reuseport_bpf_numa.c 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Test functionality of BPF filters with SO_REUSEPORT. Same test as
  4. * in reuseport_bpf_cpu, only as one socket per NUMA node.
  5. */
  6. #define _GNU_SOURCE
  7. #include <arpa/inet.h>
  8. #include <errno.h>
  9. #include <error.h>
  10. #include <linux/filter.h>
  11. #include <linux/bpf.h>
  12. #include <linux/in.h>
  13. #include <linux/unistd.h>
  14. #include <sched.h>
  15. #include <stdio.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <sys/epoll.h>
  19. #include <sys/types.h>
  20. #include <sys/socket.h>
  21. #include <unistd.h>
  22. #include <numa.h>
  23. #include "../kselftest.h"
  24. static const int PORT = 8888;
  25. static void build_rcv_group(int *rcv_fd, size_t len, int family, int proto)
  26. {
  27. struct sockaddr_storage addr;
  28. struct sockaddr_in *addr4;
  29. struct sockaddr_in6 *addr6;
  30. size_t i;
  31. int opt;
  32. switch (family) {
  33. case AF_INET:
  34. addr4 = (struct sockaddr_in *)&addr;
  35. addr4->sin_family = AF_INET;
  36. addr4->sin_addr.s_addr = htonl(INADDR_ANY);
  37. addr4->sin_port = htons(PORT);
  38. break;
  39. case AF_INET6:
  40. addr6 = (struct sockaddr_in6 *)&addr;
  41. addr6->sin6_family = AF_INET6;
  42. addr6->sin6_addr = in6addr_any;
  43. addr6->sin6_port = htons(PORT);
  44. break;
  45. default:
  46. error(1, 0, "Unsupported family %d", family);
  47. }
  48. for (i = 0; i < len; ++i) {
  49. rcv_fd[i] = socket(family, proto, 0);
  50. if (rcv_fd[i] < 0)
  51. error(1, errno, "failed to create receive socket");
  52. opt = 1;
  53. if (setsockopt(rcv_fd[i], SOL_SOCKET, SO_REUSEPORT, &opt,
  54. sizeof(opt)))
  55. error(1, errno, "failed to set SO_REUSEPORT");
  56. if (bind(rcv_fd[i], (struct sockaddr *)&addr, sizeof(addr)))
  57. error(1, errno, "failed to bind receive socket");
  58. if (proto == SOCK_STREAM && listen(rcv_fd[i], len * 10))
  59. error(1, errno, "failed to listen on receive port");
  60. }
  61. }
  62. static void attach_bpf(int fd)
  63. {
  64. static char bpf_log_buf[65536];
  65. static const char bpf_license[] = "";
  66. int bpf_fd;
  67. const struct bpf_insn prog[] = {
  68. /* R0 = bpf_get_numa_node_id() */
  69. { BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_numa_node_id },
  70. /* return R0 */
  71. { BPF_JMP | BPF_EXIT, 0, 0, 0, 0 }
  72. };
  73. union bpf_attr attr;
  74. memset(&attr, 0, sizeof(attr));
  75. attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
  76. attr.insn_cnt = sizeof(prog) / sizeof(prog[0]);
  77. attr.insns = (unsigned long) &prog;
  78. attr.license = (unsigned long) &bpf_license;
  79. attr.log_buf = (unsigned long) &bpf_log_buf;
  80. attr.log_size = sizeof(bpf_log_buf);
  81. attr.log_level = 1;
  82. bpf_fd = syscall(__NR_bpf, BPF_PROG_LOAD, &attr, sizeof(attr));
  83. if (bpf_fd < 0)
  84. error(1, errno, "ebpf error. log:\n%s\n", bpf_log_buf);
  85. if (setsockopt(fd, SOL_SOCKET, SO_ATTACH_REUSEPORT_EBPF, &bpf_fd,
  86. sizeof(bpf_fd)))
  87. error(1, errno, "failed to set SO_ATTACH_REUSEPORT_EBPF");
  88. close(bpf_fd);
  89. }
  90. static void send_from_node(int node_id, int family, int proto)
  91. {
  92. struct sockaddr_storage saddr, daddr;
  93. struct sockaddr_in *saddr4, *daddr4;
  94. struct sockaddr_in6 *saddr6, *daddr6;
  95. int fd;
  96. switch (family) {
  97. case AF_INET:
  98. saddr4 = (struct sockaddr_in *)&saddr;
  99. saddr4->sin_family = AF_INET;
  100. saddr4->sin_addr.s_addr = htonl(INADDR_ANY);
  101. saddr4->sin_port = 0;
  102. daddr4 = (struct sockaddr_in *)&daddr;
  103. daddr4->sin_family = AF_INET;
  104. daddr4->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
  105. daddr4->sin_port = htons(PORT);
  106. break;
  107. case AF_INET6:
  108. saddr6 = (struct sockaddr_in6 *)&saddr;
  109. saddr6->sin6_family = AF_INET6;
  110. saddr6->sin6_addr = in6addr_any;
  111. saddr6->sin6_port = 0;
  112. daddr6 = (struct sockaddr_in6 *)&daddr;
  113. daddr6->sin6_family = AF_INET6;
  114. daddr6->sin6_addr = in6addr_loopback;
  115. daddr6->sin6_port = htons(PORT);
  116. break;
  117. default:
  118. error(1, 0, "Unsupported family %d", family);
  119. }
  120. if (numa_run_on_node(node_id) < 0)
  121. error(1, errno, "failed to pin to node");
  122. fd = socket(family, proto, 0);
  123. if (fd < 0)
  124. error(1, errno, "failed to create send socket");
  125. if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)))
  126. error(1, errno, "failed to bind send socket");
  127. if (connect(fd, (struct sockaddr *)&daddr, sizeof(daddr)))
  128. error(1, errno, "failed to connect send socket");
  129. if (send(fd, "a", 1, 0) < 0)
  130. error(1, errno, "failed to send message");
  131. close(fd);
  132. }
  133. static
  134. void receive_on_node(int *rcv_fd, int len, int epfd, int node_id, int proto)
  135. {
  136. struct epoll_event ev;
  137. int i, fd;
  138. char buf[8];
  139. i = epoll_wait(epfd, &ev, 1, -1);
  140. if (i < 0)
  141. error(1, errno, "epoll_wait failed");
  142. if (proto == SOCK_STREAM) {
  143. fd = accept(ev.data.fd, NULL, NULL);
  144. if (fd < 0)
  145. error(1, errno, "failed to accept");
  146. i = recv(fd, buf, sizeof(buf), 0);
  147. close(fd);
  148. } else {
  149. i = recv(ev.data.fd, buf, sizeof(buf), 0);
  150. }
  151. if (i < 0)
  152. error(1, errno, "failed to recv");
  153. for (i = 0; i < len; ++i)
  154. if (ev.data.fd == rcv_fd[i])
  155. break;
  156. if (i == len)
  157. error(1, 0, "failed to find socket");
  158. fprintf(stderr, "send node %d, receive socket %d\n", node_id, i);
  159. if (node_id != i)
  160. error(1, 0, "node id/receive socket mismatch");
  161. }
  162. static void test(int *rcv_fd, int len, int family, int proto)
  163. {
  164. struct epoll_event ev;
  165. int epfd, node;
  166. build_rcv_group(rcv_fd, len, family, proto);
  167. attach_bpf(rcv_fd[0]);
  168. epfd = epoll_create(1);
  169. if (epfd < 0)
  170. error(1, errno, "failed to create epoll");
  171. for (node = 0; node < len; ++node) {
  172. ev.events = EPOLLIN;
  173. ev.data.fd = rcv_fd[node];
  174. if (epoll_ctl(epfd, EPOLL_CTL_ADD, rcv_fd[node], &ev))
  175. error(1, errno, "failed to register sock epoll");
  176. }
  177. /* Forward iterate */
  178. for (node = 0; node < len; ++node) {
  179. send_from_node(node, family, proto);
  180. receive_on_node(rcv_fd, len, epfd, node, proto);
  181. }
  182. /* Reverse iterate */
  183. for (node = len - 1; node >= 0; --node) {
  184. send_from_node(node, family, proto);
  185. receive_on_node(rcv_fd, len, epfd, node, proto);
  186. }
  187. close(epfd);
  188. for (node = 0; node < len; ++node)
  189. close(rcv_fd[node]);
  190. }
  191. int main(void)
  192. {
  193. int *rcv_fd, nodes;
  194. if (numa_available() < 0)
  195. ksft_exit_skip("no numa api support\n");
  196. nodes = numa_max_node() + 1;
  197. rcv_fd = calloc(nodes, sizeof(int));
  198. if (!rcv_fd)
  199. error(1, 0, "failed to allocate array");
  200. fprintf(stderr, "---- IPv4 UDP ----\n");
  201. test(rcv_fd, nodes, AF_INET, SOCK_DGRAM);
  202. fprintf(stderr, "---- IPv6 UDP ----\n");
  203. test(rcv_fd, nodes, AF_INET6, SOCK_DGRAM);
  204. fprintf(stderr, "---- IPv4 TCP ----\n");
  205. test(rcv_fd, nodes, AF_INET, SOCK_STREAM);
  206. fprintf(stderr, "---- IPv6 TCP ----\n");
  207. test(rcv_fd, nodes, AF_INET6, SOCK_STREAM);
  208. free(rcv_fd);
  209. fprintf(stderr, "SUCCESS\n");
  210. return 0;
  211. }