = 0, result = 0;
  840. struct mem_cgroup *memcg;
  841. struct vm_area_struct *vma;
  842. unsigned long mmun_start; /* For mmu_notifiers */
  843. unsigned long mmun_end; /* For mmu_notifiers */
  844. gfp_t gfp;
  845. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  846. /* Only allocate from the target node */
  847. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
  848. /*
  849. * Before allocating the hugepage, release the mmap_sem read lock.
  850. * The allocation can take potentially a long time if it involves
  851. * sync compaction, and we do not need to hold the mmap_sem during
  852. * that. We will recheck the vma after taking it again in write mode.
  853. */
  854. up_read(&mm->mmap_sem);
  855. new_page = khugepaged_alloc_page(hpage, gfp, node);
  856. if (!new_page) {
  857. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  858. goto out_nolock;
  859. }
  860. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  861. result = SCAN_CGROUP_CHARGE_FAIL;
  862. goto out_nolock;
  863. }
  864. down_read(&mm->mmap_sem);
  865. result = hugepage_vma_revalidate(mm, address, &vma);
  866. if (result) {
  867. mem_cgroup_cancel_charge(new_page, memcg, true);
  868. up_read(&mm->mmap_sem);
  869. goto out_nolock;
  870. }
  871. pmd = mm_find_pmd(mm, address);
  872. if (!pmd) {
  873. result = SCAN_PMD_NULL;
  874. mem_cgroup_cancel_charge(new_page, memcg, true);
  875. up_read(&mm->mmap_sem);
  876. goto out_nolock;
  877. }
  878. /*
  879. * __collapse_huge_page_swapin always returns with mmap_sem locked.
  880. * If it fails, we release mmap_sem and jump out_nolock.
  881. * Continuing to collapse causes inconsistency.
  882. */
  883. if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
  884. mem_cgroup_cancel_charge(new_page, memcg, true);
  885. up_read(&mm->mmap_sem);
  886. goto out_nolock;
  887. }
  888. up_read(&mm->mmap_sem);
  889. /*
  890. * Prevent all access to pagetables with the exception of
  891. * gup_fast later handled by the ptep_clear_flush and the VM
  892. * handled by the anon_vma lock + PG_lock.
  893. */
  894. down_write(&mm->mmap_sem);
  895. result = hugepage_vma_revalidate(mm, address, &vma);
  896. if (result)
  897. goto out;
  898. /* check if the pmd is still valid */
  899. if (mm_find_pmd(mm, address) != pmd)
  900. goto out;
  901. anon_vma_lock_write(vma->anon_vma);
  902. pte = pte_offset_map(pmd, address);
  903. pte_ptl = pte_lockptr(mm, pmd);
  904. mmun_start = address;
  905. mmun_end = address + HPAGE_PMD_SIZE;
  906. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  907. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  908. /*
  909. * After this gup_fast can't run anymore. This also removes
  910. * any huge TLB entry from the CPU so we won't allow
  911. * huge and small TLB entries for the same virtual address
  912. * to avoid the risk of CPU bugs in that area.
  913. */
  914. _pmd = pmdp_collapse_flush(vma, address, pmd);
  915. spin_unlock(pmd_ptl);
  916. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  917. spin_lock(pte_ptl);
  918. isolated = __collapse_huge_page_isolate(vma, address, pte);
  919. spin_unlock(pte_ptl);
  920. if (unlikely(!isolated)) {
  921. pte_unmap(pte);
  922. spin_lock(pmd_ptl);
  923. BUG_ON(!pmd_none(*pmd));
  924. /*
  925. * We can only use set_pmd_at when establishing
  926. * hugepmds and never for establishing regular pmds that
  927. * points to regular pagetables. Use pmd_populate for that
  928. */
  929. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  930. spin_unlock(pmd_ptl);
  931. anon_vma_unlock_write(vma->anon_vma);
  932. result = SCAN_FAIL;
  933. goto out;
  934. }
  935. /*
  936. * All pages are isolated and locked so anon_vma rmap
  937. * can't run anymore.
  938. */
  939. anon_vma_unlock_write(vma->anon_vma);
  940. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  941. pte_unmap(pte);
  942. __SetPageUptodate(new_page);
  943. pgtable = pmd_pgtable(_pmd);
  944. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  945. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  946. /*
  947. * spin_lock() below is not the equivalent of smp_wmb(), so
  948. * this is needed to avoid the copy_huge_page writes to become
  949. * visible after the set_pmd_at() write.
  950. */
  951. smp_wmb();
  952. spin_lock(pmd_ptl);
  953. BUG_ON(!pmd_none(*pmd));
  954. page_add_new_anon_rmap(new_page, vma, address, true);
  955. mem_cgroup_commit_charge(new_page, memcg, false, true);
  956. lru_cache_add_active_or_unevictable(new_page, vma);
  957. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  958. set_pmd_at(mm, address, pmd, _pmd);
  959. update_mmu_cache_pmd(vma, address, pmd);
  960. spin_unlock(pmd_ptl);
  961. *hpage = NULL;
  962. khugepaged_pages_collapsed++;
  963. result = SCAN_SUCCEED;
  964. out_up_write:
  965. up_write(&mm->mmap_sem);
  966. out_nolock:
  967. trace_mm_collapse_huge_page(mm, isolated, result);
  968. return;
  969. out:
  970. mem_cgroup_cancel_charge(new_page, memcg, true);
  971. goto out_up_write;
  972. }
  973. static int khugepaged_scan_pmd(struct mm_struct *mm,
  974. struct vm_area_struct *vma,
  975. unsigned long address,
  976. struct page **hpage)
  977. {
  978. pmd_t *pmd;
  979. pte_t *pte, *_pte;
  980. int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
  981. struct page *page = NULL;
  982. unsigned long _address;
  983. spinlock_t *ptl;
  984. int node = NUMA_NO_NODE, unmapped = 0;
  985. bool writable = false;
  986. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  987. pmd = mm_find_pmd(mm, address);
  988. if (!pmd) {
  989. result = SCAN_PMD_NULL;
  990. goto out;
  991. }
  992. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  993. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  994. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  995. _pte++, _address += PAGE_SIZE) {
  996. pte_t pteval = *_pte;
  997. if (is_swap_pte(pteval)) {
  998. if (++unmapped <= khugepaged_max_ptes_swap) {
  999. continue;
  1000. } else {
  1001. result = SCAN_EXCEED_SWAP_PTE;
  1002. goto out_unmap;
  1003. }
  1004. }
  1005. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1006. if (!userfaultfd_armed(vma) &&
  1007. ++none_or_zero <= khugepaged_max_ptes_none) {
  1008. continue;
  1009. } else {
  1010. result = SCAN_EXCEED_NONE_PTE;
  1011. goto out_unmap;
  1012. }
  1013. }
  1014. if (!pte_present(pteval)) {
  1015. result = SCAN_PTE_NON_PRESENT;
  1016. goto out_unmap;
  1017. }
  1018. if (pte_write(pteval))
  1019. writable = true;
  1020. page = vm_normal_page(vma, _address, pteval);
  1021. if (unlikely(!page)) {
  1022. result = SCAN_PAGE_NULL;
  1023. goto out_unmap;
  1024. }
  1025. /* TODO: teach khugepaged to collapse THP mapped with pte */
  1026. if (PageCompound(page)) {
  1027. result = SCAN_PAGE_COMPOUND;
  1028. goto out_unmap;
  1029. }
  1030. /*
  1031. * Record which node the original page is from and save this
  1032. * information to khugepaged_node_load[].
  1033. * Khupaged will allocate hugepage from the node has the max
  1034. * hit record.
  1035. */
  1036. node = page_to_nid(page);
  1037. if (khugepaged_scan_abort(node)) {
  1038. result = SCAN_SCAN_ABORT;
  1039. goto out_unmap;
  1040. }
  1041. khugepaged_node_load[node]++;
  1042. if (!PageLRU(page)) {
  1043. result = SCAN_PAGE_LRU;
  1044. goto out_unmap;
  1045. }
  1046. if (PageLocked(page)) {
  1047. result = SCAN_PAGE_LOCK;
  1048. goto out_unmap;
  1049. }
  1050. if (!PageAnon(page)) {
  1051. result = SCAN_PAGE_ANON;
  1052. goto out_unmap;
  1053. }
  1054. /*
  1055. * cannot use mapcount: can't collapse if there's a gup pin.
  1056. * The page must only be referenced by the scanned process
  1057. * and page swap cache.
  1058. */
  1059. if (page_count(page) != 1 + PageSwapCache(page)) {
  1060. result = SCAN_PAGE_COUNT;
  1061. goto out_unmap;
  1062. }
  1063. if (pte_young(pteval) ||
  1064. page_is_young(page) || PageReferenced(page) ||
  1065. mmu_notifier_test_young(vma->vm_mm, address))
  1066. referenced++;
  1067. }
  1068. if (writable) {
  1069. if (referenced) {
  1070. result = SCAN_SUCCEED;
  1071. ret = 1;
  1072. } else {
  1073. result = SCAN_LACK_REFERENCED_PAGE;
  1074. }
  1075. } else {
  1076. result = SCAN_PAGE_RO;
  1077. }
  1078. out_unmap:
  1079. pte_unmap_unlock(pte, ptl);
  1080. if (ret) {
  1081. node = khugepaged_find_target_node();
  1082. /* collapse_huge_page will return with the mmap_sem released */
  1083. collapse_huge_page(mm, address, hpage, node, referenced);
  1084. }
  1085. out:
  1086. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  1087. none_or_zero, result, unmapped);
  1088. return ret;
  1089. }
  1090. static void collect_mm_slot(struct mm_slot *mm_slot)
  1091. {
  1092. struct mm_struct *mm = mm_slot->mm;
  1093. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1094. if (khugepaged_test_exit(mm)) {
  1095. /* free mm_slot */
  1096. hash_del(&mm_slot->hash);
  1097. list_del(&mm_slot->mm_node);
  1098. /*
  1099. * Not strictly needed because the mm exited already.
  1100. *
  1101. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1102. */
  1103. /* khugepaged_mm_lock actually not necessary for the below */
  1104. free_mm_slot(mm_slot);
  1105. mmdrop(mm);
  1106. }
  1107. }
  1108. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  1109. static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
  1110. {
  1111. struct vm_area_struct *vma;
  1112. struct mm_struct *mm;
  1113. unsigned long addr;
  1114. pmd_t *pmd, _pmd;
  1115. i_mmap_lock_write(mapping);
  1116. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1117. /* probably overkill */
  1118. if (vma->anon_vma)
  1119. continue;
  1120. addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  1121. if (addr & ~HPAGE_PMD_MASK)
  1122. continue;
  1123. if (vma->vm_end < addr + HPAGE_PMD_SIZE)
  1124. continue;
  1125. mm = vma->vm_mm;
  1126. pmd = mm_find_pmd(mm, addr);
  1127. if (!pmd)
  1128. continue;
  1129. /*
  1130. * We need exclusive mmap_sem to retract page table.
  1131. * If trylock fails we would end up with pte-mapped THP after
  1132. * re-fault. Not ideal, but it's more important to not disturb
  1133. * the system too much.
  1134. */
  1135. if (down_write_trylock(&mm->mmap_sem)) {
  1136. if (!khugepaged_test_exit(mm)) {
  1137. spinlock_t *ptl = pmd_lock(mm, pmd);
  1138. /* assume page table is clear */
  1139. _pmd = pmdp_collapse_flush(vma, addr, pmd);
  1140. spin_unlock(ptl);
  1141. mm_dec_nr_ptes(mm);
  1142. pte_free(mm, pmd_pgtable(_pmd));
  1143. }
  1144. up_write(&mm->mmap_sem);
  1145. }
  1146. }
  1147. i_mmap_unlock_write(mapping);
  1148. }
  1149. /**
  1150. * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
  1151. *
  1152. * Basic scheme is simple, details are more complex:
  1153. * - allocate and lock a new huge page;
  1154. * - scan over radix tree replacing old pages the new one
  1155. * + swap in pages if necessary;
  1156. * + fill in gaps;
  1157. * + keep old pages around in case if rollback is required;
  1158. * - if replacing succeed:
  1159. * + copy data over;
  1160. * + free old pages;
  1161. * + unlock huge page;
  1162. * - if replacing failed;
  1163. * + put all pages back and unfreeze them;
  1164. * + restore gaps in the radix-tree;
  1165. * + unlock and free huge page;
  1166. */
  1167. static void collapse_shmem(struct mm_struct *mm,
  1168. struct address_space *mapping, pgoff_t start,
  1169. struct page **hpage, int node)
  1170. {
  1171. gfp_t gfp;
  1172. struct page *page, *new_page, *tmp;
  1173. struct mem_cgroup *memcg;
  1174. pgoff_t index, end = start + HPAGE_PMD_NR;
  1175. LIST_HEAD(pagelist);
  1176. struct radix_tree_iter iter;
  1177. void **slot;
  1178. int nr_none = 0, result = SCAN_SUCCEED;
  1179. VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
  1180. /* Only allocate from the target node */
  1181. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
  1182. new_page = khugepaged_alloc_page(hpage, gfp, node);
  1183. if (!new_page) {
  1184. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  1185. goto out;
  1186. }
  1187. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  1188. result = SCAN_CGROUP_CHARGE_FAIL;
  1189. goto out;
  1190. }
  1191. __SetPageLocked(new_page);
  1192. __SetPageSwapBacked(new_page);
  1193. new_page->index = start;
  1194. new_page->mapping = mapping;
  1195. /*
  1196. * At this point the new_page is locked and not up-to-date.
  1197. * It's safe to insert it into the page cache, because nobody would
  1198. * be able to map it or use it in another way until we unlock it.
  1199. */
  1200. index = start;
  1201. xa_lock_irq(&mapping->i_pages);
  1202. radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
  1203. int n = min(iter.index, end) - index;
  1204. /*
  1205. * Stop if extent has been hole-punched, and is now completely
  1206. * empty (the more obvious i_size_read() check would take an
  1207. * irq-unsafe seqlock on 32-bit).
  1208. */
  1209. if (n >= HPAGE_PMD_NR) {
  1210. result = SCAN_TRUNCATED;
  1211. goto tree_locked;
  1212. }
  1213. /*
  1214. * Handle holes in the radix tree: charge it from shmem and
  1215. * insert relevant subpage of new_page into the radix-tree.
  1216. */
  1217. if (n && !shmem_charge(mapping->host, n)) {
  1218. result = SCAN_FAIL;
  1219. goto tree_locked;
  1220. }
  1221. for (; index < min(iter.index, end); index++) {
  1222. radix_tree_insert(&mapping->i_pages, index,
  1223. new_page + (index % HPAGE_PMD_NR));
  1224. }
  1225. nr_none += n;
  1226. /* We are done. */
  1227. if (index >= end)
  1228. break;
  1229. page = radix_tree_deref_slot_protected(slot,
  1230. &mapping->i_pages.xa_lock);
  1231. if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
  1232. xa_unlock_irq(&mapping->i_pages);
  1233. /* swap in or instantiate fallocated page */
  1234. if (shmem_getpage(mapping->host, index, &page,
  1235. SGP_NOHUGE)) {
  1236. result = SCAN_FAIL;
  1237. goto tree_unlocked;
  1238. }
  1239. } else if (trylock_page(page)) {
  1240. get_page(page);
  1241. xa_unlock_irq(&mapping->i_pages);
  1242. } else {
  1243. result = SCAN_PAGE_LOCK;
  1244. goto tree_locked;
  1245. }
  1246. /*
  1247. * The page must be locked, so we can drop the i_pages lock
  1248. * without racing with truncate.
  1249. */
  1250. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1251. VM_BUG_ON_PAGE(!PageUptodate(page), page);
  1252. /*
  1253. * If file was truncated then extended, or hole-punched, before
  1254. * we locked the first page, then a THP might be there already.
  1255. */
  1256. if (PageTransCompound(page)) {
  1257. result = SCAN_PAGE_COMPOUND;
  1258. goto out_unlock;
  1259. }
  1260. if (page_mapping(page) != mapping) {
  1261. result = SCAN_TRUNCATED;
  1262. goto out_unlock;
  1263. }
  1264. if (isolate_lru_page(page)) {
  1265. result = SCAN_DEL_PAGE_LRU;
  1266. goto out_unlock;
  1267. }
  1268. if (page_mapped(page))
  1269. unmap_mapping_pages(mapping, index, 1, false);
  1270. xa_lock_irq(&mapping->i_pages);
  1271. slot = radix_tree_lookup_slot(&mapping->i_pages, index);
  1272. VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
  1273. &mapping->i_pages.xa_lock), page);
  1274. VM_BUG_ON_PAGE(page_mapped(page), page);
  1275. /*
  1276. * The page is expected to have page_count() == 3:
  1277. * - we hold a pin on it;
  1278. * - one reference from radix tree;
  1279. * - one from isolate_lru_page;
  1280. */
  1281. if (!page_ref_freeze(page, 3)) {
  1282. result = SCAN_PAGE_COUNT;
  1283. xa_unlock_irq(&mapping->i_pages);
  1284. putback_lru_page(page);
  1285. goto out_unlock;
  1286. }
  1287. /*
  1288. * Add the page to the list to be able to undo the collapse if
  1289. * something go wrong.
  1290. */
  1291. list_add_tail(&page->lru, &pagelist);
  1292. /* Finally, replace with the new page. */
  1293. radix_tree_replace_slot(&mapping->i_pages, slot,
  1294. new_page + (index % HPAGE_PMD_NR));
  1295. slot = radix_tree_iter_resume(slot, &iter);
  1296. index++;
  1297. continue;
  1298. out_unlock:
  1299. unlock_page(page);
  1300. put_page(page);
  1301. goto tree_unlocked;
  1302. }
  1303. /*
  1304. * Handle hole in radix tree at the end of the range.
  1305. * This code only triggers if there's nothing in radix tree
  1306. * beyond 'end'.
  1307. */
  1308. if (index < end) {
  1309. int n = end - index;
  1310. /* Stop if extent has been truncated, and is now empty */
  1311. if (n >= HPAGE_PMD_NR) {
  1312. result = SCAN_TRUNCATED;
  1313. goto tree_locked;
  1314. }
  1315. if (!shmem_charge(mapping->host, n)) {
  1316. result = SCAN_FAIL;
  1317. goto tree_locked;
  1318. }
  1319. for (; index < end; index++) {
  1320. radix_tree_insert(&mapping->i_pages, index,
  1321. new_page + (index % HPAGE_PMD_NR));
  1322. }
  1323. nr_none += n;
  1324. }
  1325. __inc_node_page_state(new_page, NR_SHMEM_THPS);
  1326. if (nr_none) {
  1327. struct zone *zone = page_zone(new_page);
  1328. __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
  1329. __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
  1330. }
  1331. tree_locked:
  1332. xa_unlock_irq(&mapping->i_pages);
  1333. tree_unlocked:
  1334. if (result == SCAN_SUCCEED) {
  1335. /*
  1336. * Replacing old pages with new one has succeed, now we need to
  1337. * copy the content and free old pages.
  1338. */
  1339. index = start;
  1340. list_for_each_entry_safe(page, tmp, &pagelist, lru) {
  1341. while (index < page->index) {
  1342. clear_highpage(new_page + (index % HPAGE_PMD_NR));
  1343. index++;
  1344. }
  1345. copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
  1346. page);
  1347. list_del(&page->lru);
  1348. page->mapping = NULL;
  1349. page_ref_unfreeze(page, 1);
  1350. ClearPageActive(page);
  1351. ClearPageUnevictable(page);
  1352. unlock_page(page);
  1353. put_page(page);
  1354. index++;
  1355. }
  1356. while (index < end) {
  1357. clear_highpage(new_page + (index % HPAGE_PMD_NR));
  1358. index++;
  1359. }
  1360. SetPageUptodate(new_page);
  1361. page_ref_add(new_page, HPAGE_PMD_NR - 1);
  1362. set_page_dirty(new_page);
  1363. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1364. lru_cache_add_anon(new_page);
  1365. /*
  1366. * Remove pte page tables, so we can re-fault the page as huge.
  1367. */
  1368. retract_page_tables(mapping, start);
  1369. *hpage = NULL;
  1370. khugepaged_pages_collapsed++;
  1371. } else {
  1372. /* Something went wrong: rollback changes to the radix-tree */
  1373. xa_lock_irq(&mapping->i_pages);
  1374. mapping->nrpages -= nr_none;
  1375. shmem_uncharge(mapping->host, nr_none);
  1376. radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
  1377. if (iter.index >= end)
  1378. break;
  1379. page = list_first_entry_or_null(&pagelist,
  1380. struct page, lru);
  1381. if (!page || iter.index < page->index) {
  1382. if (!nr_none)
  1383. break;
  1384. nr_none--;
  1385. /* Put holes back where they were */
  1386. radix_tree_delete(&mapping->i_pages, iter.index);
  1387. continue;
  1388. }
  1389. VM_BUG_ON_PAGE(page->index != iter.index, page);
  1390. /* Unfreeze the page. */
  1391. list_del(&page->lru);
  1392. page_ref_unfreeze(page, 2);
  1393. radix_tree_replace_slot(&mapping->i_pages, slot, page);
  1394. slot = radix_tree_iter_resume(slot, &iter);
  1395. xa_unlock_irq(&mapping->i_pages);
  1396. unlock_page(page);
  1397. putback_lru_page(page);
  1398. xa_lock_irq(&mapping->i_pages);
  1399. }
  1400. VM_BUG_ON(nr_none);
  1401. xa_unlock_irq(&mapping->i_pages);
  1402. mem_cgroup_cancel_charge(new_page, memcg, true);
  1403. new_page->mapping = NULL;
  1404. }
  1405. unlock_page(new_page);
  1406. out:
  1407. VM_BUG_ON(!list_empty(&pagelist));
  1408. /* TODO: tracepoints */
  1409. }
  1410. static void khugepaged_scan_shmem(struct mm_struct *mm,
  1411. struct address_space *mapping,
  1412. pgoff_t start, struct page **hpage)
  1413. {
  1414. struct page *page = NULL;
  1415. struct radix_tree_iter iter;
  1416. void **slot;
  1417. int present, swap;
  1418. int node = NUMA_NO_NODE;
  1419. int result = SCAN_SUCCEED;
  1420. present = 0;
  1421. swap = 0;
  1422. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  1423. rcu_read_lock();
  1424. radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
  1425. if (iter.index >= start + HPAGE_PMD_NR)
  1426. break;
  1427. page = radix_tree_deref_slot(slot);
  1428. if (radix_tree_deref_retry(page)) {
  1429. slot = radix_tree_iter_retry(&iter);
  1430. continue;
  1431. }
  1432. if (radix_tree_exception(page)) {
  1433. if (++swap > khugepaged_max_ptes_swap) {
  1434. result = SCAN_EXCEED_SWAP_PTE;
  1435. break;
  1436. }
  1437. continue;
  1438. }
  1439. if (PageTransCompound(page)) {
  1440. result = SCAN_PAGE_COMPOUND;
  1441. break;
  1442. }
  1443. node = page_to_nid(page);
  1444. if (khugepaged_scan_abort(node)) {
  1445. result = SCAN_SCAN_ABORT;
  1446. break;
  1447. }
  1448. khugepaged_node_load[node]++;
  1449. if (!PageLRU(page)) {
  1450. result = SCAN_PAGE_LRU;
  1451. break;
  1452. }
  1453. if (page_count(page) != 1 + page_mapcount(page)) {
  1454. result = SCAN_PAGE_COUNT;
  1455. break;
  1456. }
  1457. /*
  1458. * We probably should check if the page is referenced here, but
  1459. * nobody would transfer pte_young() to PageReferenced() for us.
  1460. * And rmap walk here is just too costly...
  1461. */
  1462. present++;
  1463. if (need_resched()) {
  1464. slot = radix_tree_iter_resume(slot, &iter);
  1465. cond_resched_rcu();
  1466. }
  1467. }
  1468. rcu_read_unlock();
  1469. if (result == SCAN_SUCCEED) {
  1470. if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
  1471. result = SCAN_EXCEED_NONE_PTE;
  1472. } else {
  1473. node = khugepaged_find_target_node();
  1474. collapse_shmem(mm, mapping, start, hpage, node);
  1475. }
  1476. }
  1477. /* TODO: tracepoints */
  1478. }
  1479. #else
  1480. static void khugepaged_scan_shmem(struct mm_struct *mm,
  1481. struct address_space *mapping,
  1482. pgoff_t start, struct page **hpage)
  1483. {
  1484. BUILD_BUG();
  1485. }
  1486. #endif
  1487. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1488. struct page **hpage)
  1489. __releases(&khugepaged_mm_lock)
  1490. __acquires(&khugepaged_mm_lock)
  1491. {
  1492. struct mm_slot *mm_slot;
  1493. struct mm_struct *mm;
  1494. struct vm_area_struct *vma;
  1495. int progress = 0;
  1496. VM_BUG_ON(!pages);
  1497. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1498. if (khugepaged_scan.mm_slot)
  1499. mm_slot = khugepaged_scan.mm_slot;
  1500. else {
  1501. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1502. struct mm_slot, mm_node);
  1503. khugepaged_scan.address = 0;
  1504. khugepaged_scan.mm_slot = mm_slot;
  1505. }
  1506. spin_unlock(&khugepaged_mm_lock);
  1507. mm = mm_slot->mm;
  1508. /*
  1509. * Don't wait for semaphore (to avoid long wait times). Just move to
  1510. * the next mm on the list.
  1511. */
  1512. vma = NULL;
  1513. if (unlikely(!down_read_trylock(&mm->mmap_sem)))
  1514. goto breakouterloop_mmap_sem;
  1515. if (likely(!khugepaged_test_exit(mm)))
  1516. vma = find_vma(mm, khugepaged_scan.address);
  1517. progress++;
  1518. for (; vma; vma = vma->vm_next) {
  1519. unsigned long hstart, hend;
  1520. cond_resched();
  1521. if (unlikely(khugepaged_test_exit(mm))) {
  1522. progress++;
  1523. break;
  1524. }
  1525. if (!hugepage_vma_check(vma, vma->vm_flags)) {
  1526. skip:
  1527. progress++;
  1528. continue;
  1529. }
  1530. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1531. hend = vma->vm_end & HPAGE_PMD_MASK;
  1532. if (hstart >= hend)
  1533. goto skip;
  1534. if (khugepaged_scan.address > hend)
  1535. goto skip;
  1536. if (khugepaged_scan.address < hstart)
  1537. khugepaged_scan.address = hstart;
  1538. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1539. while (khugepaged_scan.address < hend) {
  1540. int ret;
  1541. cond_resched();
  1542. if (unlikely(khugepaged_test_exit(mm)))
  1543. goto breakouterloop;
  1544. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1545. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1546. hend);
  1547. if (shmem_file(vma->vm_file)) {
  1548. struct file *file;
  1549. pgoff_t pgoff = linear_page_index(vma,
  1550. khugepaged_scan.address);
  1551. if (!shmem_huge_enabled(vma))
  1552. goto skip;
  1553. file = get_file(vma->vm_file);
  1554. up_read(&mm->mmap_sem);
  1555. ret = 1;
  1556. khugepaged_scan_shmem(mm, file->f_mapping,
  1557. pgoff, hpage);
  1558. fput(file);
  1559. } else {
  1560. ret = khugepaged_scan_pmd(mm, vma,
  1561. khugepaged_scan.address,
  1562. hpage);
  1563. }
  1564. /* move to next address */
  1565. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1566. progress += HPAGE_PMD_NR;
  1567. if (ret)
  1568. /* we released mmap_sem so break loop */
  1569. goto breakouterloop_mmap_sem;
  1570. if (progress >= pages)
  1571. goto breakouterloop;
  1572. }
  1573. }
  1574. breakouterloop:
  1575. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1576. breakouterloop_mmap_sem:
  1577. spin_lock(&khugepaged_mm_lock);
  1578. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1579. /*
  1580. * Release the current mm_slot if this mm is about to die, or
  1581. * if we scanned all vmas of this mm.
  1582. */
  1583. if (khugepaged_test_exit(mm) || !vma) {
  1584. /*
  1585. * Make sure that if mm_users is reaching zero while
  1586. * khugepaged runs here, khugepaged_exit will find
  1587. * mm_slot not pointing to the exiting mm.
  1588. */
  1589. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1590. khugepaged_scan.mm_slot = list_entry(
  1591. mm_slot->mm_node.next,
  1592. struct mm_slot, mm_node);
  1593. khugepaged_scan.address = 0;
  1594. } else {
  1595. khugepaged_scan.mm_slot = NULL;
  1596. khugepaged_full_scans++;
  1597. }
  1598. collect_mm_slot(mm_slot);
  1599. }
  1600. return progress;
  1601. }
  1602. static int khugepaged_has_work(void)
  1603. {
  1604. return !list_empty(&khugepaged_scan.mm_head) &&
  1605. khugepaged_enabled();
  1606. }
  1607. static int khugepaged_wait_event(void)
  1608. {
  1609. return !list_empty(&khugepaged_scan.mm_head) ||
  1610. kthread_should_stop();
  1611. }
  1612. static void khugepaged_do_scan(void)
  1613. {
  1614. struct page *hpage = NULL;
  1615. unsigned int progress = 0, pass_through_head = 0;
  1616. unsigned int pages = khugepaged_pages_to_scan;
  1617. bool wait = true;
  1618. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1619. while (progress < pages) {
  1620. if (!khugepaged_prealloc_page(&hpage, &wait))
  1621. break;
  1622. cond_resched();
  1623. if (unlikely(kthread_should_stop() || try_to_freeze()))
  1624. break;
  1625. spin_lock(&khugepaged_mm_lock);
  1626. if (!khugepaged_scan.mm_slot)
  1627. pass_through_head++;
  1628. if (khugepaged_has_work() &&
  1629. pass_through_head < 2)
  1630. progress += khugepaged_scan_mm_slot(pages - progress,
  1631. &hpage);
  1632. else
  1633. progress = pages;
  1634. spin_unlock(&khugepaged_mm_lock);
  1635. }
  1636. if (!IS_ERR_OR_NULL(hpage))
  1637. put_page(hpage);
  1638. }
  1639. static bool khugepaged_should_wakeup(void)
  1640. {
  1641. return kthread_should_stop() ||
  1642. time_after_eq(jiffies, khugepaged_sleep_expire);
  1643. }
  1644. static void khugepaged_wait_work(void)
  1645. {
  1646. if (khugepaged_has_work()) {
  1647. const unsigned long scan_sleep_jiffies =
  1648. msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
  1649. if (!scan_sleep_jiffies)
  1650. return;
  1651. khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
  1652. wait_event_freezable_timeout(khugepaged_wait,
  1653. khugepaged_should_wakeup(),
  1654. scan_sleep_jiffies);
  1655. return;
  1656. }
  1657. if (khugepaged_enabled())
  1658. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  1659. }
  1660. static int khugepaged(void *none)
  1661. {
  1662. struct mm_slot *mm_slot;
  1663. set_freezable();
  1664. set_user_nice(current, MAX_NICE);
  1665. while (!kthread_should_stop()) {
  1666. khugepaged_do_scan();
  1667. khugepaged_wait_work();
  1668. }
  1669. spin_lock(&khugepaged_mm_lock);
  1670. mm_slot = khugepaged_scan.mm_slot;
  1671. khugepaged_scan.mm_slot = NULL;
  1672. if (mm_slot)
  1673. collect_mm_slot(mm_slot);
  1674. spin_unlock(&khugepaged_mm_lock);
  1675. return 0;
  1676. }
  1677. static void set_recommended_min_free_kbytes(void)
  1678. {
  1679. struct zone *zone;
  1680. int nr_zones = 0;
  1681. unsigned long recommended_min;
  1682. for_each_populated_zone(zone) {
  1683. /*
  1684. * We don't need to worry about fragmentation of
  1685. * ZONE_MOVABLE since it only has movable pages.
  1686. */
  1687. if (zone_idx(zone) > gfp_zone(GFP_USER))
  1688. continue;
  1689. nr_zones++;
  1690. }
  1691. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  1692. recommended_min = pageblock_nr_pages * nr_zones * 2;
  1693. /*
  1694. * Make sure that on average at least two pageblocks are almost free
  1695. * of another type, one for a migratetype to fall back to and a
  1696. * second to avoid subsequent fallbacks of other types There are 3
  1697. * MIGRATE_TYPES we care about.
  1698. */
  1699. recommended_min += pageblock_nr_pages * nr_zones *
  1700. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  1701. /* don't ever allow to reserve more than 5% of the lowmem */
  1702. recommended_min = min(recommended_min,
  1703. (unsigned long) nr_free_buffer_pages() / 20);
  1704. recommended_min <<= (PAGE_SHIFT-10);
  1705. if (recommended_min > min_free_kbytes) {
  1706. if (user_min_free_kbytes >= 0)
  1707. pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
  1708. min_free_kbytes, recommended_min);
  1709. min_free_kbytes = recommended_min;
  1710. }
  1711. setup_per_zone_wmarks();
  1712. }
  1713. int start_stop_khugepaged(void)
  1714. {
  1715. int err = 0;
  1716. mutex_lock(&khugepaged_mutex);
  1717. if (khugepaged_enabled()) {
  1718. if (!khugepaged_thread)
  1719. khugepaged_thread = kthread_run(khugepaged, NULL,
  1720. "khugepaged");
  1721. if (IS_ERR(khugepaged_thread)) {
  1722. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  1723. err = PTR_ERR(khugepaged_thread);
  1724. khugepaged_thread = NULL;
  1725. goto fail;
  1726. }
  1727. if (!list_empty(&khugepaged_scan.mm_head))
  1728. wake_up_interruptible(&khugepaged_wait);
  1729. set_recommended_min_free_kbytes();
  1730. } else if (khugepaged_thread) {
  1731. kthread_stop(khugepaged_thread);
  1732. khugepaged_thread = NULL;
  1733. }
  1734. fail:
  1735. mutex_unlock(&khugepaged_mutex);
  1736. return err;
  1737. }
  1738. void khugepaged_min_free_kbytes_update(void)
  1739. {
  1740. mutex_lock(&khugepaged_mutex);
  1741. if (khugepaged_enabled() && khugepaged_thread)
  1742. set_recommended_min_free_kbytes();
  1743. mutex_unlock(&khugepaged_mutex);
  1744. }