huge_memory.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/coredump.h>
  11. #include <linux/sched/numa_balancing.h>
  12. #include <linux/highmem.h>
  13. #include <linux/hugetlb.h>
  14. #include <linux/mmu_notifier.h>
  15. #include <linux/rmap.h>
  16. #include <linux/swap.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/mm_inline.h>
  19. #include <linux/swapops.h>
  20. #include <linux/dax.h>
  21. #include <linux/khugepaged.h>
  22. #include <linux/freezer.h>
  23. #include <linux/pfn_t.h>
  24. #include <linux/mman.h>
  25. #include <linux/memremap.h>
  26. #include <linux/pagemap.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/migrate.h>
  29. #include <linux/hashtable.h>
  30. #include <linux/userfaultfd_k.h>
  31. #include <linux/page_idle.h>
  32. #include <linux/shmem_fs.h>
  33. #include <linux/oom.h>
  34. #include <linux/page_owner.h>
  35. #include <asm/tlb.h>
  36. #include <asm/pgalloc.h>
  37. #include "internal.h"
  38. /*
  39. * By default, transparent hugepage support is disabled in order to avoid
  40. * risking an increased memory footprint for applications that are not
  41. * guaranteed to benefit from it. When transparent hugepage support is
  42. * enabled, it is for all mappings, and khugepaged scans all mappings.
  43. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  44. * for all hugepage allocations.
  45. */
  46. unsigned long transparent_hugepage_flags __read_mostly =
  47. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  48. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  49. #endif
  50. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  51. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  52. #endif
  53. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  54. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  55. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  56. static struct shrinker deferred_split_shrinker;
  57. static atomic_t huge_zero_refcount;
  58. struct page *huge_zero_page __read_mostly;
  59. bool transparent_hugepage_enabled(struct vm_area_struct *vma)
  60. {
  61. if (vma_is_anonymous(vma))
  62. return __transparent_hugepage_enabled(vma);
  63. if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
  64. return __transparent_hugepage_enabled(vma);
  65. return false;
  66. }
  67. static struct page *get_huge_zero_page(void)
  68. {
  69. struct page *zero_page;
  70. retry:
  71. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  72. return READ_ONCE(huge_zero_page);
  73. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  74. HPAGE_PMD_ORDER);
  75. if (!zero_page) {
  76. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  77. return NULL;
  78. }
  79. count_vm_event(THP_ZERO_PAGE_ALLOC);
  80. preempt_disable();
  81. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  82. preempt_enable();
  83. __free_pages(zero_page, compound_order(zero_page));
  84. goto retry;
  85. }
  86. /* We take additional reference here. It will be put back by shrinker */
  87. atomic_set(&huge_zero_refcount, 2);
  88. preempt_enable();
  89. return READ_ONCE(huge_zero_page);
  90. }
  91. static void put_huge_zero_page(void)
  92. {
  93. /*
  94. * Counter should never go to zero here. Only shrinker can put
  95. * last reference.
  96. */
  97. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  98. }
  99. struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  100. {
  101. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  102. return READ_ONCE(huge_zero_page);
  103. if (!get_huge_zero_page())
  104. return NULL;
  105. if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  106. put_huge_zero_page();
  107. return READ_ONCE(huge_zero_page);
  108. }
  109. void mm_put_huge_zero_page(struct mm_struct *mm)
  110. {
  111. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  112. put_huge_zero_page();
  113. }
  114. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  115. struct shrink_control *sc)
  116. {
  117. /* we can free zero page only if last reference remains */
  118. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  119. }
  120. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  121. struct shrink_control *sc)
  122. {
  123. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  124. struct page *zero_page = xchg(&huge_zero_page, NULL);
  125. BUG_ON(zero_page == NULL);
  126. __free_pages(zero_page, compound_order(zero_page));
  127. return HPAGE_PMD_NR;
  128. }
  129. return 0;
  130. }
  131. static struct shrinker huge_zero_page_shrinker = {
  132. .count_objects = shrink_huge_zero_page_count,
  133. .scan_objects = shrink_huge_zero_page_scan,
  134. .seeks = DEFAULT_SEEKS,
  135. };
  136. #ifdef CONFIG_SYSFS
  137. static ssize_t enabled_show(struct kobject *kobj,
  138. struct kobj_attribute *attr, char *buf)
  139. {
  140. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  141. return sprintf(buf, "[always] madvise never\n");
  142. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  143. return sprintf(buf, "always [madvise] never\n");
  144. else
  145. return sprintf(buf, "always madvise [never]\n");
  146. }
  147. static ssize_t enabled_store(struct kobject *kobj,
  148. struct kobj_attribute *attr,
  149. const char *buf, size_t count)
  150. {
  151. ssize_t ret = count;
  152. if (sysfs_streq(buf, "always")) {
  153. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  154. set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  155. } else if (sysfs_streq(buf, "madvise")) {
  156. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  157. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  158. } else if (sysfs_streq(buf, "never")) {
  159. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  160. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  161. } else
  162. ret = -EINVAL;
  163. if (ret > 0) {
  164. int err = start_stop_khugepaged();
  165. if (err)
  166. ret = err;
  167. }
  168. return ret;
  169. }
  170. static struct kobj_attribute enabled_attr =
  171. __ATTR(enabled, 0644, enabled_show, enabled_store);
  172. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  173. struct kobj_attribute *attr, char *buf,
  174. enum transparent_hugepage_flag flag)
  175. {
  176. return sprintf(buf, "%d\n",
  177. !!test_bit(flag, &transparent_hugepage_flags));
  178. }
  179. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  180. struct kobj_attribute *attr,
  181. const char *buf, size_t count,
  182. enum transparent_hugepage_flag flag)
  183. {
  184. unsigned long value;
  185. int ret;
  186. ret = kstrtoul(buf, 10, &value);
  187. if (ret < 0)
  188. return ret;
  189. if (value > 1)
  190. return -EINVAL;
  191. if (value)
  192. set_bit(flag, &transparent_hugepage_flags);
  193. else
  194. clear_bit(flag, &transparent_hugepage_flags);
  195. return count;
  196. }
  197. static ssize_t defrag_show(struct kobject *kobj,
  198. struct kobj_attribute *attr, char *buf)
  199. {
  200. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  201. return sprintf(buf, "[always] defer defer+madvise madvise never\n");
  202. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  203. return sprintf(buf, "always [defer] defer+madvise madvise never\n");
  204. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  205. return sprintf(buf, "always defer [defer+madvise] madvise never\n");
  206. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  207. return sprintf(buf, "always defer defer+madvise [madvise] never\n");
  208. return sprintf(buf, "always defer defer+madvise madvise [never]\n");
  209. }
  210. static ssize_t defrag_store(struct kobject *kobj,
  211. struct kobj_attribute *attr,
  212. const char *buf, size_t count)
  213. {
  214. if (sysfs_streq(buf, "always")) {
  215. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  216. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  217. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  218. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  219. } else if (sysfs_streq(buf, "defer+madvise")) {
  220. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  221. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  222. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  223. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  224. } else if (sysfs_streq(buf, "defer")) {
  225. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  226. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  227. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  228. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  229. } else if (sysfs_streq(buf, "madvise")) {
  230. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  231. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  232. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  233. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  234. } else if (sysfs_streq(buf, "never")) {
  235. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  236. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  237. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  238. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  239. } else
  240. return -EINVAL;
  241. return count;
  242. }
  243. static struct kobj_attribute defrag_attr =
  244. __ATTR(defrag, 0644, defrag_show, defrag_store);
  245. static ssize_t use_zero_page_show(struct kobject *kobj,
  246. struct kobj_attribute *attr, char *buf)
  247. {
  248. return single_hugepage_flag_show(kobj, attr, buf,
  249. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  250. }
  251. static ssize_t use_zero_page_store(struct kobject *kobj,
  252. struct kobj_attribute *attr, const char *buf, size_t count)
  253. {
  254. return single_hugepage_flag_store(kobj, attr, buf, count,
  255. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  256. }
  257. static struct kobj_attribute use_zero_page_attr =
  258. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  259. static ssize_t hpage_pmd_size_show(struct kobject *kobj,
  260. struct kobj_attribute *attr, char *buf)
  261. {
  262. return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
  263. }
  264. static struct kobj_attribute hpage_pmd_size_attr =
  265. __ATTR_RO(hpage_pmd_size);
  266. #ifdef CONFIG_DEBUG_VM
  267. static ssize_t debug_cow_show(struct kobject *kobj,
  268. struct kobj_attribute *attr, char *buf)
  269. {
  270. return single_hugepage_flag_show(kobj, attr, buf,
  271. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  272. }
  273. static ssize_t debug_cow_store(struct kobject *kobj,
  274. struct kobj_attribute *attr,
  275. const char *buf, size_t count)
  276. {
  277. return single_hugepage_flag_store(kobj, attr, buf, count,
  278. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  279. }
  280. static struct kobj_attribute debug_cow_attr =
  281. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  282. #endif /* CONFIG_DEBUG_VM */
  283. static struct attribute *hugepage_attr[] = {
  284. &enabled_attr.attr,
  285. &defrag_attr.attr,
  286. &use_zero_page_attr.attr,
  287. &hpage_pmd_size_attr.attr,
  288. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  289. &shmem_enabled_attr.attr,
  290. #endif
  291. #ifdef CONFIG_DEBUG_VM
  292. &debug_cow_attr.attr,
  293. #endif
  294. NULL,
  295. };
  296. static const struct attribute_group hugepage_attr_group = {
  297. .attrs = hugepage_attr,
  298. };
  299. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  300. {
  301. int err;
  302. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  303. if (unlikely(!*hugepage_kobj)) {
  304. pr_err("failed to create transparent hugepage kobject\n");
  305. return -ENOMEM;
  306. }
  307. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  308. if (err) {
  309. pr_err("failed to register transparent hugepage group\n");
  310. goto delete_obj;
  311. }
  312. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  313. if (err) {
  314. pr_err("failed to register transparent hugepage group\n");
  315. goto remove_hp_group;
  316. }
  317. return 0;
  318. remove_hp_group:
  319. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  320. delete_obj:
  321. kobject_put(*hugepage_kobj);
  322. return err;
  323. }
  324. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  325. {
  326. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  327. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  328. kobject_put(hugepage_kobj);
  329. }
  330. #else
  331. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  332. {
  333. return 0;
  334. }
  335. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  336. {
  337. }
  338. #endif /* CONFIG_SYSFS */
  339. static int __init hugepage_init(void)
  340. {
  341. int err;
  342. struct kobject *hugepage_kobj;
  343. if (!has_transparent_hugepage()) {
  344. transparent_hugepage_flags = 0;
  345. return -EINVAL;
  346. }
  347. /*
  348. * hugepages can't be allocated by the buddy allocator
  349. */
  350. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  351. /*
  352. * we use page->mapping and page->index in second tail page
  353. * as list_head: assuming THP order >= 2
  354. */
  355. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  356. err = hugepage_init_sysfs(&hugepage_kobj);
  357. if (err)
  358. goto err_sysfs;
  359. err = khugepaged_init();
  360. if (err)
  361. goto err_slab;
  362. err = register_shrinker(&huge_zero_page_shrinker);
  363. if (err)
  364. goto err_hzp_shrinker;
  365. err = register_shrinker(&deferred_split_shrinker);
  366. if (err)
  367. goto err_split_shrinker;
  368. /*
  369. * By default disable transparent hugepages on smaller systems,
  370. * where the extra memory used could hurt more than TLB overhead
  371. * is likely to save. The admin can still enable it through /sys.
  372. */
  373. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  374. transparent_hugepage_flags = 0;
  375. return 0;
  376. }
  377. err = start_stop_khugepaged();
  378. if (err)
  379. goto err_khugepaged;
  380. return 0;
  381. err_khugepaged:
  382. unregister_shrinker(&deferred_split_shrinker);
  383. err_split_shrinker:
  384. unregister_shrinker(&huge_zero_page_shrinker);
  385. err_hzp_shrinker:
  386. khugepaged_destroy();
  387. err_slab:
  388. hugepage_exit_sysfs(hugepage_kobj);
  389. err_sysfs:
  390. return err;
  391. }
  392. subsys_initcall(hugepage_init);
  393. static int __init setup_transparent_hugepage(char *str)
  394. {
  395. int ret = 0;
  396. if (!str)
  397. goto out;
  398. if (!strcmp(str, "always")) {
  399. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  400. &transparent_hugepage_flags);
  401. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  402. &transparent_hugepage_flags);
  403. ret = 1;
  404. } else if (!strcmp(str, "madvise")) {
  405. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  406. &transparent_hugepage_flags);
  407. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  408. &transparent_hugepage_flags);
  409. ret = 1;
  410. } else if (!strcmp(str, "never")) {
  411. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  412. &transparent_hugepage_flags);
  413. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  414. &transparent_hugepage_flags);
  415. ret = 1;
  416. }
  417. out:
  418. if (!ret)
  419. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  420. return ret;
  421. }
  422. __setup("transparent_hugepage=", setup_transparent_hugepage);
  423. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  424. {
  425. if (likely(vma->vm_flags & VM_WRITE))
  426. pmd = pmd_mkwrite(pmd);
  427. return pmd;
  428. }
  429. static inline struct list_head *page_deferred_list(struct page *page)
  430. {
  431. /* ->lru in the tail pages is occupied by compound_head. */
  432. return &page[2].deferred_list;
  433. }
  434. void prep_transhuge_page(struct page *page)
  435. {
  436. /*
  437. * we use page->mapping and page->indexlru in second tail page
  438. * as list_head: assuming THP order >= 2
  439. */
  440. INIT_LIST_HEAD(page_deferred_list(page));
  441. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  442. }
  443. static unsigned long __thp_get_unmapped_area(struct file *filp,
  444. unsigned long addr, unsigned long len,
  445. loff_t off, unsigned long flags, unsigned long size)
  446. {
  447. loff_t off_end = off + len;
  448. loff_t off_align = round_up(off, size);
  449. unsigned long len_pad, ret;
  450. if (off_end <= off_align || (off_end - off_align) < size)
  451. return 0;
  452. len_pad = len + size;
  453. if (len_pad < len || (off + len_pad) < off)
  454. return 0;
  455. ret = current->mm->get_unmapped_area(filp, addr, len_pad,
  456. off >> PAGE_SHIFT, flags);
  457. /*
  458. * The failure might be due to length padding. The caller will retry
  459. * without the padding.
  460. */
  461. if (IS_ERR_VALUE(ret))
  462. return 0;
  463. /*
  464. * Do not try to align to THP boundary if allocation at the address
  465. * hint succeeds.
  466. */
  467. if (ret == addr)
  468. return addr;
  469. ret += (off - ret) & (size - 1);
  470. return ret;
  471. }
  472. unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
  473. unsigned long len, unsigned long pgoff, unsigned long flags)
  474. {
  475. unsigned long ret;
  476. loff_t off = (loff_t)pgoff << PAGE_SHIFT;
  477. if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
  478. goto out;
  479. ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
  480. if (ret)
  481. return ret;
  482. out:
  483. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  484. }
  485. EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
  486. static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
  487. struct page *page, gfp_t gfp)
  488. {
  489. struct vm_area_struct *vma = vmf->vma;
  490. struct mem_cgroup *memcg;
  491. pgtable_t pgtable;
  492. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  493. vm_fault_t ret = 0;
  494. VM_BUG_ON_PAGE(!PageCompound(page), page);
  495. if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
  496. put_page(page);
  497. count_vm_event(THP_FAULT_FALLBACK);
  498. return VM_FAULT_FALLBACK;
  499. }
  500. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  501. if (unlikely(!pgtable)) {
  502. ret = VM_FAULT_OOM;
  503. goto release;
  504. }
  505. clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
  506. /*
  507. * The memory barrier inside __SetPageUptodate makes sure that
  508. * clear_huge_page writes become visible before the set_pmd_at()
  509. * write.
  510. */
  511. __SetPageUptodate(page);
  512. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  513. if (unlikely(!pmd_none(*vmf->pmd))) {
  514. goto unlock_release;
  515. } else {
  516. pmd_t entry;
  517. ret = check_stable_address_space(vma->vm_mm);
  518. if (ret)
  519. goto unlock_release;
  520. /* Deliver the page fault to userland */
  521. if (userfaultfd_missing(vma)) {
  522. vm_fault_t ret2;
  523. spin_unlock(vmf->ptl);
  524. mem_cgroup_cancel_charge(page, memcg, true);
  525. put_page(page);
  526. pte_free(vma->vm_mm, pgtable);
  527. ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
  528. VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
  529. return ret2;
  530. }
  531. entry = mk_huge_pmd(page, vma->vm_page_prot);
  532. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  533. page_add_new_anon_rmap(page, vma, haddr, true);
  534. mem_cgroup_commit_charge(page, memcg, false, true);
  535. lru_cache_add_active_or_unevictable(page, vma);
  536. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
  537. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  538. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  539. mm_inc_nr_ptes(vma->vm_mm);
  540. spin_unlock(vmf->ptl);
  541. count_vm_event(THP_FAULT_ALLOC);
  542. }
  543. return 0;
  544. unlock_release:
  545. spin_unlock(vmf->ptl);
  546. release:
  547. if (pgtable)
  548. pte_free(vma->vm_mm, pgtable);
  549. mem_cgroup_cancel_charge(page, memcg, true);
  550. put_page(page);
  551. return ret;
  552. }
  553. /*
  554. * always: directly stall for all thp allocations
  555. * defer: wake kswapd and fail if not immediately available
  556. * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
  557. * fail if not immediately available
  558. * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
  559. * available
  560. * never: never stall for any thp allocation
  561. */
  562. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  563. {
  564. const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
  565. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  566. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  567. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  568. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  569. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  570. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  571. __GFP_KSWAPD_RECLAIM);
  572. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  573. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  574. 0);
  575. return GFP_TRANSHUGE_LIGHT;
  576. }
  577. /* Caller must hold page table lock. */
  578. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  579. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  580. struct page *zero_page)
  581. {
  582. pmd_t entry;
  583. if (!pmd_none(*pmd))
  584. return false;
  585. entry = mk_pmd(zero_page, vma->vm_page_prot);
  586. entry = pmd_mkhuge(entry);
  587. if (pgtable)
  588. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  589. set_pmd_at(mm, haddr, pmd, entry);
  590. mm_inc_nr_ptes(mm);
  591. return true;
  592. }
  593. vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
  594. {
  595. struct vm_area_struct *vma = vmf->vma;
  596. gfp_t gfp;
  597. struct page *page;
  598. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  599. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  600. return VM_FAULT_FALLBACK;
  601. if (unlikely(anon_vma_prepare(vma)))
  602. return VM_FAULT_OOM;
  603. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  604. return VM_FAULT_OOM;
  605. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  606. !mm_forbids_zeropage(vma->vm_mm) &&
  607. transparent_hugepage_use_zero_page()) {
  608. pgtable_t pgtable;
  609. struct page *zero_page;
  610. vm_fault_t ret;
  611. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  612. if (unlikely(!pgtable))
  613. return VM_FAULT_OOM;
  614. zero_page = mm_get_huge_zero_page(vma->vm_mm);
  615. if (unlikely(!zero_page)) {
  616. pte_free(vma->vm_mm, pgtable);
  617. count_vm_event(THP_FAULT_FALLBACK);
  618. return VM_FAULT_FALLBACK;
  619. }
  620. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  621. ret = 0;
  622. if (pmd_none(*vmf->pmd)) {
  623. ret = check_stable_address_space(vma->vm_mm);
  624. if (ret) {
  625. spin_unlock(vmf->ptl);
  626. pte_free(vma->vm_mm, pgtable);
  627. } else if (userfaultfd_missing(vma)) {
  628. spin_unlock(vmf->ptl);
  629. pte_free(vma->vm_mm, pgtable);
  630. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  631. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  632. } else {
  633. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  634. haddr, vmf->pmd, zero_page);
  635. spin_unlock(vmf->ptl);
  636. }
  637. } else {
  638. spin_unlock(vmf->ptl);
  639. pte_free(vma->vm_mm, pgtable);
  640. }
  641. return ret;
  642. }
  643. gfp = alloc_hugepage_direct_gfpmask(vma);
  644. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  645. if (unlikely(!page)) {
  646. count_vm_event(THP_FAULT_FALLBACK);
  647. return VM_FAULT_FALLBACK;
  648. }
  649. prep_transhuge_page(page);
  650. return __do_huge_pmd_anonymous_page(vmf, page, gfp);
  651. }
  652. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  653. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
  654. pgtable_t pgtable)
  655. {
  656. struct mm_struct *mm = vma->vm_mm;
  657. pmd_t entry;
  658. spinlock_t *ptl;
  659. ptl = pmd_lock(mm, pmd);
  660. if (!pmd_none(*pmd)) {
  661. if (write) {
  662. if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
  663. WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
  664. goto out_unlock;
  665. }
  666. entry = pmd_mkyoung(*pmd);
  667. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  668. if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
  669. update_mmu_cache_pmd(vma, addr, pmd);
  670. }
  671. goto out_unlock;
  672. }
  673. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  674. if (pfn_t_devmap(pfn))
  675. entry = pmd_mkdevmap(entry);
  676. if (write) {
  677. entry = pmd_mkyoung(pmd_mkdirty(entry));
  678. entry = maybe_pmd_mkwrite(entry, vma);
  679. }
  680. if (pgtable) {
  681. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  682. mm_inc_nr_ptes(mm);
  683. pgtable = NULL;
  684. }
  685. set_pmd_at(mm, addr, pmd, entry);
  686. update_mmu_cache_pmd(vma, addr, pmd);
  687. out_unlock:
  688. spin_unlock(ptl);
  689. if (pgtable)
  690. pte_free(mm, pgtable);
  691. }
  692. vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
  693. {
  694. unsigned long addr = vmf->address & PMD_MASK;
  695. struct vm_area_struct *vma = vmf->vma;
  696. pgprot_t pgprot = vma->vm_page_prot;
  697. pgtable_t pgtable = NULL;
  698. /*
  699. * If we had pmd_special, we could avoid all these restrictions,
  700. * but we need to be consistent with PTEs and architectures that
  701. * can't support a 'special' bit.
  702. */
  703. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
  704. !pfn_t_devmap(pfn));
  705. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  706. (VM_PFNMAP|VM_MIXEDMAP));
  707. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  708. if (addr < vma->vm_start || addr >= vma->vm_end)
  709. return VM_FAULT_SIGBUS;
  710. if (arch_needs_pgtable_deposit()) {
  711. pgtable = pte_alloc_one(vma->vm_mm, addr);
  712. if (!pgtable)
  713. return VM_FAULT_OOM;
  714. }
  715. track_pfn_insert(vma, &pgprot, pfn);
  716. insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
  717. return VM_FAULT_NOPAGE;
  718. }
  719. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  720. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  721. static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
  722. {
  723. if (likely(vma->vm_flags & VM_WRITE))
  724. pud = pud_mkwrite(pud);
  725. return pud;
  726. }
  727. static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  728. pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
  729. {
  730. struct mm_struct *mm = vma->vm_mm;
  731. pud_t entry;
  732. spinlock_t *ptl;
  733. ptl = pud_lock(mm, pud);
  734. if (!pud_none(*pud)) {
  735. if (write) {
  736. if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
  737. WARN_ON_ONCE(!is_huge_zero_pud(*pud));
  738. goto out_unlock;
  739. }
  740. entry = pud_mkyoung(*pud);
  741. entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
  742. if (pudp_set_access_flags(vma, addr, pud, entry, 1))
  743. update_mmu_cache_pud(vma, addr, pud);
  744. }
  745. goto out_unlock;
  746. }
  747. entry = pud_mkhuge(pfn_t_pud(pfn, prot));
  748. if (pfn_t_devmap(pfn))
  749. entry = pud_mkdevmap(entry);
  750. if (write) {
  751. entry = pud_mkyoung(pud_mkdirty(entry));
  752. entry = maybe_pud_mkwrite(entry, vma);
  753. }
  754. set_pud_at(mm, addr, pud, entry);
  755. update_mmu_cache_pud(vma, addr, pud);
  756. out_unlock:
  757. spin_unlock(ptl);
  758. }
  759. vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
  760. {
  761. unsigned long addr = vmf->address & PUD_MASK;
  762. struct vm_area_struct *vma = vmf->vma;
  763. pgprot_t pgprot = vma->vm_page_prot;
  764. /*
  765. * If we had pud_special, we could avoid all these restrictions,
  766. * but we need to be consistent with PTEs and architectures that
  767. * can't support a 'special' bit.
  768. */
  769. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
  770. !pfn_t_devmap(pfn));
  771. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  772. (VM_PFNMAP|VM_MIXEDMAP));
  773. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  774. if (addr < vma->vm_start || addr >= vma->vm_end)
  775. return VM_FAULT_SIGBUS;
  776. track_pfn_insert(vma, &pgprot, pfn);
  777. insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
  778. return VM_FAULT_NOPAGE;
  779. }
  780. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
  781. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  782. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  783. pmd_t *pmd, int flags)
  784. {
  785. pmd_t _pmd;
  786. _pmd = pmd_mkyoung(*pmd);
  787. if (flags & FOLL_WRITE)
  788. _pmd = pmd_mkdirty(_pmd);
  789. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  790. pmd, _pmd, flags & FOLL_WRITE))
  791. update_mmu_cache_pmd(vma, addr, pmd);
  792. }
  793. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  794. pmd_t *pmd, int flags)
  795. {
  796. unsigned long pfn = pmd_pfn(*pmd);
  797. struct mm_struct *mm = vma->vm_mm;
  798. struct dev_pagemap *pgmap;
  799. struct page *page;
  800. assert_spin_locked(pmd_lockptr(mm, pmd));
  801. /*
  802. * When we COW a devmap PMD entry, we split it into PTEs, so we should
  803. * not be in this function with `flags & FOLL_COW` set.
  804. */
  805. WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
  806. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  807. return NULL;
  808. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  809. /* pass */;
  810. else
  811. return NULL;
  812. if (flags & FOLL_TOUCH)
  813. touch_pmd(vma, addr, pmd, flags);
  814. /*
  815. * device mapped pages can only be returned if the
  816. * caller will manage the page reference count.
  817. */
  818. if (!(flags & FOLL_GET))
  819. return ERR_PTR(-EEXIST);
  820. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  821. pgmap = get_dev_pagemap(pfn, NULL);
  822. if (!pgmap)
  823. return ERR_PTR(-EFAULT);
  824. page = pfn_to_page(pfn);
  825. get_page(page);
  826. put_dev_pagemap(pgmap);
  827. return page;
  828. }
  829. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  830. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  831. struct vm_area_struct *vma)
  832. {
  833. spinlock_t *dst_ptl, *src_ptl;
  834. struct page *src_page;
  835. pmd_t pmd;
  836. pgtable_t pgtable = NULL;
  837. int ret = -ENOMEM;
  838. /* Skip if can be re-fill on fault */
  839. if (!vma_is_anonymous(vma))
  840. return 0;
  841. pgtable = pte_alloc_one(dst_mm, addr);
  842. if (unlikely(!pgtable))
  843. goto out;
  844. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  845. src_ptl = pmd_lockptr(src_mm, src_pmd);
  846. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  847. ret = -EAGAIN;
  848. pmd = *src_pmd;
  849. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  850. if (unlikely(is_swap_pmd(pmd))) {
  851. swp_entry_t entry = pmd_to_swp_entry(pmd);
  852. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  853. if (is_write_migration_entry(entry)) {
  854. make_migration_entry_read(&entry);
  855. pmd = swp_entry_to_pmd(entry);
  856. if (pmd_swp_soft_dirty(*src_pmd))
  857. pmd = pmd_swp_mksoft_dirty(pmd);
  858. set_pmd_at(src_mm, addr, src_pmd, pmd);
  859. }
  860. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  861. mm_inc_nr_ptes(dst_mm);
  862. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  863. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  864. ret = 0;
  865. goto out_unlock;
  866. }
  867. #endif
  868. if (unlikely(!pmd_trans_huge(pmd))) {
  869. pte_free(dst_mm, pgtable);
  870. goto out_unlock;
  871. }
  872. /*
  873. * When page table lock is held, the huge zero pmd should not be
  874. * under splitting since we don't split the page itself, only pmd to
  875. * a page table.
  876. */
  877. if (is_huge_zero_pmd(pmd)) {
  878. struct page *zero_page;
  879. /*
  880. * get_huge_zero_page() will never allocate a new page here,
  881. * since we already have a zero page to copy. It just takes a
  882. * reference.
  883. */
  884. zero_page = mm_get_huge_zero_page(dst_mm);
  885. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  886. zero_page);
  887. ret = 0;
  888. goto out_unlock;
  889. }
  890. src_page = pmd_page(pmd);
  891. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  892. get_page(src_page);
  893. page_dup_rmap(src_page, true);
  894. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  895. mm_inc_nr_ptes(dst_mm);
  896. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  897. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  898. pmd = pmd_mkold(pmd_wrprotect(pmd));
  899. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  900. ret = 0;
  901. out_unlock:
  902. spin_unlock(src_ptl);
  903. spin_unlock(dst_ptl);
  904. out:
  905. return ret;
  906. }
  907. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  908. static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
  909. pud_t *pud, int flags)
  910. {
  911. pud_t _pud;
  912. _pud = pud_mkyoung(*pud);
  913. if (flags & FOLL_WRITE)
  914. _pud = pud_mkdirty(_pud);
  915. if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
  916. pud, _pud, flags & FOLL_WRITE))
  917. update_mmu_cache_pud(vma, addr, pud);
  918. }
  919. struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
  920. pud_t *pud, int flags)
  921. {
  922. unsigned long pfn = pud_pfn(*pud);
  923. struct mm_struct *mm = vma->vm_mm;
  924. struct dev_pagemap *pgmap;
  925. struct page *page;
  926. assert_spin_locked(pud_lockptr(mm, pud));
  927. if (flags & FOLL_WRITE && !pud_write(*pud))
  928. return NULL;
  929. if (pud_present(*pud) && pud_devmap(*pud))
  930. /* pass */;
  931. else
  932. return NULL;
  933. if (flags & FOLL_TOUCH)
  934. touch_pud(vma, addr, pud, flags);
  935. /*
  936. * device mapped pages can only be returned if the
  937. * caller will manage the page reference count.
  938. */
  939. if (!(flags & FOLL_GET))
  940. return ERR_PTR(-EEXIST);
  941. pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
  942. pgmap = get_dev_pagemap(pfn, NULL);
  943. if (!pgmap)
  944. return ERR_PTR(-EFAULT);
  945. page = pfn_to_page(pfn);
  946. get_page(page);
  947. put_dev_pagemap(pgmap);
  948. return page;
  949. }
  950. int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  951. pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
  952. struct vm_area_struct *vma)
  953. {
  954. spinlock_t *dst_ptl, *src_ptl;
  955. pud_t pud;
  956. int ret;
  957. dst_ptl = pud_lock(dst_mm, dst_pud);
  958. src_ptl = pud_lockptr(src_mm, src_pud);
  959. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  960. ret = -EAGAIN;
  961. pud = *src_pud;
  962. if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
  963. goto out_unlock;
  964. /*
  965. * When page table lock is held, the huge zero pud should not be
  966. * under splitting since we don't split the page itself, only pud to
  967. * a page table.
  968. */
  969. if (is_huge_zero_pud(pud)) {
  970. /* No huge zero pud yet */
  971. }
  972. pudp_set_wrprotect(src_mm, addr, src_pud);
  973. pud = pud_mkold(pud_wrprotect(pud));
  974. set_pud_at(dst_mm, addr, dst_pud, pud);
  975. ret = 0;
  976. out_unlock:
  977. spin_unlock(src_ptl);
  978. spin_unlock(dst_ptl);
  979. return ret;
  980. }
  981. void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
  982. {
  983. pud_t entry;
  984. unsigned long haddr;
  985. bool write = vmf->flags & FAULT_FLAG_WRITE;
  986. vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
  987. if (unlikely(!pud_same(*vmf->pud, orig_pud)))
  988. goto unlock;
  989. entry = pud_mkyoung(orig_pud);
  990. if (write)
  991. entry = pud_mkdirty(entry);
  992. haddr = vmf->address & HPAGE_PUD_MASK;
  993. if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
  994. update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
  995. unlock:
  996. spin_unlock(vmf->ptl);
  997. }
  998. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  999. void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
  1000. {
  1001. pmd_t entry;
  1002. unsigned long haddr;
  1003. bool write = vmf->flags & FAULT_FLAG_WRITE;
  1004. vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
  1005. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1006. goto unlock;
  1007. entry = pmd_mkyoung(orig_pmd);
  1008. if (write)
  1009. entry = pmd_mkdirty(entry);
  1010. haddr = vmf->address & HPAGE_PMD_MASK;
  1011. if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
  1012. update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
  1013. unlock:
  1014. spin_unlock(vmf->ptl);
  1015. }
  1016. static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
  1017. pmd_t orig_pmd, struct page *page)
  1018. {
  1019. struct vm_area_struct *vma = vmf->vma;
  1020. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1021. struct mem_cgroup *memcg;
  1022. pgtable_t pgtable;
  1023. pmd_t _pmd;
  1024. int i;
  1025. vm_fault_t ret = 0;
  1026. struct page **pages;
  1027. unsigned long mmun_start; /* For mmu_notifiers */
  1028. unsigned long mmun_end; /* For mmu_notifiers */
  1029. pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
  1030. GFP_KERNEL);
  1031. if (unlikely(!pages)) {
  1032. ret |= VM_FAULT_OOM;
  1033. goto out;
  1034. }
  1035. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1036. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
  1037. vmf->address, page_to_nid(page));
  1038. if (unlikely(!pages[i] ||
  1039. mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
  1040. GFP_KERNEL, &memcg, false))) {
  1041. if (pages[i])
  1042. put_page(pages[i]);
  1043. while (--i >= 0) {
  1044. memcg = (void *)page_private(pages[i]);
  1045. set_page_private(pages[i], 0);
  1046. mem_cgroup_cancel_charge(pages[i], memcg,
  1047. false);
  1048. put_page(pages[i]);
  1049. }
  1050. kfree(pages);
  1051. ret |= VM_FAULT_OOM;
  1052. goto out;
  1053. }
  1054. set_page_private(pages[i], (unsigned long)memcg);
  1055. }
  1056. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1057. copy_user_highpage(pages[i], page + i,
  1058. haddr + PAGE_SIZE * i, vma);
  1059. __SetPageUptodate(pages[i]);
  1060. cond_resched();
  1061. }
  1062. mmun_start = haddr;
  1063. mmun_end = haddr + HPAGE_PMD_SIZE;
  1064. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1065. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1066. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1067. goto out_free_pages;
  1068. VM_BUG_ON_PAGE(!PageHead(page), page);
  1069. /*
  1070. * Leave pmd empty until pte is filled note we must notify here as
  1071. * concurrent CPU thread might write to new page before the call to
  1072. * mmu_notifier_invalidate_range_end() happens which can lead to a
  1073. * device seeing memory write in different order than CPU.
  1074. *
  1075. * See Documentation/vm/mmu_notifier.rst
  1076. */
  1077. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1078. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
  1079. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  1080. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1081. pte_t entry;
  1082. entry = mk_pte(pages[i], vma->vm_page_prot);
  1083. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1084. memcg = (void *)page_private(pages[i]);
  1085. set_page_private(pages[i], 0);
  1086. page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
  1087. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1088. lru_cache_add_active_or_unevictable(pages[i], vma);
  1089. vmf->pte = pte_offset_map(&_pmd, haddr);
  1090. VM_BUG_ON(!pte_none(*vmf->pte));
  1091. set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
  1092. pte_unmap(vmf->pte);
  1093. }
  1094. kfree(pages);
  1095. smp_wmb(); /* make pte visible before pmd */
  1096. pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
  1097. page_remove_rmap(page, true);
  1098. spin_unlock(vmf->ptl);
  1099. /*
  1100. * No need to double call mmu_notifier->invalidate_range() callback as
  1101. * the above pmdp_huge_clear_flush_notify() did already call it.
  1102. */
  1103. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1104. mmun_end);
  1105. ret |= VM_FAULT_WRITE;
  1106. put_page(page);
  1107. out:
  1108. return ret;
  1109. out_free_pages:
  1110. spin_unlock(vmf->ptl);
  1111. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1112. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1113. memcg = (void *)page_private(pages[i]);
  1114. set_page_private(pages[i], 0);
  1115. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1116. put_page(pages[i]);
  1117. }
  1118. kfree(pages);
  1119. goto out;
  1120. }
  1121. vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
  1122. {
  1123. struct vm_area_struct *vma = vmf->vma;
  1124. struct page *page = NULL, *new_page;
  1125. struct mem_cgroup *memcg;
  1126. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1127. unsigned long mmun_start; /* For mmu_notifiers */
  1128. unsigned long mmun_end; /* For mmu_notifiers */
  1129. gfp_t huge_gfp; /* for allocation and charge */
  1130. vm_fault_t ret = 0;
  1131. vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
  1132. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1133. if (is_huge_zero_pmd(orig_pmd))
  1134. goto alloc;
  1135. spin_lock(vmf->ptl);
  1136. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1137. goto out_unlock;
  1138. page = pmd_page(orig_pmd);
  1139. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1140. /*
  1141. * We can only reuse the page if nobody else maps the huge page or it's
  1142. * part.
  1143. */
  1144. if (!trylock_page(page)) {
  1145. get_page(page);
  1146. spin_unlock(vmf->ptl);
  1147. lock_page(page);
  1148. spin_lock(vmf->ptl);
  1149. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1150. unlock_page(page);
  1151. put_page(page);
  1152. goto out_unlock;
  1153. }
  1154. put_page(page);
  1155. }
  1156. if (reuse_swap_page(page, NULL)) {
  1157. pmd_t entry;
  1158. entry = pmd_mkyoung(orig_pmd);
  1159. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1160. if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
  1161. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1162. ret |= VM_FAULT_WRITE;
  1163. unlock_page(page);
  1164. goto out_unlock;
  1165. }
  1166. unlock_page(page);
  1167. get_page(page);
  1168. spin_unlock(vmf->ptl);
  1169. alloc:
  1170. if (__transparent_hugepage_enabled(vma) &&
  1171. !transparent_hugepage_debug_cow()) {
  1172. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1173. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1174. } else
  1175. new_page = NULL;
  1176. if (likely(new_page)) {
  1177. prep_transhuge_page(new_page);
  1178. } else {
  1179. if (!page) {
  1180. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1181. ret |= VM_FAULT_FALLBACK;
  1182. } else {
  1183. ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
  1184. if (ret & VM_FAULT_OOM) {
  1185. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1186. ret |= VM_FAULT_FALLBACK;
  1187. }
  1188. put_page(page);
  1189. }
  1190. count_vm_event(THP_FAULT_FALLBACK);
  1191. goto out;
  1192. }
  1193. if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
  1194. huge_gfp, &memcg, true))) {
  1195. put_page(new_page);
  1196. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1197. if (page)
  1198. put_page(page);
  1199. ret |= VM_FAULT_FALLBACK;
  1200. count_vm_event(THP_FAULT_FALLBACK);
  1201. goto out;
  1202. }
  1203. count_vm_event(THP_FAULT_ALLOC);
  1204. if (!page)
  1205. clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
  1206. else
  1207. copy_user_huge_page(new_page, page, vmf->address,
  1208. vma, HPAGE_PMD_NR);
  1209. __SetPageUptodate(new_page);
  1210. mmun_start = haddr;
  1211. mmun_end = haddr + HPAGE_PMD_SIZE;
  1212. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1213. spin_lock(vmf->ptl);
  1214. if (page)
  1215. put_page(page);
  1216. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1217. spin_unlock(vmf->ptl);
  1218. mem_cgroup_cancel_charge(new_page, memcg, true);
  1219. put_page(new_page);
  1220. goto out_mn;
  1221. } else {
  1222. pmd_t entry;
  1223. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1224. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1225. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1226. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1227. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1228. lru_cache_add_active_or_unevictable(new_page, vma);
  1229. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  1230. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1231. if (!page) {
  1232. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1233. } else {
  1234. VM_BUG_ON_PAGE(!PageHead(page), page);
  1235. page_remove_rmap(page, true);
  1236. put_page(page);
  1237. }
  1238. ret |= VM_FAULT_WRITE;
  1239. }
  1240. spin_unlock(vmf->ptl);
  1241. out_mn:
  1242. /*
  1243. * No need to double call mmu_notifier->invalidate_range() callback as
  1244. * the above pmdp_huge_clear_flush_notify() did already call it.
  1245. */
  1246. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1247. mmun_end);
  1248. out:
  1249. return ret;
  1250. out_unlock:
  1251. spin_unlock(vmf->ptl);
  1252. return ret;
  1253. }
  1254. /*
  1255. * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
  1256. * but only after we've gone through a COW cycle and they are dirty.
  1257. */
  1258. static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
  1259. {
  1260. return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
  1261. }
  1262. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1263. unsigned long addr,
  1264. pmd_t *pmd,
  1265. unsigned int flags)
  1266. {
  1267. struct mm_struct *mm = vma->vm_mm;
  1268. struct page *page = NULL;
  1269. assert_spin_locked(pmd_lockptr(mm, pmd));
  1270. if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
  1271. goto out;
  1272. /* Avoid dumping huge zero page */
  1273. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1274. return ERR_PTR(-EFAULT);
  1275. /* Full NUMA hinting faults to serialise migration in fault paths */
  1276. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1277. goto out;
  1278. page = pmd_page(*pmd);
  1279. VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
  1280. if (flags & FOLL_TOUCH)
  1281. touch_pmd(vma, addr, pmd, flags);
  1282. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1283. /*
  1284. * We don't mlock() pte-mapped THPs. This way we can avoid
  1285. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1286. *
  1287. * For anon THP:
  1288. *
  1289. * In most cases the pmd is the only mapping of the page as we
  1290. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1291. * writable private mappings in populate_vma_page_range().
  1292. *
  1293. * The only scenario when we have the page shared here is if we
  1294. * mlocking read-only mapping shared over fork(). We skip
  1295. * mlocking such pages.
  1296. *
  1297. * For file THP:
  1298. *
  1299. * We can expect PageDoubleMap() to be stable under page lock:
  1300. * for file pages we set it in page_add_file_rmap(), which
  1301. * requires page to be locked.
  1302. */
  1303. if (PageAnon(page) && compound_mapcount(page) != 1)
  1304. goto skip_mlock;
  1305. if (PageDoubleMap(page) || !page->mapping)
  1306. goto skip_mlock;
  1307. if (!trylock_page(page))
  1308. goto skip_mlock;
  1309. lru_add_drain();
  1310. if (page->mapping && !PageDoubleMap(page))
  1311. mlock_vma_page(page);
  1312. unlock_page(page);
  1313. }
  1314. skip_mlock:
  1315. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1316. VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
  1317. if (flags & FOLL_GET)
  1318. get_page(page);
  1319. out:
  1320. return page;
  1321. }
  1322. /* NUMA hinting page fault entry point for trans huge pmds */
  1323. vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
  1324. {
  1325. struct vm_area_struct *vma = vmf->vma;
  1326. struct anon_vma *anon_vma = NULL;
  1327. struct page *page;
  1328. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1329. int page_nid = -1, this_nid = numa_node_id();
  1330. int target_nid, last_cpupid = -1;
  1331. bool page_locked;
  1332. bool migrated = false;
  1333. bool was_writable;
  1334. int flags = 0;
  1335. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1336. if (unlikely(!pmd_same(pmd, *vmf->pmd)))
  1337. goto out_unlock;
  1338. /*
  1339. * If there are potential migrations, wait for completion and retry
  1340. * without disrupting NUMA hinting information. Do not relock and
  1341. * check_same as the page may no longer be mapped.
  1342. */
  1343. if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
  1344. page = pmd_page(*vmf->pmd);
  1345. if (!get_page_unless_zero(page))
  1346. goto out_unlock;
  1347. spin_unlock(vmf->ptl);
  1348. wait_on_page_locked(page);
  1349. put_page(page);
  1350. goto out;
  1351. }
  1352. page = pmd_page(pmd);
  1353. BUG_ON(is_huge_zero_page(page));
  1354. page_nid = page_to_nid(page);
  1355. last_cpupid = page_cpupid_last(page);
  1356. count_vm_numa_event(NUMA_HINT_FAULTS);
  1357. if (page_nid == this_nid) {
  1358. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1359. flags |= TNF_FAULT_LOCAL;
  1360. }
  1361. /* See similar comment in do_numa_page for explanation */
  1362. if (!pmd_savedwrite(pmd))
  1363. flags |= TNF_NO_GROUP;
  1364. /*
  1365. * Acquire the page lock to serialise THP migrations but avoid dropping
  1366. * page_table_lock if at all possible
  1367. */
  1368. page_locked = trylock_page(page);
  1369. target_nid = mpol_misplaced(page, vma, haddr);
  1370. if (target_nid == -1) {
  1371. /* If the page was locked, there are no parallel migrations */
  1372. if (page_locked)
  1373. goto clear_pmdnuma;
  1374. }
  1375. /* Migration could have started since the pmd_trans_migrating check */
  1376. if (!page_locked) {
  1377. page_nid = -1;
  1378. if (!get_page_unless_zero(page))
  1379. goto out_unlock;
  1380. spin_unlock(vmf->ptl);
  1381. wait_on_page_locked(page);
  1382. put_page(page);
  1383. goto out;
  1384. }
  1385. /*
  1386. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1387. * to serialises splits
  1388. */
  1389. get_page(page);
  1390. spin_unlock(vmf->ptl);
  1391. anon_vma = page_lock_anon_vma_read(page);
  1392. /* Confirm the PMD did not change while page_table_lock was released */
  1393. spin_lock(vmf->ptl);
  1394. if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
  1395. unlock_page(page);
  1396. put_page(page);
  1397. page_nid = -1;
  1398. goto out_unlock;
  1399. }
  1400. /* Bail if we fail to protect against THP splits for any reason */
  1401. if (unlikely(!anon_vma)) {
  1402. put_page(page);
  1403. page_nid = -1;
  1404. goto clear_pmdnuma;
  1405. }
  1406. /*
  1407. * Since we took the NUMA fault, we must have observed the !accessible
  1408. * bit. Make sure all other CPUs agree with that, to avoid them
  1409. * modifying the page we're about to migrate.
  1410. *
  1411. * Must be done under PTL such that we'll observe the relevant
  1412. * inc_tlb_flush_pending().
  1413. *
  1414. * We are not sure a pending tlb flush here is for a huge page
  1415. * mapping or not. Hence use the tlb range variant
  1416. */
  1417. if (mm_tlb_flush_pending(vma->vm_mm))
  1418. flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
  1419. /*
  1420. * Migrate the THP to the requested node, returns with page unlocked
  1421. * and access rights restored.
  1422. */
  1423. spin_unlock(vmf->ptl);
  1424. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1425. vmf->pmd, pmd, vmf->address, page, target_nid);
  1426. if (migrated) {
  1427. flags |= TNF_MIGRATED;
  1428. page_nid = target_nid;
  1429. } else
  1430. flags |= TNF_MIGRATE_FAIL;
  1431. goto out;
  1432. clear_pmdnuma:
  1433. BUG_ON(!PageLocked(page));
  1434. was_writable = pmd_savedwrite(pmd);
  1435. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1436. pmd = pmd_mkyoung(pmd);
  1437. if (was_writable)
  1438. pmd = pmd_mkwrite(pmd);
  1439. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
  1440. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1441. unlock_page(page);
  1442. out_unlock:
  1443. spin_unlock(vmf->ptl);
  1444. out:
  1445. if (anon_vma)
  1446. page_unlock_anon_vma_read(anon_vma);
  1447. if (page_nid != -1)
  1448. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
  1449. flags);
  1450. return 0;
  1451. }
  1452. /*
  1453. * Return true if we do MADV_FREE successfully on entire pmd page.
  1454. * Otherwise, return false.
  1455. */
  1456. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1457. pmd_t *pmd, unsigned long addr, unsigned long next)
  1458. {
  1459. spinlock_t *ptl;
  1460. pmd_t orig_pmd;
  1461. struct page *page;
  1462. struct mm_struct *mm = tlb->mm;
  1463. bool ret = false;
  1464. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1465. ptl = pmd_trans_huge_lock(pmd, vma);
  1466. if (!ptl)
  1467. goto out_unlocked;
  1468. orig_pmd = *pmd;
  1469. if (is_huge_zero_pmd(orig_pmd))
  1470. goto out;
  1471. if (unlikely(!pmd_present(orig_pmd))) {
  1472. VM_BUG_ON(thp_migration_supported() &&
  1473. !is_pmd_migration_entry(orig_pmd));
  1474. goto out;
  1475. }
  1476. page = pmd_page(orig_pmd);
  1477. /*
  1478. * If other processes are mapping this page, we couldn't discard
  1479. * the page unless they all do MADV_FREE so let's skip the page.
  1480. */
  1481. if (page_mapcount(page) != 1)
  1482. goto out;
  1483. if (!trylock_page(page))
  1484. goto out;
  1485. /*
  1486. * If user want to discard part-pages of THP, split it so MADV_FREE
  1487. * will deactivate only them.
  1488. */
  1489. if (next - addr != HPAGE_PMD_SIZE) {
  1490. get_page(page);
  1491. spin_unlock(ptl);
  1492. split_huge_page(page);
  1493. unlock_page(page);
  1494. put_page(page);
  1495. goto out_unlocked;
  1496. }
  1497. if (PageDirty(page))
  1498. ClearPageDirty(page);
  1499. unlock_page(page);
  1500. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1501. pmdp_invalidate(vma, addr, pmd);
  1502. orig_pmd = pmd_mkold(orig_pmd);
  1503. orig_pmd = pmd_mkclean(orig_pmd);
  1504. set_pmd_at(mm, addr, pmd, orig_pmd);
  1505. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1506. }
  1507. mark_page_lazyfree(page);
  1508. ret = true;
  1509. out:
  1510. spin_unlock(ptl);
  1511. out_unlocked:
  1512. return ret;
  1513. }
  1514. static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
  1515. {
  1516. pgtable_t pgtable;
  1517. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1518. pte_free(mm, pgtable);
  1519. mm_dec_nr_ptes(mm);
  1520. }
  1521. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1522. pmd_t *pmd, unsigned long addr)
  1523. {
  1524. pmd_t orig_pmd;
  1525. spinlock_t *ptl;
  1526. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1527. ptl = __pmd_trans_huge_lock(pmd, vma);
  1528. if (!ptl)
  1529. return 0;
  1530. /*
  1531. * For architectures like ppc64 we look at deposited pgtable
  1532. * when calling pmdp_huge_get_and_clear. So do the
  1533. * pgtable_trans_huge_withdraw after finishing pmdp related
  1534. * operations.
  1535. */
  1536. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1537. tlb->fullmm);
  1538. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1539. if (vma_is_dax(vma)) {
  1540. if (arch_needs_pgtable_deposit())
  1541. zap_deposited_table(tlb->mm, pmd);
  1542. spin_unlock(ptl);
  1543. if (is_huge_zero_pmd(orig_pmd))
  1544. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1545. } else if (is_huge_zero_pmd(orig_pmd)) {
  1546. zap_deposited_table(tlb->mm, pmd);
  1547. spin_unlock(ptl);
  1548. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1549. } else {
  1550. struct page *page = NULL;
  1551. int flush_needed = 1;
  1552. if (pmd_present(orig_pmd)) {
  1553. page = pmd_page(orig_pmd);
  1554. page_remove_rmap(page, true);
  1555. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1556. VM_BUG_ON_PAGE(!PageHead(page), page);
  1557. } else if (thp_migration_supported()) {
  1558. swp_entry_t entry;
  1559. VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
  1560. entry = pmd_to_swp_entry(orig_pmd);
  1561. page = pfn_to_page(swp_offset(entry));
  1562. flush_needed = 0;
  1563. } else
  1564. WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
  1565. if (PageAnon(page)) {
  1566. zap_deposited_table(tlb->mm, pmd);
  1567. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1568. } else {
  1569. if (arch_needs_pgtable_deposit())
  1570. zap_deposited_table(tlb->mm, pmd);
  1571. add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
  1572. }
  1573. spin_unlock(ptl);
  1574. if (flush_needed)
  1575. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1576. }
  1577. return 1;
  1578. }
  1579. #ifndef pmd_move_must_withdraw
  1580. static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
  1581. spinlock_t *old_pmd_ptl,
  1582. struct vm_area_struct *vma)
  1583. {
  1584. /*
  1585. * With split pmd lock we also need to move preallocated
  1586. * PTE page table if new_pmd is on different PMD page table.
  1587. *
  1588. * We also don't deposit and withdraw tables for file pages.
  1589. */
  1590. return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
  1591. }
  1592. #endif
  1593. static pmd_t move_soft_dirty_pmd(pmd_t pmd)
  1594. {
  1595. #ifdef CONFIG_MEM_SOFT_DIRTY
  1596. if (unlikely(is_pmd_migration_entry(pmd)))
  1597. pmd = pmd_swp_mksoft_dirty(pmd);
  1598. else if (pmd_present(pmd))
  1599. pmd = pmd_mksoft_dirty(pmd);
  1600. #endif
  1601. return pmd;
  1602. }
  1603. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1604. unsigned long new_addr, unsigned long old_end,
  1605. pmd_t *old_pmd, pmd_t *new_pmd)
  1606. {
  1607. spinlock_t *old_ptl, *new_ptl;
  1608. pmd_t pmd;
  1609. struct mm_struct *mm = vma->vm_mm;
  1610. bool force_flush = false;
  1611. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1612. (new_addr & ~HPAGE_PMD_MASK) ||
  1613. old_end - old_addr < HPAGE_PMD_SIZE)
  1614. return false;
  1615. /*
  1616. * The destination pmd shouldn't be established, free_pgtables()
  1617. * should have release it.
  1618. */
  1619. if (WARN_ON(!pmd_none(*new_pmd))) {
  1620. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1621. return false;
  1622. }
  1623. /*
  1624. * We don't have to worry about the ordering of src and dst
  1625. * ptlocks because exclusive mmap_sem prevents deadlock.
  1626. */
  1627. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1628. if (old_ptl) {
  1629. new_ptl = pmd_lockptr(mm, new_pmd);
  1630. if (new_ptl != old_ptl)
  1631. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1632. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1633. if (pmd_present(pmd))
  1634. force_flush = true;
  1635. VM_BUG_ON(!pmd_none(*new_pmd));
  1636. if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
  1637. pgtable_t pgtable;
  1638. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1639. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1640. }
  1641. pmd = move_soft_dirty_pmd(pmd);
  1642. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1643. if (force_flush)
  1644. flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
  1645. if (new_ptl != old_ptl)
  1646. spin_unlock(new_ptl);
  1647. spin_unlock(old_ptl);
  1648. return true;
  1649. }
  1650. return false;
  1651. }
  1652. /*
  1653. * Returns
  1654. * - 0 if PMD could not be locked
  1655. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1656. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1657. */
  1658. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1659. unsigned long addr, pgprot_t newprot, int prot_numa)
  1660. {
  1661. struct mm_struct *mm = vma->vm_mm;
  1662. spinlock_t *ptl;
  1663. pmd_t entry;
  1664. bool preserve_write;
  1665. int ret;
  1666. ptl = __pmd_trans_huge_lock(pmd, vma);
  1667. if (!ptl)
  1668. return 0;
  1669. preserve_write = prot_numa && pmd_write(*pmd);
  1670. ret = 1;
  1671. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1672. if (is_swap_pmd(*pmd)) {
  1673. swp_entry_t entry = pmd_to_swp_entry(*pmd);
  1674. VM_BUG_ON(!is_pmd_migration_entry(*pmd));
  1675. if (is_write_migration_entry(entry)) {
  1676. pmd_t newpmd;
  1677. /*
  1678. * A protection check is difficult so
  1679. * just be safe and disable write
  1680. */
  1681. make_migration_entry_read(&entry);
  1682. newpmd = swp_entry_to_pmd(entry);
  1683. if (pmd_swp_soft_dirty(*pmd))
  1684. newpmd = pmd_swp_mksoft_dirty(newpmd);
  1685. set_pmd_at(mm, addr, pmd, newpmd);
  1686. }
  1687. goto unlock;
  1688. }
  1689. #endif
  1690. /*
  1691. * Avoid trapping faults against the zero page. The read-only
  1692. * data is likely to be read-cached on the local CPU and
  1693. * local/remote hits to the zero page are not interesting.
  1694. */
  1695. if (prot_numa && is_huge_zero_pmd(*pmd))
  1696. goto unlock;
  1697. if (prot_numa && pmd_protnone(*pmd))
  1698. goto unlock;
  1699. /*
  1700. * In case prot_numa, we are under down_read(mmap_sem). It's critical
  1701. * to not clear pmd intermittently to avoid race with MADV_DONTNEED
  1702. * which is also under down_read(mmap_sem):
  1703. *
  1704. * CPU0: CPU1:
  1705. * change_huge_pmd(prot_numa=1)
  1706. * pmdp_huge_get_and_clear_notify()
  1707. * madvise_dontneed()
  1708. * zap_pmd_range()
  1709. * pmd_trans_huge(*pmd) == 0 (without ptl)
  1710. * // skip the pmd
  1711. * set_pmd_at();
  1712. * // pmd is re-established
  1713. *
  1714. * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
  1715. * which may break userspace.
  1716. *
  1717. * pmdp_invalidate() is required to make sure we don't miss
  1718. * dirty/young flags set by hardware.
  1719. */
  1720. entry = pmdp_invalidate(vma, addr, pmd);
  1721. entry = pmd_modify(entry, newprot);
  1722. if (preserve_write)
  1723. entry = pmd_mk_savedwrite(entry);
  1724. ret = HPAGE_PMD_NR;
  1725. set_pmd_at(mm, addr, pmd, entry);
  1726. BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
  1727. unlock:
  1728. spin_unlock(ptl);
  1729. return ret;
  1730. }
  1731. /*
  1732. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1733. *
  1734. * Note that if it returns page table lock pointer, this routine returns without
  1735. * unlocking page table lock. So callers must unlock it.
  1736. */
  1737. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1738. {
  1739. spinlock_t *ptl;
  1740. ptl = pmd_lock(vma->vm_mm, pmd);
  1741. if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
  1742. pmd_devmap(*pmd)))
  1743. return ptl;
  1744. spin_unlock(ptl);
  1745. return NULL;
  1746. }
  1747. /*
  1748. * Returns true if a given pud maps a thp, false otherwise.
  1749. *
  1750. * Note that if it returns true, this routine returns without unlocking page
  1751. * table lock. So callers must unlock it.
  1752. */
  1753. spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
  1754. {
  1755. spinlock_t *ptl;
  1756. ptl = pud_lock(vma->vm_mm, pud);
  1757. if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
  1758. return ptl;
  1759. spin_unlock(ptl);
  1760. return NULL;
  1761. }
  1762. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  1763. int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1764. pud_t *pud, unsigned long addr)
  1765. {
  1766. pud_t orig_pud;
  1767. spinlock_t *ptl;
  1768. ptl = __pud_trans_huge_lock(pud, vma);
  1769. if (!ptl)
  1770. return 0;
  1771. /*
  1772. * For architectures like ppc64 we look at deposited pgtable
  1773. * when calling pudp_huge_get_and_clear. So do the
  1774. * pgtable_trans_huge_withdraw after finishing pudp related
  1775. * operations.
  1776. */
  1777. orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
  1778. tlb->fullmm);
  1779. tlb_remove_pud_tlb_entry(tlb, pud, addr);
  1780. if (vma_is_dax(vma)) {
  1781. spin_unlock(ptl);
  1782. /* No zero page support yet */
  1783. } else {
  1784. /* No support for anonymous PUD pages yet */
  1785. BUG();
  1786. }
  1787. return 1;
  1788. }
  1789. static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
  1790. unsigned long haddr)
  1791. {
  1792. VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
  1793. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1794. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
  1795. VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
  1796. count_vm_event(THP_SPLIT_PUD);
  1797. pudp_huge_clear_flush_notify(vma, haddr, pud);
  1798. }
  1799. void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
  1800. unsigned long address)
  1801. {
  1802. spinlock_t *ptl;
  1803. struct mm_struct *mm = vma->vm_mm;
  1804. unsigned long haddr = address & HPAGE_PUD_MASK;
  1805. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
  1806. ptl = pud_lock(mm, pud);
  1807. if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
  1808. goto out;
  1809. __split_huge_pud_locked(vma, pud, haddr);
  1810. out:
  1811. spin_unlock(ptl);
  1812. /*
  1813. * No need to double call mmu_notifier->invalidate_range() callback as
  1814. * the above pudp_huge_clear_flush_notify() did already call it.
  1815. */
  1816. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  1817. HPAGE_PUD_SIZE);
  1818. }
  1819. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  1820. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1821. unsigned long haddr, pmd_t *pmd)
  1822. {
  1823. struct mm_struct *mm = vma->vm_mm;
  1824. pgtable_t pgtable;
  1825. pmd_t _pmd;
  1826. int i;
  1827. /*
  1828. * Leave pmd empty until pte is filled note that it is fine to delay
  1829. * notification until mmu_notifier_invalidate_range_end() as we are
  1830. * replacing a zero pmd write protected page with a zero pte write
  1831. * protected page.
  1832. *
  1833. * See Documentation/vm/mmu_notifier.rst
  1834. */
  1835. pmdp_huge_clear_flush(vma, haddr, pmd);
  1836. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1837. pmd_populate(mm, &_pmd, pgtable);
  1838. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1839. pte_t *pte, entry;
  1840. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1841. entry = pte_mkspecial(entry);
  1842. pte = pte_offset_map(&_pmd, haddr);
  1843. VM_BUG_ON(!pte_none(*pte));
  1844. set_pte_at(mm, haddr, pte, entry);
  1845. pte_unmap(pte);
  1846. }
  1847. smp_wmb(); /* make pte visible before pmd */
  1848. pmd_populate(mm, pmd, pgtable);
  1849. }
  1850. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1851. unsigned long haddr, bool freeze)
  1852. {
  1853. struct mm_struct *mm = vma->vm_mm;
  1854. struct page *page;
  1855. pgtable_t pgtable;
  1856. pmd_t old_pmd, _pmd;
  1857. bool young, write, soft_dirty, pmd_migration = false;
  1858. unsigned long addr;
  1859. int i;
  1860. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1861. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1862. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1863. VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
  1864. && !pmd_devmap(*pmd));
  1865. count_vm_event(THP_SPLIT_PMD);
  1866. if (!vma_is_anonymous(vma)) {
  1867. _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1868. /*
  1869. * We are going to unmap this huge page. So
  1870. * just go ahead and zap it
  1871. */
  1872. if (arch_needs_pgtable_deposit())
  1873. zap_deposited_table(mm, pmd);
  1874. if (vma_is_dax(vma))
  1875. return;
  1876. page = pmd_page(_pmd);
  1877. if (!PageDirty(page) && pmd_dirty(_pmd))
  1878. set_page_dirty(page);
  1879. if (!PageReferenced(page) && pmd_young(_pmd))
  1880. SetPageReferenced(page);
  1881. page_remove_rmap(page, true);
  1882. put_page(page);
  1883. add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
  1884. return;
  1885. } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
  1886. /*
  1887. * FIXME: Do we want to invalidate secondary mmu by calling
  1888. * mmu_notifier_invalidate_range() see comments below inside
  1889. * __split_huge_pmd() ?
  1890. *
  1891. * We are going from a zero huge page write protected to zero
  1892. * small page also write protected so it does not seems useful
  1893. * to invalidate secondary mmu at this time.
  1894. */
  1895. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1896. }
  1897. /*
  1898. * Up to this point the pmd is present and huge and userland has the
  1899. * whole access to the hugepage during the split (which happens in
  1900. * place). If we overwrite the pmd with the not-huge version pointing
  1901. * to the pte here (which of course we could if all CPUs were bug
  1902. * free), userland could trigger a small page size TLB miss on the
  1903. * small sized TLB while the hugepage TLB entry is still established in
  1904. * the huge TLB. Some CPU doesn't like that.
  1905. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  1906. * 383 on page 93. Intel should be safe but is also warns that it's
  1907. * only safe if the permission and cache attributes of the two entries
  1908. * loaded in the two TLB is identical (which should be the case here).
  1909. * But it is generally safer to never allow small and huge TLB entries
  1910. * for the same virtual address to be loaded simultaneously. So instead
  1911. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1912. * current pmd notpresent (atomically because here the pmd_trans_huge
  1913. * must remain set at all times on the pmd until the split is complete
  1914. * for this pmd), then we flush the SMP TLB and finally we write the
  1915. * non-huge version of the pmd entry with pmd_populate.
  1916. */
  1917. old_pmd = pmdp_invalidate(vma, haddr, pmd);
  1918. pmd_migration = is_pmd_migration_entry(old_pmd);
  1919. if (unlikely(pmd_migration)) {
  1920. swp_entry_t entry;
  1921. entry = pmd_to_swp_entry(old_pmd);
  1922. page = pfn_to_page(swp_offset(entry));
  1923. write = is_write_migration_entry(entry);
  1924. young = false;
  1925. soft_dirty = pmd_swp_soft_dirty(old_pmd);
  1926. } else {
  1927. page = pmd_page(old_pmd);
  1928. if (pmd_dirty(old_pmd))
  1929. SetPageDirty(page);
  1930. write = pmd_write(old_pmd);
  1931. young = pmd_young(old_pmd);
  1932. soft_dirty = pmd_soft_dirty(old_pmd);
  1933. }
  1934. VM_BUG_ON_PAGE(!page_count(page), page);
  1935. page_ref_add(page, HPAGE_PMD_NR - 1);
  1936. /*
  1937. * Withdraw the table only after we mark the pmd entry invalid.
  1938. * This's critical for some architectures (Power).
  1939. */
  1940. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1941. pmd_populate(mm, &_pmd, pgtable);
  1942. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1943. pte_t entry, *pte;
  1944. /*
  1945. * Note that NUMA hinting access restrictions are not
  1946. * transferred to avoid any possibility of altering
  1947. * permissions across VMAs.
  1948. */
  1949. if (freeze || pmd_migration) {
  1950. swp_entry_t swp_entry;
  1951. swp_entry = make_migration_entry(page + i, write);
  1952. entry = swp_entry_to_pte(swp_entry);
  1953. if (soft_dirty)
  1954. entry = pte_swp_mksoft_dirty(entry);
  1955. } else {
  1956. entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
  1957. entry = maybe_mkwrite(entry, vma);
  1958. if (!write)
  1959. entry = pte_wrprotect(entry);
  1960. if (!young)
  1961. entry = pte_mkold(entry);
  1962. if (soft_dirty)
  1963. entry = pte_mksoft_dirty(entry);
  1964. }
  1965. pte = pte_offset_map(&_pmd, addr);
  1966. BUG_ON(!pte_none(*pte));
  1967. set_pte_at(mm, addr, pte, entry);
  1968. if (!pmd_migration)
  1969. atomic_inc(&page[i]._mapcount);
  1970. pte_unmap(pte);
  1971. }
  1972. if (!pmd_migration) {
  1973. /*
  1974. * Set PG_double_map before dropping compound_mapcount to avoid
  1975. * false-negative page_mapped().
  1976. */
  1977. if (compound_mapcount(page) > 1 &&
  1978. !TestSetPageDoubleMap(page)) {
  1979. for (i = 0; i < HPAGE_PMD_NR; i++)
  1980. atomic_inc(&page[i]._mapcount);
  1981. }
  1982. lock_page_memcg(page);
  1983. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1984. /* Last compound_mapcount is gone. */
  1985. __dec_lruvec_page_state(page, NR_ANON_THPS);
  1986. if (TestClearPageDoubleMap(page)) {
  1987. /* No need in mapcount reference anymore */
  1988. for (i = 0; i < HPAGE_PMD_NR; i++)
  1989. atomic_dec(&page[i]._mapcount);
  1990. }
  1991. }
  1992. unlock_page_memcg(page);
  1993. }
  1994. smp_wmb(); /* make pte visible before pmd */
  1995. pmd_populate(mm, pmd, pgtable);
  1996. if (freeze) {
  1997. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1998. page_remove_rmap(page + i, false);
  1999. put_page(page + i);
  2000. }
  2001. }
  2002. }
  2003. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  2004. unsigned long address, bool freeze, struct page *page)
  2005. {
  2006. spinlock_t *ptl;
  2007. struct mm_struct *mm = vma->vm_mm;
  2008. unsigned long haddr = address & HPAGE_PMD_MASK;
  2009. bool do_unlock_page = false;
  2010. pmd_t _pmd;
  2011. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2012. ptl = pmd_lock(mm, pmd);
  2013. /*
  2014. * If caller asks to setup a migration entries, we need a page to check
  2015. * pmd against. Otherwise we can end up replacing wrong page.
  2016. */
  2017. VM_BUG_ON(freeze && !page);
  2018. if (page) {
  2019. VM_WARN_ON_ONCE(!PageLocked(page));
  2020. if (page != pmd_page(*pmd))
  2021. goto out;
  2022. }
  2023. repeat:
  2024. if (pmd_trans_huge(*pmd)) {
  2025. if (!page) {
  2026. page = pmd_page(*pmd);
  2027. /*
  2028. * An anonymous page must be locked, to ensure that a
  2029. * concurrent reuse_swap_page() sees stable mapcount;
  2030. * but reuse_swap_page() is not used on shmem or file,
  2031. * and page lock must not be taken when zap_pmd_range()
  2032. * calls __split_huge_pmd() while i_mmap_lock is held.
  2033. */
  2034. if (PageAnon(page)) {
  2035. if (unlikely(!trylock_page(page))) {
  2036. get_page(page);
  2037. _pmd = *pmd;
  2038. spin_unlock(ptl);
  2039. lock_page(page);
  2040. spin_lock(ptl);
  2041. if (unlikely(!pmd_same(*pmd, _pmd))) {
  2042. unlock_page(page);
  2043. put_page(page);
  2044. page = NULL;
  2045. goto repeat;
  2046. }
  2047. put_page(page);
  2048. }
  2049. do_unlock_page = true;
  2050. }
  2051. }
  2052. if (PageMlocked(page))
  2053. clear_page_mlock(page);
  2054. } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
  2055. goto out;
  2056. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  2057. out:
  2058. spin_unlock(ptl);
  2059. if (do_unlock_page)
  2060. unlock_page(page);
  2061. /*
  2062. * No need to double call mmu_notifier->invalidate_range() callback.
  2063. * They are 3 cases to consider inside __split_huge_pmd_locked():
  2064. * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
  2065. * 2) __split_huge_zero_page_pmd() read only zero page and any write
  2066. * fault will trigger a flush_notify before pointing to a new page
  2067. * (it is fine if the secondary mmu keeps pointing to the old zero
  2068. * page in the meantime)
  2069. * 3) Split a huge pmd into pte pointing to the same page. No need
  2070. * to invalidate secondary tlb entry they are all still valid.
  2071. * any further changes to individual pte will notify. So no need
  2072. * to call mmu_notifier->invalidate_range()
  2073. */
  2074. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  2075. HPAGE_PMD_SIZE);
  2076. }
  2077. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  2078. bool freeze, struct page *page)
  2079. {
  2080. pgd_t *pgd;
  2081. p4d_t *p4d;
  2082. pud_t *pud;
  2083. pmd_t *pmd;
  2084. pgd = pgd_offset(vma->vm_mm, address);
  2085. if (!pgd_present(*pgd))
  2086. return;
  2087. p4d = p4d_offset(pgd, address);
  2088. if (!p4d_present(*p4d))
  2089. return;
  2090. pud = pud_offset(p4d, address);
  2091. if (!pud_present(*pud))
  2092. return;
  2093. pmd = pmd_offset(pud, address);
  2094. __split_huge_pmd(vma, pmd, address, freeze, page);
  2095. }
  2096. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2097. unsigned long start,
  2098. unsigned long end,
  2099. long adjust_next)
  2100. {
  2101. /*
  2102. * If the new start address isn't hpage aligned and it could
  2103. * previously contain an hugepage: check if we need to split
  2104. * an huge pmd.
  2105. */
  2106. if (start & ~HPAGE_PMD_MASK &&
  2107. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2108. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2109. split_huge_pmd_address(vma, start, false, NULL);
  2110. /*
  2111. * If the new end address isn't hpage aligned and it could
  2112. * previously contain an hugepage: check if we need to split
  2113. * an huge pmd.
  2114. */
  2115. if (end & ~HPAGE_PMD_MASK &&
  2116. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2117. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2118. split_huge_pmd_address(vma, end, false, NULL);
  2119. /*
  2120. * If we're also updating the vma->vm_next->vm_start, if the new
  2121. * vm_next->vm_start isn't page aligned and it could previously
  2122. * contain an hugepage: check if we need to split an huge pmd.
  2123. */
  2124. if (adjust_next > 0) {
  2125. struct vm_area_struct *next = vma->vm_next;
  2126. unsigned long nstart = next->vm_start;
  2127. nstart += adjust_next << PAGE_SHIFT;
  2128. if (nstart & ~HPAGE_PMD_MASK &&
  2129. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2130. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2131. split_huge_pmd_address(next, nstart, false, NULL);
  2132. }
  2133. }
  2134. static void unmap_page(struct page *page)
  2135. {
  2136. enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
  2137. TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
  2138. bool unmap_success;
  2139. VM_BUG_ON_PAGE(!PageHead(page), page);
  2140. if (PageAnon(page))
  2141. ttu_flags |= TTU_SPLIT_FREEZE;
  2142. unmap_success = try_to_unmap(page, ttu_flags);
  2143. VM_BUG_ON_PAGE(!unmap_success, page);
  2144. }
  2145. static void remap_page(struct page *page)
  2146. {
  2147. int i;
  2148. if (PageTransHuge(page)) {
  2149. remove_migration_ptes(page, page, true);
  2150. } else {
  2151. for (i = 0; i < HPAGE_PMD_NR; i++)
  2152. remove_migration_ptes(page + i, page + i, true);
  2153. }
  2154. }
  2155. static void __split_huge_page_tail(struct page *head, int tail,
  2156. struct lruvec *lruvec, struct list_head *list)
  2157. {
  2158. struct page *page_tail = head + tail;
  2159. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2160. /*
  2161. * Clone page flags before unfreezing refcount.
  2162. *
  2163. * After successful get_page_unless_zero() might follow flags change,
  2164. * for exmaple lock_page() which set PG_waiters.
  2165. */
  2166. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2167. page_tail->flags |= (head->flags &
  2168. ((1L << PG_referenced) |
  2169. (1L << PG_swapbacked) |
  2170. (1L << PG_swapcache) |
  2171. (1L << PG_mlocked) |
  2172. (1L << PG_uptodate) |
  2173. (1L << PG_active) |
  2174. (1L << PG_locked) |
  2175. (1L << PG_unevictable) |
  2176. (1L << PG_dirty)));
  2177. /* ->mapping in first tail page is compound_mapcount */
  2178. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2179. page_tail);
  2180. page_tail->mapping = head->mapping;
  2181. page_tail->index = head->index + tail;
  2182. /* Page flags must be visible before we make the page non-compound. */
  2183. smp_wmb();
  2184. /*
  2185. * Clear PageTail before unfreezing page refcount.
  2186. *
  2187. * After successful get_page_unless_zero() might follow put_page()
  2188. * which needs correct compound_head().
  2189. */
  2190. clear_compound_head(page_tail);
  2191. /* Finally unfreeze refcount. Additional reference from page cache. */
  2192. page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
  2193. PageSwapCache(head)));
  2194. if (page_is_young(head))
  2195. set_page_young(page_tail);
  2196. if (page_is_idle(head))
  2197. set_page_idle(page_tail);
  2198. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2199. /*
  2200. * always add to the tail because some iterators expect new
  2201. * pages to show after the currently processed elements - e.g.
  2202. * migrate_pages
  2203. */
  2204. lru_add_page_tail(head, page_tail, lruvec, list);
  2205. }
  2206. static void __split_huge_page(struct page *page, struct list_head *list,
  2207. pgoff_t end, unsigned long flags)
  2208. {
  2209. struct page *head = compound_head(page);
  2210. struct zone *zone = page_zone(head);
  2211. struct lruvec *lruvec;
  2212. int i;
  2213. lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
  2214. /* complete memcg works before add pages to LRU */
  2215. mem_cgroup_split_huge_fixup(head);
  2216. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  2217. __split_huge_page_tail(head, i, lruvec, list);
  2218. /* Some pages can be beyond i_size: drop them from page cache */
  2219. if (head[i].index >= end) {
  2220. ClearPageDirty(head + i);
  2221. __delete_from_page_cache(head + i, NULL);
  2222. if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
  2223. shmem_uncharge(head->mapping->host, 1);
  2224. put_page(head + i);
  2225. }
  2226. }
  2227. ClearPageCompound(head);
  2228. split_page_owner(head, HPAGE_PMD_ORDER);
  2229. /* See comment in __split_huge_page_tail() */
  2230. if (PageAnon(head)) {
  2231. /* Additional pin to radix tree of swap cache */
  2232. if (PageSwapCache(head))
  2233. page_ref_add(head, 2);
  2234. else
  2235. page_ref_inc(head);
  2236. } else {
  2237. /* Additional pin to radix tree */
  2238. page_ref_add(head, 2);
  2239. xa_unlock(&head->mapping->i_pages);
  2240. }
  2241. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2242. remap_page(head);
  2243. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2244. struct page *subpage = head + i;
  2245. if (subpage == page)
  2246. continue;
  2247. unlock_page(subpage);
  2248. /*
  2249. * Subpages may be freed if there wasn't any mapping
  2250. * like if add_to_swap() is running on a lru page that
  2251. * had its mapping zapped. And freeing these pages
  2252. * requires taking the lru_lock so we do the put_page
  2253. * of the tail pages after the split is complete.
  2254. */
  2255. put_page(subpage);
  2256. }
  2257. }
  2258. int total_mapcount(struct page *page)
  2259. {
  2260. int i, compound, ret;
  2261. VM_BUG_ON_PAGE(PageTail(page), page);
  2262. if (likely(!PageCompound(page)))
  2263. return atomic_read(&page->_mapcount) + 1;
  2264. compound = compound_mapcount(page);
  2265. if (PageHuge(page))
  2266. return compound;
  2267. ret = compound;
  2268. for (i = 0; i < HPAGE_PMD_NR; i++)
  2269. ret += atomic_read(&page[i]._mapcount) + 1;
  2270. /* File pages has compound_mapcount included in _mapcount */
  2271. if (!PageAnon(page))
  2272. return ret - compound * HPAGE_PMD_NR;
  2273. if (PageDoubleMap(page))
  2274. ret -= HPAGE_PMD_NR;
  2275. return ret;
  2276. }
  2277. /*
  2278. * This calculates accurately how many mappings a transparent hugepage
  2279. * has (unlike page_mapcount() which isn't fully accurate). This full
  2280. * accuracy is primarily needed to know if copy-on-write faults can
  2281. * reuse the page and change the mapping to read-write instead of
  2282. * copying them. At the same time this returns the total_mapcount too.
  2283. *
  2284. * The function returns the highest mapcount any one of the subpages
  2285. * has. If the return value is one, even if different processes are
  2286. * mapping different subpages of the transparent hugepage, they can
  2287. * all reuse it, because each process is reusing a different subpage.
  2288. *
  2289. * The total_mapcount is instead counting all virtual mappings of the
  2290. * subpages. If the total_mapcount is equal to "one", it tells the
  2291. * caller all mappings belong to the same "mm" and in turn the
  2292. * anon_vma of the transparent hugepage can become the vma->anon_vma
  2293. * local one as no other process may be mapping any of the subpages.
  2294. *
  2295. * It would be more accurate to replace page_mapcount() with
  2296. * page_trans_huge_mapcount(), however we only use
  2297. * page_trans_huge_mapcount() in the copy-on-write faults where we
  2298. * need full accuracy to avoid breaking page pinning, because
  2299. * page_trans_huge_mapcount() is slower than page_mapcount().
  2300. */
  2301. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  2302. {
  2303. int i, ret, _total_mapcount, mapcount;
  2304. /* hugetlbfs shouldn't call it */
  2305. VM_BUG_ON_PAGE(PageHuge(page), page);
  2306. if (likely(!PageTransCompound(page))) {
  2307. mapcount = atomic_read(&page->_mapcount) + 1;
  2308. if (total_mapcount)
  2309. *total_mapcount = mapcount;
  2310. return mapcount;
  2311. }
  2312. page = compound_head(page);
  2313. _total_mapcount = ret = 0;
  2314. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2315. mapcount = atomic_read(&page[i]._mapcount) + 1;
  2316. ret = max(ret, mapcount);
  2317. _total_mapcount += mapcount;
  2318. }
  2319. if (PageDoubleMap(page)) {
  2320. ret -= 1;
  2321. _total_mapcount -= HPAGE_PMD_NR;
  2322. }
  2323. mapcount = compound_mapcount(page);
  2324. ret += mapcount;
  2325. _total_mapcount += mapcount;
  2326. if (total_mapcount)
  2327. *total_mapcount = _total_mapcount;
  2328. return ret;
  2329. }
  2330. /* Racy check whether the huge page can be split */
  2331. bool can_split_huge_page(struct page *page, int *pextra_pins)
  2332. {
  2333. int extra_pins;
  2334. /* Additional pins from radix tree */
  2335. if (PageAnon(page))
  2336. extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
  2337. else
  2338. extra_pins = HPAGE_PMD_NR;
  2339. if (pextra_pins)
  2340. *pextra_pins = extra_pins;
  2341. return total_mapcount(page) == page_count(page) - extra_pins - 1;
  2342. }
  2343. /*
  2344. * This function splits huge page into normal pages. @page can point to any
  2345. * subpage of huge page to split. Split doesn't change the position of @page.
  2346. *
  2347. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2348. * The huge page must be locked.
  2349. *
  2350. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2351. *
  2352. * Both head page and tail pages will inherit mapping, flags, and so on from
  2353. * the hugepage.
  2354. *
  2355. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2356. * they are not mapped.
  2357. *
  2358. * Returns 0 if the hugepage is split successfully.
  2359. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2360. * us.
  2361. */
  2362. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2363. {
  2364. struct page *head = compound_head(page);
  2365. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2366. struct anon_vma *anon_vma = NULL;
  2367. struct address_space *mapping = NULL;
  2368. int count, mapcount, extra_pins, ret;
  2369. bool mlocked;
  2370. unsigned long flags;
  2371. pgoff_t end;
  2372. VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
  2373. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2374. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2375. if (PageWriteback(page))
  2376. return -EBUSY;
  2377. if (PageAnon(head)) {
  2378. /*
  2379. * The caller does not necessarily hold an mmap_sem that would
  2380. * prevent the anon_vma disappearing so we first we take a
  2381. * reference to it and then lock the anon_vma for write. This
  2382. * is similar to page_lock_anon_vma_read except the write lock
  2383. * is taken to serialise against parallel split or collapse
  2384. * operations.
  2385. */
  2386. anon_vma = page_get_anon_vma(head);
  2387. if (!anon_vma) {
  2388. ret = -EBUSY;
  2389. goto out;
  2390. }
  2391. end = -1;
  2392. mapping = NULL;
  2393. anon_vma_lock_write(anon_vma);
  2394. } else {
  2395. mapping = head->mapping;
  2396. /* Truncated ? */
  2397. if (!mapping) {
  2398. ret = -EBUSY;
  2399. goto out;
  2400. }
  2401. anon_vma = NULL;
  2402. i_mmap_lock_read(mapping);
  2403. /*
  2404. *__split_huge_page() may need to trim off pages beyond EOF:
  2405. * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
  2406. * which cannot be nested inside the page tree lock. So note
  2407. * end now: i_size itself may be changed at any moment, but
  2408. * head page lock is good enough to serialize the trimming.
  2409. */
  2410. end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
  2411. }
  2412. /*
  2413. * Racy check if we can split the page, before unmap_page() will
  2414. * split PMDs
  2415. */
  2416. if (!can_split_huge_page(head, &extra_pins)) {
  2417. ret = -EBUSY;
  2418. goto out_unlock;
  2419. }
  2420. mlocked = PageMlocked(page);
  2421. unmap_page(head);
  2422. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2423. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2424. if (mlocked)
  2425. lru_add_drain();
  2426. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2427. spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
  2428. if (mapping) {
  2429. void **pslot;
  2430. xa_lock(&mapping->i_pages);
  2431. pslot = radix_tree_lookup_slot(&mapping->i_pages,
  2432. page_index(head));
  2433. /*
  2434. * Check if the head page is present in radix tree.
  2435. * We assume all tail are present too, if head is there.
  2436. */
  2437. if (radix_tree_deref_slot_protected(pslot,
  2438. &mapping->i_pages.xa_lock) != head)
  2439. goto fail;
  2440. }
  2441. /* Prevent deferred_split_scan() touching ->_refcount */
  2442. spin_lock(&pgdata->split_queue_lock);
  2443. count = page_count(head);
  2444. mapcount = total_mapcount(head);
  2445. if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
  2446. if (!list_empty(page_deferred_list(head))) {
  2447. pgdata->split_queue_len--;
  2448. list_del(page_deferred_list(head));
  2449. }
  2450. if (mapping)
  2451. __dec_node_page_state(page, NR_SHMEM_THPS);
  2452. spin_unlock(&pgdata->split_queue_lock);
  2453. __split_huge_page(page, list, end, flags);
  2454. if (PageSwapCache(head)) {
  2455. swp_entry_t entry = { .val = page_private(head) };
  2456. ret = split_swap_cluster(entry);
  2457. } else
  2458. ret = 0;
  2459. } else {
  2460. if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2461. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2462. mapcount, count);
  2463. if (PageTail(page))
  2464. dump_page(head, NULL);
  2465. dump_page(page, "total_mapcount(head) > 0");
  2466. BUG();
  2467. }
  2468. spin_unlock(&pgdata->split_queue_lock);
  2469. fail: if (mapping)
  2470. xa_unlock(&mapping->i_pages);
  2471. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2472. remap_page(head);
  2473. ret = -EBUSY;
  2474. }
  2475. out_unlock:
  2476. if (anon_vma) {
  2477. anon_vma_unlock_write(anon_vma);
  2478. put_anon_vma(anon_vma);
  2479. }
  2480. if (mapping)
  2481. i_mmap_unlock_read(mapping);
  2482. out:
  2483. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2484. return ret;
  2485. }
  2486. void free_transhuge_page(struct page *page)
  2487. {
  2488. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2489. unsigned long flags;
  2490. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2491. if (!list_empty(page_deferred_list(page))) {
  2492. pgdata->split_queue_len--;
  2493. list_del(page_deferred_list(page));
  2494. }
  2495. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2496. free_compound_page(page);
  2497. }
  2498. void deferred_split_huge_page(struct page *page)
  2499. {
  2500. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2501. unsigned long flags;
  2502. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2503. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2504. if (list_empty(page_deferred_list(page))) {
  2505. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2506. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  2507. pgdata->split_queue_len++;
  2508. }
  2509. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2510. }
  2511. static unsigned long deferred_split_count(struct shrinker *shrink,
  2512. struct shrink_control *sc)
  2513. {
  2514. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2515. return READ_ONCE(pgdata->split_queue_len);
  2516. }
  2517. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2518. struct shrink_control *sc)
  2519. {
  2520. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2521. unsigned long flags;
  2522. LIST_HEAD(list), *pos, *next;
  2523. struct page *page;
  2524. int split = 0;
  2525. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2526. /* Take pin on all head pages to avoid freeing them under us */
  2527. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2528. page = list_entry((void *)pos, struct page, mapping);
  2529. page = compound_head(page);
  2530. if (get_page_unless_zero(page)) {
  2531. list_move(page_deferred_list(page), &list);
  2532. } else {
  2533. /* We lost race with put_compound_page() */
  2534. list_del_init(page_deferred_list(page));
  2535. pgdata->split_queue_len--;
  2536. }
  2537. if (!--sc->nr_to_scan)
  2538. break;
  2539. }
  2540. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2541. list_for_each_safe(pos, next, &list) {
  2542. page = list_entry((void *)pos, struct page, mapping);
  2543. if (!trylock_page(page))
  2544. goto next;
  2545. /* split_huge_page() removes page from list on success */
  2546. if (!split_huge_page(page))
  2547. split++;
  2548. unlock_page(page);
  2549. next:
  2550. put_page(page);
  2551. }
  2552. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2553. list_splice_tail(&list, &pgdata->split_queue);
  2554. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2555. /*
  2556. * Stop shrinker if we didn't split any page, but the queue is empty.
  2557. * This can happen if pages were freed under us.
  2558. */
  2559. if (!split && list_empty(&pgdata->split_queue))
  2560. return SHRINK_STOP;
  2561. return split;
  2562. }
  2563. static struct shrinker deferred_split_shrinker = {
  2564. .count_objects = deferred_split_count,
  2565. .scan_objects = deferred_split_scan,
  2566. .seeks = DEFAULT_SEEKS,
  2567. .flags = SHRINKER_NUMA_AWARE,
  2568. };
  2569. #ifdef CONFIG_DEBUG_FS
  2570. static int split_huge_pages_set(void *data, u64 val)
  2571. {
  2572. struct zone *zone;
  2573. struct page *page;
  2574. unsigned long pfn, max_zone_pfn;
  2575. unsigned long total = 0, split = 0;
  2576. if (val != 1)
  2577. return -EINVAL;
  2578. for_each_populated_zone(zone) {
  2579. max_zone_pfn = zone_end_pfn(zone);
  2580. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  2581. if (!pfn_valid(pfn))
  2582. continue;
  2583. page = pfn_to_page(pfn);
  2584. if (!get_page_unless_zero(page))
  2585. continue;
  2586. if (zone != page_zone(page))
  2587. goto next;
  2588. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  2589. goto next;
  2590. total++;
  2591. lock_page(page);
  2592. if (!split_huge_page(page))
  2593. split++;
  2594. unlock_page(page);
  2595. next:
  2596. put_page(page);
  2597. }
  2598. }
  2599. pr_info("%lu of %lu THP split\n", split, total);
  2600. return 0;
  2601. }
  2602. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  2603. "%llu\n");
  2604. static int __init split_huge_pages_debugfs(void)
  2605. {
  2606. void *ret;
  2607. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  2608. &split_huge_pages_fops);
  2609. if (!ret)
  2610. pr_warn("Failed to create split_huge_pages in debugfs");
  2611. return 0;
  2612. }
  2613. late_initcall(split_huge_pages_debugfs);
  2614. #endif
  2615. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  2616. void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
  2617. struct page *page)
  2618. {
  2619. struct vm_area_struct *vma = pvmw->vma;
  2620. struct mm_struct *mm = vma->vm_mm;
  2621. unsigned long address = pvmw->address;
  2622. pmd_t pmdval;
  2623. swp_entry_t entry;
  2624. pmd_t pmdswp;
  2625. if (!(pvmw->pmd && !pvmw->pte))
  2626. return;
  2627. flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
  2628. pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
  2629. if (pmd_dirty(pmdval))
  2630. set_page_dirty(page);
  2631. entry = make_migration_entry(page, pmd_write(pmdval));
  2632. pmdswp = swp_entry_to_pmd(entry);
  2633. if (pmd_soft_dirty(pmdval))
  2634. pmdswp = pmd_swp_mksoft_dirty(pmdswp);
  2635. set_pmd_at(mm, address, pvmw->pmd, pmdswp);
  2636. page_remove_rmap(page, true);
  2637. put_page(page);
  2638. }
  2639. void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
  2640. {
  2641. struct vm_area_struct *vma = pvmw->vma;
  2642. struct mm_struct *mm = vma->vm_mm;
  2643. unsigned long address = pvmw->address;
  2644. unsigned long mmun_start = address & HPAGE_PMD_MASK;
  2645. pmd_t pmde;
  2646. swp_entry_t entry;
  2647. if (!(pvmw->pmd && !pvmw->pte))
  2648. return;
  2649. entry = pmd_to_swp_entry(*pvmw->pmd);
  2650. get_page(new);
  2651. pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
  2652. if (pmd_swp_soft_dirty(*pvmw->pmd))
  2653. pmde = pmd_mksoft_dirty(pmde);
  2654. if (is_write_migration_entry(entry))
  2655. pmde = maybe_pmd_mkwrite(pmde, vma);
  2656. flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
  2657. if (PageAnon(new))
  2658. page_add_anon_rmap(new, vma, mmun_start, true);
  2659. else
  2660. page_add_file_rmap(new, true);
  2661. set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
  2662. if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
  2663. mlock_vma_page(new);
  2664. update_mmu_cache_pmd(vma, address, pvmw->pmd);
  2665. }
  2666. #endif