vmx.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. /*
  2. * tools/testing/selftests/kvm/lib/x86.c
  3. *
  4. * Copyright (C) 2018, Google LLC.
  5. *
  6. * This work is licensed under the terms of the GNU GPL, version 2.
  7. */
  8. #define _GNU_SOURCE /* for program_invocation_name */
  9. #include "test_util.h"
  10. #include "kvm_util.h"
  11. #include "x86.h"
  12. #include "vmx.h"
  13. /* Allocate memory regions for nested VMX tests.
  14. *
  15. * Input Args:
  16. * vm - The VM to allocate guest-virtual addresses in.
  17. *
  18. * Output Args:
  19. * p_vmx_gva - The guest virtual address for the struct vmx_pages.
  20. *
  21. * Return:
  22. * Pointer to structure with the addresses of the VMX areas.
  23. */
  24. struct vmx_pages *
  25. vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
  26. {
  27. vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  28. struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
  29. /* Setup of a region of guest memory for the vmxon region. */
  30. vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  31. vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
  32. vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
  33. /* Setup of a region of guest memory for a vmcs. */
  34. vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  35. vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
  36. vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
  37. /* Setup of a region of guest memory for the MSR bitmap. */
  38. vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  39. vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
  40. vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
  41. memset(vmx->msr_hva, 0, getpagesize());
  42. /* Setup of a region of guest memory for the shadow VMCS. */
  43. vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  44. vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
  45. vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
  46. /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
  47. vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  48. vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
  49. vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
  50. memset(vmx->vmread_hva, 0, getpagesize());
  51. vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  52. vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
  53. vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
  54. memset(vmx->vmwrite_hva, 0, getpagesize());
  55. *p_vmx_gva = vmx_gva;
  56. return vmx;
  57. }
  58. bool prepare_for_vmx_operation(struct vmx_pages *vmx)
  59. {
  60. uint64_t feature_control;
  61. uint64_t required;
  62. unsigned long cr0;
  63. unsigned long cr4;
  64. /*
  65. * Ensure bits in CR0 and CR4 are valid in VMX operation:
  66. * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
  67. * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
  68. */
  69. __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
  70. cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
  71. cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
  72. __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
  73. __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
  74. cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
  75. cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
  76. /* Enable VMX operation */
  77. cr4 |= X86_CR4_VMXE;
  78. __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
  79. /*
  80. * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
  81. * Bit 0: Lock bit. If clear, VMXON causes a #GP.
  82. * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
  83. * outside of SMX causes a #GP.
  84. */
  85. required = FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  86. required |= FEATURE_CONTROL_LOCKED;
  87. feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
  88. if ((feature_control & required) != required)
  89. wrmsr(MSR_IA32_FEATURE_CONTROL, feature_control | required);
  90. /* Enter VMX root operation. */
  91. *(uint32_t *)(vmx->vmxon) = vmcs_revision();
  92. if (vmxon(vmx->vmxon_gpa))
  93. return false;
  94. /* Load a VMCS. */
  95. *(uint32_t *)(vmx->vmcs) = vmcs_revision();
  96. if (vmclear(vmx->vmcs_gpa))
  97. return false;
  98. if (vmptrld(vmx->vmcs_gpa))
  99. return false;
  100. /* Setup shadow VMCS, do not load it yet. */
  101. *(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
  102. if (vmclear(vmx->shadow_vmcs_gpa))
  103. return false;
  104. return true;
  105. }
  106. /*
  107. * Initialize the control fields to the most basic settings possible.
  108. */
  109. static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
  110. {
  111. vmwrite(VIRTUAL_PROCESSOR_ID, 0);
  112. vmwrite(POSTED_INTR_NV, 0);
  113. vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
  114. if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, 0))
  115. vmwrite(CPU_BASED_VM_EXEC_CONTROL,
  116. rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  117. else
  118. vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
  119. vmwrite(EXCEPTION_BITMAP, 0);
  120. vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
  121. vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
  122. vmwrite(CR3_TARGET_COUNT, 0);
  123. vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
  124. VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */
  125. vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
  126. vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
  127. vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
  128. VM_ENTRY_IA32E_MODE); /* 64-bit guest */
  129. vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
  130. vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
  131. vmwrite(TPR_THRESHOLD, 0);
  132. vmwrite(CR0_GUEST_HOST_MASK, 0);
  133. vmwrite(CR4_GUEST_HOST_MASK, 0);
  134. vmwrite(CR0_READ_SHADOW, get_cr0());
  135. vmwrite(CR4_READ_SHADOW, get_cr4());
  136. vmwrite(MSR_BITMAP, vmx->msr_gpa);
  137. vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
  138. vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
  139. }
  140. /*
  141. * Initialize the host state fields based on the current host state, with
  142. * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
  143. * or vmresume.
  144. */
  145. static inline void init_vmcs_host_state(void)
  146. {
  147. uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
  148. vmwrite(HOST_ES_SELECTOR, get_es());
  149. vmwrite(HOST_CS_SELECTOR, get_cs());
  150. vmwrite(HOST_SS_SELECTOR, get_ss());
  151. vmwrite(HOST_DS_SELECTOR, get_ds());
  152. vmwrite(HOST_FS_SELECTOR, get_fs());
  153. vmwrite(HOST_GS_SELECTOR, get_gs());
  154. vmwrite(HOST_TR_SELECTOR, get_tr());
  155. if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
  156. vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
  157. if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
  158. vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
  159. if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  160. vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
  161. rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
  162. vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
  163. vmwrite(HOST_CR0, get_cr0());
  164. vmwrite(HOST_CR3, get_cr3());
  165. vmwrite(HOST_CR4, get_cr4());
  166. vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
  167. vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
  168. vmwrite(HOST_TR_BASE,
  169. get_desc64_base((struct desc64 *)(get_gdt_base() + get_tr())));
  170. vmwrite(HOST_GDTR_BASE, get_gdt_base());
  171. vmwrite(HOST_IDTR_BASE, get_idt_base());
  172. vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
  173. vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
  174. }
  175. /*
  176. * Initialize the guest state fields essentially as a clone of
  177. * the host state fields. Some host state fields have fixed
  178. * values, and we set the corresponding guest state fields accordingly.
  179. */
  180. static inline void init_vmcs_guest_state(void *rip, void *rsp)
  181. {
  182. vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
  183. vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
  184. vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
  185. vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
  186. vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
  187. vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
  188. vmwrite(GUEST_LDTR_SELECTOR, 0);
  189. vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
  190. vmwrite(GUEST_INTR_STATUS, 0);
  191. vmwrite(GUEST_PML_INDEX, 0);
  192. vmwrite(VMCS_LINK_POINTER, -1ll);
  193. vmwrite(GUEST_IA32_DEBUGCTL, 0);
  194. vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
  195. vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
  196. vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
  197. vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
  198. vmwrite(GUEST_ES_LIMIT, -1);
  199. vmwrite(GUEST_CS_LIMIT, -1);
  200. vmwrite(GUEST_SS_LIMIT, -1);
  201. vmwrite(GUEST_DS_LIMIT, -1);
  202. vmwrite(GUEST_FS_LIMIT, -1);
  203. vmwrite(GUEST_GS_LIMIT, -1);
  204. vmwrite(GUEST_LDTR_LIMIT, -1);
  205. vmwrite(GUEST_TR_LIMIT, 0x67);
  206. vmwrite(GUEST_GDTR_LIMIT, 0xffff);
  207. vmwrite(GUEST_IDTR_LIMIT, 0xffff);
  208. vmwrite(GUEST_ES_AR_BYTES,
  209. vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
  210. vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
  211. vmwrite(GUEST_SS_AR_BYTES, 0xc093);
  212. vmwrite(GUEST_DS_AR_BYTES,
  213. vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
  214. vmwrite(GUEST_FS_AR_BYTES,
  215. vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
  216. vmwrite(GUEST_GS_AR_BYTES,
  217. vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
  218. vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
  219. vmwrite(GUEST_TR_AR_BYTES, 0x8b);
  220. vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
  221. vmwrite(GUEST_ACTIVITY_STATE, 0);
  222. vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
  223. vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
  224. vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
  225. vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
  226. vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
  227. vmwrite(GUEST_ES_BASE, 0);
  228. vmwrite(GUEST_CS_BASE, 0);
  229. vmwrite(GUEST_SS_BASE, 0);
  230. vmwrite(GUEST_DS_BASE, 0);
  231. vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
  232. vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
  233. vmwrite(GUEST_LDTR_BASE, 0);
  234. vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
  235. vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
  236. vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
  237. vmwrite(GUEST_DR7, 0x400);
  238. vmwrite(GUEST_RSP, (uint64_t)rsp);
  239. vmwrite(GUEST_RIP, (uint64_t)rip);
  240. vmwrite(GUEST_RFLAGS, 2);
  241. vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  242. vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
  243. vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
  244. }
  245. void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
  246. {
  247. init_vmcs_control_fields(vmx);
  248. init_vmcs_host_state();
  249. init_vmcs_guest_state(guest_rip, guest_rsp);
  250. }