ipmr_base.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. /* Linux multicast routing support
  2. * Common logic shared by IPv4 [ipmr] and IPv6 [ip6mr] implementation
  3. */
  4. #include <linux/rhashtable.h>
  5. #include <linux/mroute_base.h>
  6. /* Sets everything common except 'dev', since that is done under locking */
  7. void vif_device_init(struct vif_device *v,
  8. struct net_device *dev,
  9. unsigned long rate_limit,
  10. unsigned char threshold,
  11. unsigned short flags,
  12. unsigned short get_iflink_mask)
  13. {
  14. v->dev = NULL;
  15. v->bytes_in = 0;
  16. v->bytes_out = 0;
  17. v->pkt_in = 0;
  18. v->pkt_out = 0;
  19. v->rate_limit = rate_limit;
  20. v->flags = flags;
  21. v->threshold = threshold;
  22. if (v->flags & get_iflink_mask)
  23. v->link = dev_get_iflink(dev);
  24. else
  25. v->link = dev->ifindex;
  26. }
  27. EXPORT_SYMBOL(vif_device_init);
  28. struct mr_table *
  29. mr_table_alloc(struct net *net, u32 id,
  30. struct mr_table_ops *ops,
  31. void (*expire_func)(struct timer_list *t),
  32. void (*table_set)(struct mr_table *mrt,
  33. struct net *net))
  34. {
  35. struct mr_table *mrt;
  36. int err;
  37. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  38. if (!mrt)
  39. return ERR_PTR(-ENOMEM);
  40. mrt->id = id;
  41. write_pnet(&mrt->net, net);
  42. mrt->ops = *ops;
  43. err = rhltable_init(&mrt->mfc_hash, mrt->ops.rht_params);
  44. if (err) {
  45. kfree(mrt);
  46. return ERR_PTR(err);
  47. }
  48. INIT_LIST_HEAD(&mrt->mfc_cache_list);
  49. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  50. timer_setup(&mrt->ipmr_expire_timer, expire_func, 0);
  51. mrt->mroute_reg_vif_num = -1;
  52. table_set(mrt, net);
  53. return mrt;
  54. }
  55. EXPORT_SYMBOL(mr_table_alloc);
  56. void *mr_mfc_find_parent(struct mr_table *mrt, void *hasharg, int parent)
  57. {
  58. struct rhlist_head *tmp, *list;
  59. struct mr_mfc *c;
  60. list = rhltable_lookup(&mrt->mfc_hash, hasharg, *mrt->ops.rht_params);
  61. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  62. if (parent == -1 || parent == c->mfc_parent)
  63. return c;
  64. return NULL;
  65. }
  66. EXPORT_SYMBOL(mr_mfc_find_parent);
  67. void *mr_mfc_find_any_parent(struct mr_table *mrt, int vifi)
  68. {
  69. struct rhlist_head *tmp, *list;
  70. struct mr_mfc *c;
  71. list = rhltable_lookup(&mrt->mfc_hash, mrt->ops.cmparg_any,
  72. *mrt->ops.rht_params);
  73. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  74. if (c->mfc_un.res.ttls[vifi] < 255)
  75. return c;
  76. return NULL;
  77. }
  78. EXPORT_SYMBOL(mr_mfc_find_any_parent);
  79. void *mr_mfc_find_any(struct mr_table *mrt, int vifi, void *hasharg)
  80. {
  81. struct rhlist_head *tmp, *list;
  82. struct mr_mfc *c, *proxy;
  83. list = rhltable_lookup(&mrt->mfc_hash, hasharg, *mrt->ops.rht_params);
  84. rhl_for_each_entry_rcu(c, tmp, list, mnode) {
  85. if (c->mfc_un.res.ttls[vifi] < 255)
  86. return c;
  87. /* It's ok if the vifi is part of the static tree */
  88. proxy = mr_mfc_find_any_parent(mrt, c->mfc_parent);
  89. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  90. return c;
  91. }
  92. return mr_mfc_find_any_parent(mrt, vifi);
  93. }
  94. EXPORT_SYMBOL(mr_mfc_find_any);
  95. #ifdef CONFIG_PROC_FS
  96. void *mr_vif_seq_idx(struct net *net, struct mr_vif_iter *iter, loff_t pos)
  97. {
  98. struct mr_table *mrt = iter->mrt;
  99. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  100. if (!VIF_EXISTS(mrt, iter->ct))
  101. continue;
  102. if (pos-- == 0)
  103. return &mrt->vif_table[iter->ct];
  104. }
  105. return NULL;
  106. }
  107. EXPORT_SYMBOL(mr_vif_seq_idx);
  108. void *mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  109. {
  110. struct mr_vif_iter *iter = seq->private;
  111. struct net *net = seq_file_net(seq);
  112. struct mr_table *mrt = iter->mrt;
  113. ++*pos;
  114. if (v == SEQ_START_TOKEN)
  115. return mr_vif_seq_idx(net, iter, 0);
  116. while (++iter->ct < mrt->maxvif) {
  117. if (!VIF_EXISTS(mrt, iter->ct))
  118. continue;
  119. return &mrt->vif_table[iter->ct];
  120. }
  121. return NULL;
  122. }
  123. EXPORT_SYMBOL(mr_vif_seq_next);
  124. void *mr_mfc_seq_idx(struct net *net,
  125. struct mr_mfc_iter *it, loff_t pos)
  126. {
  127. struct mr_table *mrt = it->mrt;
  128. struct mr_mfc *mfc;
  129. rcu_read_lock();
  130. it->cache = &mrt->mfc_cache_list;
  131. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
  132. if (pos-- == 0)
  133. return mfc;
  134. rcu_read_unlock();
  135. spin_lock_bh(it->lock);
  136. it->cache = &mrt->mfc_unres_queue;
  137. list_for_each_entry(mfc, it->cache, list)
  138. if (pos-- == 0)
  139. return mfc;
  140. spin_unlock_bh(it->lock);
  141. it->cache = NULL;
  142. return NULL;
  143. }
  144. EXPORT_SYMBOL(mr_mfc_seq_idx);
  145. void *mr_mfc_seq_next(struct seq_file *seq, void *v,
  146. loff_t *pos)
  147. {
  148. struct mr_mfc_iter *it = seq->private;
  149. struct net *net = seq_file_net(seq);
  150. struct mr_table *mrt = it->mrt;
  151. struct mr_mfc *c = v;
  152. ++*pos;
  153. if (v == SEQ_START_TOKEN)
  154. return mr_mfc_seq_idx(net, seq->private, 0);
  155. if (c->list.next != it->cache)
  156. return list_entry(c->list.next, struct mr_mfc, list);
  157. if (it->cache == &mrt->mfc_unres_queue)
  158. goto end_of_list;
  159. /* exhausted cache_array, show unresolved */
  160. rcu_read_unlock();
  161. it->cache = &mrt->mfc_unres_queue;
  162. spin_lock_bh(it->lock);
  163. if (!list_empty(it->cache))
  164. return list_first_entry(it->cache, struct mr_mfc, list);
  165. end_of_list:
  166. spin_unlock_bh(it->lock);
  167. it->cache = NULL;
  168. return NULL;
  169. }
  170. EXPORT_SYMBOL(mr_mfc_seq_next);
  171. #endif
  172. int mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  173. struct mr_mfc *c, struct rtmsg *rtm)
  174. {
  175. struct rta_mfc_stats mfcs;
  176. struct nlattr *mp_attr;
  177. struct rtnexthop *nhp;
  178. unsigned long lastuse;
  179. int ct;
  180. /* If cache is unresolved, don't try to parse IIF and OIF */
  181. if (c->mfc_parent >= MAXVIFS) {
  182. rtm->rtm_flags |= RTNH_F_UNRESOLVED;
  183. return -ENOENT;
  184. }
  185. if (VIF_EXISTS(mrt, c->mfc_parent) &&
  186. nla_put_u32(skb, RTA_IIF,
  187. mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
  188. return -EMSGSIZE;
  189. if (c->mfc_flags & MFC_OFFLOAD)
  190. rtm->rtm_flags |= RTNH_F_OFFLOAD;
  191. mp_attr = nla_nest_start(skb, RTA_MULTIPATH);
  192. if (!mp_attr)
  193. return -EMSGSIZE;
  194. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  195. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  196. struct vif_device *vif;
  197. nhp = nla_reserve_nohdr(skb, sizeof(*nhp));
  198. if (!nhp) {
  199. nla_nest_cancel(skb, mp_attr);
  200. return -EMSGSIZE;
  201. }
  202. nhp->rtnh_flags = 0;
  203. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  204. vif = &mrt->vif_table[ct];
  205. nhp->rtnh_ifindex = vif->dev->ifindex;
  206. nhp->rtnh_len = sizeof(*nhp);
  207. }
  208. }
  209. nla_nest_end(skb, mp_attr);
  210. lastuse = READ_ONCE(c->mfc_un.res.lastuse);
  211. lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
  212. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  213. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  214. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  215. if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
  216. nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
  217. RTA_PAD))
  218. return -EMSGSIZE;
  219. rtm->rtm_type = RTN_MULTICAST;
  220. return 1;
  221. }
  222. EXPORT_SYMBOL(mr_fill_mroute);
  223. int mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb,
  224. struct mr_table *(*iter)(struct net *net,
  225. struct mr_table *mrt),
  226. int (*fill)(struct mr_table *mrt,
  227. struct sk_buff *skb,
  228. u32 portid, u32 seq, struct mr_mfc *c,
  229. int cmd, int flags),
  230. spinlock_t *lock)
  231. {
  232. unsigned int t = 0, e = 0, s_t = cb->args[0], s_e = cb->args[1];
  233. struct net *net = sock_net(skb->sk);
  234. struct mr_table *mrt;
  235. struct mr_mfc *mfc;
  236. rcu_read_lock();
  237. for (mrt = iter(net, NULL); mrt; mrt = iter(net, mrt)) {
  238. if (t < s_t)
  239. goto next_table;
  240. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
  241. if (e < s_e)
  242. goto next_entry;
  243. if (fill(mrt, skb, NETLINK_CB(cb->skb).portid,
  244. cb->nlh->nlmsg_seq, mfc,
  245. RTM_NEWROUTE, NLM_F_MULTI) < 0)
  246. goto done;
  247. next_entry:
  248. e++;
  249. }
  250. spin_lock_bh(lock);
  251. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  252. if (e < s_e)
  253. goto next_entry2;
  254. if (fill(mrt, skb, NETLINK_CB(cb->skb).portid,
  255. cb->nlh->nlmsg_seq, mfc,
  256. RTM_NEWROUTE, NLM_F_MULTI) < 0) {
  257. spin_unlock_bh(lock);
  258. goto done;
  259. }
  260. next_entry2:
  261. e++;
  262. }
  263. spin_unlock_bh(lock);
  264. e = 0;
  265. s_e = 0;
  266. next_table:
  267. t++;
  268. }
  269. done:
  270. rcu_read_unlock();
  271. cb->args[1] = e;
  272. cb->args[0] = t;
  273. return skb->len;
  274. }
  275. EXPORT_SYMBOL(mr_rtm_dumproute);
  276. int mr_dump(struct net *net, struct notifier_block *nb, unsigned short family,
  277. int (*rules_dump)(struct net *net,
  278. struct notifier_block *nb),
  279. struct mr_table *(*mr_iter)(struct net *net,
  280. struct mr_table *mrt),
  281. rwlock_t *mrt_lock)
  282. {
  283. struct mr_table *mrt;
  284. int err;
  285. err = rules_dump(net, nb);
  286. if (err)
  287. return err;
  288. for (mrt = mr_iter(net, NULL); mrt; mrt = mr_iter(net, mrt)) {
  289. struct vif_device *v = &mrt->vif_table[0];
  290. struct mr_mfc *mfc;
  291. int vifi;
  292. /* Notifiy on table VIF entries */
  293. read_lock(mrt_lock);
  294. for (vifi = 0; vifi < mrt->maxvif; vifi++, v++) {
  295. if (!v->dev)
  296. continue;
  297. mr_call_vif_notifier(nb, net, family,
  298. FIB_EVENT_VIF_ADD,
  299. v, vifi, mrt->id);
  300. }
  301. read_unlock(mrt_lock);
  302. /* Notify on table MFC entries */
  303. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
  304. mr_call_mfc_notifier(nb, net, family,
  305. FIB_EVENT_ENTRY_ADD,
  306. mfc, mrt->id);
  307. }
  308. return 0;
  309. }
  310. EXPORT_SYMBOL(mr_dump);